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A polycycle and limit cycles in a non-differentiable
predator-prey model
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Abstract. For a non-differentiable predator-prey model, we establish conditions for the
existence of a heteroclinic orbit which is part of one contractive polycycle and for some
values of the parameters, we prove that the heteroclinic orbit is broken and generates a
stable limit cycle. In addition, in the parameter space, we prove that there exists a curve
such that the unique singularity in the realistic quadrant of the predator-prey model is
a weak focus of order two and by Hopf bifurcations we can have at most two small
amplitude limit cycles.
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1. Introduction

We consider the predator-prey model proposed by Rosenzweig [8] given by

Xαµ:



ẋ = rx

(
1 − x

K

)
− qxαy

ẏ = y(pqxα − c)

, (1.1)

where x(t) and y(t) are the densities of the prey and the predator respectively at a given
time t ≥ 0. The vector fieldXαµ is defined on the region �̄ = {(x, y)|x ≥ 0, y ≥ 0} where

µ = (r,K, p, q, c) ∈ R
5+ and 0 < α < 1 denote the biological parameters and have the

following meanings:

(1) r is the intrinsic growth rate or biotic potential of the prey.
(2) q is the maximal predator per capita consumption rate, i.e., the maximum number of

prey that can be eaten by predator in each time unit.
(3) p is the conversion prey rate into predator births.
(4) c is the mortality predator rate in the absence of prey.
(5) K is the prey environment carrying capacity.
(6) α is the adaptation parameter that takes into account the effects of non-random search

of prey on behalf of the predator.

System (1.1) is a kind of model that justifies the enrichment paradox, i.e ‘increasing the
supply of limiting nutrients or energy that tends to destroy the steady state of the ecosystem’
(see [8]).
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220 E Sáez and I Szántó

In (1.1), the function f (x) = qxα, 0 < α < 1 corresponds to the functional response of
the predators. This kind of function appears in the works of [1, 4, 6] and also is proposed
in the bioeconomics literature where it is indicated as a Cobb–Douglas type of function
for the harvest rate function instead of the one used in Schaefer’s hypothesis [3].

For 0 < α < 1, the function f (x) is non-differentiable in the y-axis and this restriction
influences the dynamics of the model under study, just as it is demonstrated in this work.

In [1] it has been proved that the only singularity in the first quadrant R
+ × R

+ is not
globally asymptotically stable. The authors show that there exist orbits of (1.1) that reach
the axis y in finite time. This behavior is a consequence of the non-differentiability of (1.1)
in the axis y as we will show in Lemmas 2 and 4.

In the parameter space, by a topological equivalence, we prove that there exists a mani-
fold such that (r,K, p, q, c, α) is a point of the manifold. The system (1, 1) has a hetero-
clinic with w-limit = {(0, 0)} and α-limit = {(K, 0)}. The heteroclinic is part of a stable
hyperbolic polycycle and contains at least one unstable limit cycle.

If� = R
+×R

+, it is easy to see thatXαµ in �̄ is a continuous and non-differentiable vec-
tor field and in� it is aC∞ vector field. In others words,Xαµ ∈ X 0(�̄)−X 1(�̄) andXαµ ∈
X ∞(�). To describe the bifurcation diagram of Xαµ in the parameter space in a simple
way, it is necessary to reduce system (1.1) to a normal form (see [2, 5, 10]). Let us consider
the linear change of coordinates with the change of time.

ϕ: R
2 × R

+
0 → R

2 × R
+
0 such that ϕ(u, v, τ ) =

(
Ku,

rv

qKα−1
,
τ

r

)

= (x, y, t), (1.2)

where detDϕ(u, v, τ ) = K2−α
q

> 0. Renaming the parameters B and C by

B = pqKα

r
> 0, C = c

pqKα
> 0, (1.3)

we obtain a qualitatively equivalent vector field Yαη = ϕ∗Xαµ which has the form Yαη =
Pα ∂

∂u
+Qα

η
∂
∂v

. The associated differential equation system defined on the region ϕ−1(�̄)

is given by

Yαη :



u̇ = u(1 − u)− uαv

v̇ = Bv(uα − C)
, η = (B,C) ∈ R

2
+ and 0 < α < 1. (1.4)

As 0 < α < 1, Y αη is a continuous vector field and non differentiable in the x = 0 axis, in
particular, in the origin of coordinates.

It is easy to see that Yαη ∈ X 0(ϕ−1(�̄)) − X 1(ϕ−1(�̄)), Y αη ∈ X ∞(ϕ−1(�)) and the

set of singularities in ϕ−1(�̄) are

Sing (Y αη ) = (Qα
η)

−1(0) ∩ (P α)−1(0) = {(0, 0), (1, 0), pαC}, where

pαC = (
C

1
α , C

1−α
α
(
1 − C

1
α
))
. (1.5)

For C ≥ 1, the dynamics of (1.4) is not interesting, because the vector field has no
singularities in ϕ−1(�). Hence, in this work we assume that 0 < C < 1.
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For a simpler description of the existence of the heteroclinic orbit and their dynamic
behavior in the parameter space of (1.4), let us consider the set

� = {(α, C,B)|0 < α < 1, 0 < B, 0 < C < 1}.

Let �B̄ = � ∩ {(α, C,B)|B = B̄} with B̄ > 0 an arbitrary but fixed value. If B̄ ranges
over the interval ]0,∞[, then the family of transversal section�B̄ ranges the space� and
it is enough describe the dynamics of (1.4) in �B̄ .

We now define the order of a fine focus. For simplicity we assume that the singularity
at the origin is a center focus. It is also well-known that there is a function V, analytic in
a neighbourhood of the origin, such that the rate of change along orbits, V̇ , is of the form
η2r

2 + η4r
4 + . . . , where r2 = x2 + y2. The focal values are the η2k , and the origin is

a centre if and only if they are all zero. However, since they are polynomial functions of
the coefficients of the vector field, the ideal they generate has a finite basis, so there is M
such that η2� = 0, for � ≤ M which implies that η2� = 0 for all �. The value of M is not
known a priori, so it is not clear how many focal values should be calculated.

The computer software Mathematica [11], is used to calculate the first few focal values.
These are then ‘reduced’ in the sense that each is computed modulo the ideal generated
by the previous ones: that is, the relations η2 = η4 = · · · = η2k = 0 are used to eliminate
some of the coefficients of the vector field in η2k+2. The reduced focal value η2k+2, with
strictly positive factors removed, is known as the Liapunov quantityL(k). Common factors
of the reduced focal values are removed and the computation proceeds until it can be
shown that the remaining expressions cannot be zero simultaneously. The circumstances
under which the calculated focal values are zero yield the necessary centre conditions. The
origin is a fine focus of order k if L(i) = 0 for i = 0, 1, . . . , k− 1 and L(k) �= 0. At most
k limit cycles can bifurcate out of a fine focus of order k; these are called small amplitude
limit cycles [2].

2. Main results

Lemma 1. For (α, B,C) ∈ � the vector field (1.4) has a hyperbolic saddle at the singu-
larity (1, 0) where the unstable manifold Wu is transversal to the u-axis (see figure 1).

Lemma 2. The vector field (1.4) has a non hyperbolic singularity at the origin and a stable
manifoldWs, as the unique separatrix between a hyperbolic sector and a non Lipschitzian
stable parabolic sector (see figure 1).

Lemma 3. In a parameter space � there exists a curve γ such that if (α, B,C) ∈ γ, the
unique singularity of the vector field Yαη in the first quadrant ϕ−1(�), is a stable weak

Figure 1. Figure 2.
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Figure 3. Figure 4.

focus of order two. By the Hopf bifurcations, we have a hyperbolic stable limit cycle that
generate from the weak focus and encloses a hyperbolic unstable limit cycle or a semi-
stable limit cycle whose interior is stable and unstable.

Lemma 4. At infinity, in the Poincaré disc the vector field (1.4) has a sector of the following
form:

(i) Only one non Lipschitzian hyperbolic sector in the v-axis direction.
(ii) Only one non Lipschitzian parabolic sector in the u-axis direction (see figure 2).

Lemma 5. For 0 < α 	 1, if (α, C) ∈ �B̄, the unstable manifold Wu of the hyperbolic
saddle at the singularity (1, 0) of the vector field (1.4) in Lemma 1, has a contact with some
point in the v-axis. The relative position of the manifoldsWu andWs shown in figure 1 is
shown qualitatively in figure 3.

Lemma 6. For 0 	 α ≤ 1, if (α, C) ∈ �B̄ in the first quadrant of the Poincaré
disc, the manifolds Wu and Ws shown in figure 1 has the relative position as shown in
figure 4.

Lemma 7. If (α, C) ∈ �B̄, B > 0 and 0 < α 	 1, the singularity pαC of (1.4) is not
involved by limit cycles.

Theorem 1. In the parameter space�B̄ there exists a bifurcation curveH(α,C, B̄) = 0,
such that if (α, C, B̄) ∈ H−1(0), the vector field (1.4) has a heteroclinic orbit 
. This
orbit is born as a consequence of the collapse of the manifoldsWu andWs (see figure 1).
Moreover if 1

2 ≤ C < 1, the polycycle that form the heteroclinic orbit that connects the
singularities at (1, 0) and the origin is hyperbolic and stable.

Theorem 2. In the parameter space �B̄, if 1
2 ≤ C < 1 is an arbitrary but fixed number,

there exists α such that the polycycle of (1.4) of Theorem 1 at least enclosed one unstable
limit cycle.

3. Proof of the main results

Proof of Lemma 1. The proof follows from

DYαη (1, 0) =
(−1 −1

0 B(1 − C)

)
.

�
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Proof of Lemma 2. Let us consider 
 = ϕ−1(�) and the C1-diffeomorphism,

ψ : R
2
+ → R

2
+ defined as ψ(x, y) = (

x
2

1−α , y
) = (u, v),

where detDψ(x, y) = 2
1−α x

1+α
1−α > 0, for x > 0.

In the new coordinates, the vector field (1.4) defined in (ϕ ◦ ψ)−1(�) is given by

Ỹ αη :



ẋ = 1−α

2

[
x
(
1−x 2

1−α
)− x−1y

]
ẏ = By

[
x

2α
1−α − C

] ,with Ỹ αη =(ϕ ◦ ψ)∗Yαη =D−1(ϕ ◦ ψ)Yαη (ϕ ◦ ψ).

(3.1)

Let the change of time be t → 2x
1−α t and the new parameter A = 2B

1−α . Then we have a

differentiable extension of Ỹ αη to the region ψ−1(
̄) given by

Ȳ αη̄ :



ẋ = x2

(
1 − x

2
1−α
)− y

ẏ = Axy
[
x

2α
1−α − C

] , where η̄ = (A,C). (3.2)

Clearly Ȳ αη̄ (0, y) = −y ∂
∂x

. Then the orbits of the vector field (3.2) orthogonally cross the
x = 0 axis (y > 0).

For 0 < y0, let (0, y0) be an initial condition and let γ be the orbit of vector field at
this point. Then γ ∗ = γ − {(0, y0)} is an orbit of system (3.2) and consequently an orbit
of (3.1). As ψ is a homeomorphism, systems (1.4) and (3.1) are C0-equivalent. Hence
ψ(γ ∗) is an orbit of (1.4) and by continuity, ψ(γ ) is an orbit of (1.4) that is tangent to the
vector field Yαη at the point ψ(0, y0) = (0, y0). Clearly the v-axis (u = 0) is an invariant

manifold and Yαη (0, y0) = −BC ∂
∂v

. Thus, for the point (0, y0), there exist at least two
orbits. Since for initial conditions on the v-axis, uniqueness of the orbits does not exist,
(1.4) is non Lipschitzian (see figure 1).

As the vector field (3.2) is a differentiable extension of (1.4) to the region ψ−1(
̄), we
have

Ȳ αη̄ ∈ X
1(ψ−1(
̄)) and DȲαη̄ (0, 0) =

(
0 −1

0 0

)
.

In order to desingularize the origin, we consider the horizontal blowing-up

�: R
2 → R

2, �(u, v) = (u, uv) = (x, y).

Hence, we have a new vector field

�∗(Ȳ αη̄ ) = (D�)−1Ȳ αη̄ � = Zαη̄ , (3.3)

and the associated system is

Zαη̄ :



u̇ = u

[
u
(
1 − u

2
1−α
)− v

]
v̇ = v

[
Au
(
u

2α
1−α − C

)− u
(
1 − u

2
1−α
)+ v

] , where DZαη̄ (0, 0) =
(

0 0

0 0

)
.
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To desingularize the singularity at the origin of Zαη̄ , we consider the vertical blowing-up


: R
2 → R

2, 
(x, y) = (xy, y) = (u, v).

We thus obtain a new vector field


∗(Zαη̄ ) = (D
)−1Zαη̄
 = Z̃αη̄ ,

where the associated system is given by

Z̃αη̄ :



ẋ = xy

[
x
(
1 − (xy)

2
1−α
)− 2 − Ax

(
(xy)

2α
1−α − C

)+ x
(
1 − (xy)

2
1−α
)]

ẏ = y2
[
Ax
(
(xy)

2α
1−α − C

)− x
(
1 − (xy)

2
1−α
)+ 1

] .

As the line x = 0 is a continuum of singularities of Z̃αη̄ , to lift these singularities, we

consider the extension of the vector field Z̄αη̄ = 1
y
Z̃αη̄ . As Z̄αη̄ (x, 0) = x[x(2+AC)−2] ∂

∂x
,

for x = 0 or x = 2
2+AC , we have Z̄αη̄ (x, 0) = 0.

Moreover,

DZ̄αη̄ (0, 0) =
(−2 0

0 1

)

and

DZ̄αη̄

(
2

2 + AC
, 0

)
=
(

2 0

0 − AC
2+AC

)
.

The singularities of Z̄αη̄ , (0, 0) and
( 2

2+AC , 0
)

are hyperbolic saddles. Thus there exists a

stable manifold ws tangent to the straight line x = 2
2+AC at the singularity at the origin as

shown in figure 5.
By the blowing-down of
 and �, and by the function ψ we prove the existence of the

stable manifold Ws = (
 ◦� ◦ ψ)−1(ws) of (1.4).
Furthermore, for v 	 1, the manifold Ws is tangent to v = 2+AC

2 u1−α at the origin
(see figure 1).

As the orbits of system (3.2) orthogonally cross the x = 0-axis, the uniqueness of the
separatrix Ws follows. �

� �

�
�

�
� �

• • x

y

2
2+AC

ws

• • α

B(α)

α = α∗

l1(α, B) > 0

l1(α, B) < 0

l1(α, B) = 0

≈ 1.08

�
�

�	

Figure 5. Figure 6.
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Proof of Lemma 3. The set of singularities of (1.4), Yαη = Pα ∂
∂u

+Qα
η
∂
∂v

are

Sing (Y αη ) = (P α)−1(0) ∩ (Qα
η)

−1(0) = {(0, 0), (1, 0), pαC},

where for 0 < C < 1, pαC = (
C

1
α , C

1−α
α

(
1 − C

1
α

))
is the unique singularity of (1.4) in

the first quadrant ϕ−1(�). Moreover, it is easy to see that

DYαη (p
α
C) =


1 − α − C

1
α (2 − α) −C

αB
(
1 − C

1
α

)
0


 .

Then detDYαη (p
α
C) = αBC

(
1 − C

1
α

)
> 0 and the singularity pαC is a center-focus.

For k = 0, 1, 2, let us denote by Lk the first three Liapunov quantities (see [2]) at the
singularity pαC of vector field (1.4). With a simple calculation,

L0 = 1 − α − C
1
α (2 − α).

So, L0 = 0 if C = ( 1−α
2−α

)α and pαC is a weak focus of order at least one. In order to
calculate the Liapunov quantities of higher order, we consider the conjugation

ψ : R
2 → R

2 such that ψ(x, y) = (− η̄y + C
1
α , αB

(
1 − C

1
α
)
x + C

1−α
α
(
1 − C

1
α
)
,

where η̄ = (
αBC
2−α

) 1
2 . Then ψ∗(Y αη ) = (Dψ)−1Yαη ψ = Zαη and

1

η̄
Zαη (x, y) =

(
−y +

5∑
i,j=2

Ai,j x
iyj + H.O.T.

)
∂

∂x

+
(
x +

5∑
i,j=2

Bi,j x
iyj + H.O.T.

)
∂

∂y
,

where H.O.T. denotes the higher order term and Ai,j = Ai,j (α, η), Bi,j = Bi,j (α, η).
Using the Mathematica software [11] for symbolic calculus, we have

L1 = (α, B) = − 1

16
(1 − α)η̄αC− 2

α l1(α, B),

where

l1(α, B,C) = α(2 − α)C2B2 + C[2α(2 − α)− (1 − α)2]B + α(2 − α)

is a quadratic polynomial with respect to the parameter B. If�(α,C) denotes the discrim-
inant of the above curve, we have

�(α,C) = C2�(α) with �(α) = (α − 1)2(1 − 10α + 5α2).

Now�(α) > 0 if and only if 0 < α < α∗, where α∗ = 5−2
√

5
5 is a solution of the equation

�(α) = 0 . Therefore the quadratic surface has two positive roots that collapse for α = α∗.
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C

1

1 abs
k

α

C = C0
Wu

F
Figure 7. Figure 8.

If L0 = 0, that is, C = ( 1−α
2−α

)α , the equation l1(α, B,C) = l1(α, B) = 0 defines the
implicit relation B = B(α) on the interval 0 ≤ α ≤ α∗ (see figure 6).

Clearly sg(L1(α, B)) = −sg(l1(α, B)). Again, we use the Mathematica software to
compute L2 and we obtain

L2(α, B,C) = − 1

2304

(1 − α)

(2 − α)
C

−2
(

1+ 2
α

)
η̄l2(α, B,C).

If C = ( 1−α
2−α

)α
, l2(α, B,C) = l2(α, B) and on the αB-plane, we have

l2(α, B)|l1(α,B)=0 = l2(α) > 0 for 0 < α < α∗.

Therefore, if (α, B,C) ∈ L−1
0 (0) ∩ L−1

1 (0) and by the fact that all of the factors of
L2(α, B,C) are positive preceded by a negative sign, the singularity pαC of (1.4) is a weak
focus of order two. Perturbing those parameters of such a way inverting the type of stability
of pαC , we have by a consecutive Hopf bifurcation, one stable hyperbolic limit cycle that
contains an unstable hyperbolic limit cycle and that it contains a hyperbolic stable focus
at singularity. �

Proof of Lemma 4. By the compactification in the Poincaré disc v = 1
y
, u = x

y
the vector

field (1.4) in the new coordinate xy, in the infinity and in the v-axis direction, has the form

X̄αη :



ẋ = 1

y
(−x2 + (1 + BC)xy − xαy1−α − Bx1+αy1−α)

ẏ = B(Cy − xαy1−α)
.

As X̄αη is non-differentiable in a neighborhood of the origin, let us consider the rescaling of

the axis:ψ : R
2+ → R

2+ such thatψ(z,w) = (
z

2
1−α , w

2
1−α
) = (x, y) and the time rescaling

t → yzt where for z > 0 and w > 0, detDψ(z,w) = 4
(1−α)2 (zw)

1+α
1−α > 0.

The new vector field X̃αη = (Dψ)−1X̄αηψ in the zw coordinates is given by

X̃αη :



ż = 1 − α

2

[
(1 + BC)z2w

2
1−α − z

2(2−α)
1−α − w2 − Bz

2
1−α w2]

ẇ = 1 − α

2
B
[− z

1+α
1−α w3 + Czw

3−α
1−α
] . (3.4)

Moreover, it is clear that

DX̃αη (0, 0) =
(

0 0

0 0

)
.
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In order to desingularize the singularity at the origin of X̃αη , we only consider a horizontal

blowing-up. It is not necessary the vertical blowing-up, in fact as X̃αη (0, w) = − 1−α
2 w2 ∂

∂z
and for w > 0 the vector field transversally crosses the axis z = 0.

Let us consider the horizontal blowing-up�: R
2 → R

2 such that �(x, y) = (x, xy) =
(z, w) and the time rescaling t → xt . The new vector field in the xy coordinates is given
by �∗(X̃αη ) = (D�)−1X̃αη� = Zαη where the associated system is

Zαη :



ẋ = 1 − α

2

[
x

3−α
1−α {(1 + BC)y

2
1−α − By2 − 1} − xy2]

ẏ = −1 − α

2

(
x

2
1−α y

3−α
1−α − x

3−α
1−α − y3) .

Moreover,Zαη (0, y) = 1−α
2 y3 ∂

∂y
and (0, 0) is the only singularity ofZαη in the y-axis where

DZαη (0, 0) =
(

0 0

0 0

)
.

As Zαη (x, 0) = 1−α
2 x

3−α
1−α
(− ∂

∂x
+ ∂

∂y

)
the vector field Zαη crosses transversely the x-axis.

In consequence, there does not exist an orbit in R+ × R+ with the origin as α-limit, or
ω-limit. Then by the blowing-down of�, the functionψ and the time rescaling, the vector
field X̄αη has a saddle point at the origin. Furthermore, if 0 < w0 and (0, w0) is an initial

condition and ζ is the orbit of the vector field X̃αη for this point, ζ ∗ = ζ − {(0, w0)} is the
orbit of (3.4) and the saddle point is non-Lipschitzian.

As ψ is an homeomorphism, X̄αη and X̃αη are Co-equivalent. Then ψ(ζ ∗) is an orbit of

X̄αη andψ(ζ ) and by continuity is an orbit of X̄αη . As X̄α,η̄η
(
0, w

2
1−α
0

) = BCy ∂
∂y

, the y-axis

is clearly invariant and the orbit is tangent to the vector field at the point
(
0, w

2
1−α
0

)
. This

proves that for the point
(
0, w

2
1−α
0

)
, there exist at least two orbits. In the previous argument

it is also satisfied that if it is applied in a similar form to an orbit γ of the vector field Zαη
in R+ × R+ with the initial condition at the point (x0, 0), x0 > 0.

Then, by the blowing-down, �(γ ) is an orbit of (3.4). As X̃αη (z, 0) = − 1−α
2 z

2(2−α)
1−α ∂

∂z
,

thew-axis is invariant and the orbit is tangent to the axisw = 0 at the point (x0, 0). Finally
ψ(�(γ )) is an orbit of the vector field X̄αη tangent to the x-axis and by the non-uniqueness
of the orbits in the axis u = 0 and in the axis v = 0, the vector field (1.4) at infinity has a
non-Lipschitzian saddle point (see figure 2) and this proves part (i) of the Lemma.

In order to prove (ii), let us consider the compactification u = 1
x
, v = y

x
in the Poincaré

disc. The vector field (1.4) at infinity in the new coordinates xy and in the direction of the
u-axis has the form

X̄αη :



ẋ = 1 − x + x1−αy

ẏ = y(Bx−α − BC − x + x2 − x2−α)
.

By the time rescaling t → xt , we have

X̃αη :



ẋ = x − x2 + x2−αy

ẏ = y(Bx1−α − BCx − x2 + x3 − x3−α)
. (3.5)
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Clearly, X̃αη in the neighborhood of the origin is a non-differentiable vector field.

To prove that the vector field X̃αη has only one unstable parabolic sector at the origin, in
(3.5) we consider the following coordinated rescaling:

ψ : R
2+ → R

2+ such that ψ(z,w) = (
z

2
1−α , w

2
1−α
) = (x, y), and for z > 0 and w > 0,

detDψ(z,w) = 4
(1−α)2 (zw)

1+α
1−α > 0.

The vector field in the zw-coordinates is given by Uαη = (Dψ)−1X̃αηψ , where

Uαη :



ż = 1 − α

2
z
[
1 − z

2
1−α + z2w

2
1−α
]

ẇ = 1 − α

2
w
[
Bz2 − BCz

2
1−α − z

4
1−α + z

6
1−α − z

2(3−α)
1−α

] .

Clearly the vector field Uαη is differentiable at the origin and DUαη (0, 0) =
( 1−α

2 0

0 0

)
. By

the time rescaling, we can consider the vector field Ũαη = 1
z
Uαη and we have Ũαη (0, w) =

1−α
2

∂
∂z

. This proves that the infinite is unstable. Moreover, the vector field Ũαη orthogonally
crosses thew-axis. If (0, w0)withw0 > 0 is an initial condition and γ the respective orbit
in R+×R+ of the vector field Ũαη through that point, and by the fact that X̃αη (0, y) = By ∂

∂y

then, ψ(γ ) is an orbit of X̃αη tangent to the axis x = 0 through the point
(
0, w

2
1−α
0

)
. This

proves that in the Poincaré compactification, the vector field (1.4) in the infinity does not
have uniqueness of solutions and this complete the proof of Lemma 4. �

Proof of Lemma 5. By (1.5), we can define the abscissa function of the singularity as

abs: ]0, 1[ × ]0, 1[ → [0, 1] where abs(α, C) = C
1
α . For 0 < k < 1 and B = B̄ in the

parameter space �B̄ , the family of level curves abs(α, C) = k in the plane αC, can be
continuously extended to the point (0, 1) (see figure 7).

Then for any 0 < C0 < 1, lim(α,C)→(0,C0) abs(α, C0) = 0. Therefore from (1.5),

lim
(α,C)→(0,C0)

[
1

C0
C

1
α (1 − C

1
α )

]
= 0 and lim

(α,C)→(0,C0)
(pαC) = 0.

For 0 < α 	 1, the singularity pαC is located in a small neighborhood of the origin and
by the existence of the manifold Ws (Lemma 2) and as the w-limit of the manifold Wu

(Lemma 4) is not located in the infinity, Wu has contact with the v-axis at some point
(uniqueness of solutions does not exist in the v-axis). The relative position of the manifolds
Ws andWu in figure 1, are qualitatively as shown in figure 3, and this proves thatWu with
part of the axis forms a heteroclinic orbit with w-limit = (0, 0) and α-limit = (1, 0). �

Proof of Lemma 6. If in (1.4)α = 1,Y 1
η is a quadratic vector field and asB > 0 inϕ−1(�),

it is well-known that the only singularity p1
C = (C, 1 − C) is a hyperbolic focus which

is globally asymptotically stable (see figure 8). If 0 	 α < 1, the vector field Yαη in the

v-axis and in the infinity of the Poincaré disc (Lemmas 2 and 4) is a C0-small perturbation
of Y 1

η with loss of differentiability. In Lemma 2, it is also proved that the existence of the
stable manifold Ws for all (α, C,B) ∈ �, then the relative position of the manifold Ws

and Wu are as shown in figure 4. �
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Proof of Lemma 7. In Lemma 2 we show the existence of the manifoldWs of (1.4) and at
the end of the proof, we conclude that Ws is a manifold of (1.4) tangent to the curve

v = 1 − α + BC

1 − α
u1−α, where A = 2B

1 − α
(3.6)

at the origin. In the phase plane of (1.4), the graph of the curve div(Y αη )(u, v) = 0,
continuously extended to the origin, has the equation

v = 1

α
[(1 − BC)u1−α − 2u2−α + Bu]. (3.7)

If 0 < α 	 1, the graph of (3.6) and (3.7) are tangent in the origin to the straight lines
v = 1−α+BC

1−α u and u = 0 respectively, and by the proof of Lemma 5 with 0 < C < 1, we
know that limα→0 p

α
C = 0. In a neighborhood of the origin of the phase plane of (1.4) and

in the region below Ws , the divergence does not change sign, sign(div(Y αη )(u, v)) > 0
and the singularity pαC cannot be surrounded by a limit cycle. �

Proof of Theorem 1. The vector field Yαη continuously depend on the parameters
(α, C, B̄) ∈ �B̄ and the manifolds Wu = Wu(α,C, B̄) and Ws = Ws(α,C, B̄) are of
class C0. By the C0-continuity and by the relative position of these manifolds (Lemmas 5
and 6), for each C0 ∈ (0, 1), there exists in the parameters space α0 ∈ (0, 1) such that
Wu(α0, C0, B̄) = Ws(α0, C0, B̄). Therefore, in�B̄ , by the collapse ofWu andWs , there
exists a bifurcation curve H(α,C, B̄) = 0 of heteroclinic, then in the phase plane of the
vector field (1.4) has a polycycle with vertexes at the non-hyperbolic singularity at the
origin the hyperbolic singularity at (1, 0).

To study the hyperbolicity rate of the polycycle, let us consider the functionψ : R
2 → R

2

such that ψ(x, y) = (
x

1
α , x

1−α
α y

) = (u, v). The vector field (1.4) in the new coordinates
is given by

Zαη :



ẋ = αx

(
1 − x

1
α − y

)
ẏ = y[B(x − C)− (1 − α)(1 − x

1
α − y)]

, Zαη = ψ∗Yαη . (3.8)

If x > 0, the function ψ defined in (ϕ ◦ ψ)−1(�) with detDψ(x, y) = 1
α
x2 1−α

α > 0 is a
conjugation. Then the systems (3.8) and (1.4) in the open set (ϕ◦ψ)−1(�) are topologically
equivalent.

The vector field (3.8) is a differentiable extension of (1.4) to the region (ϕ ◦ ψ)−1(�̄)

and the set of singularities is given by Sing (Zαη ) = {(0, 0), (1, 0),
(
0, 1 + BC

1−α
)
,

ψ−1(pαC)}.
Let us denote by 
 the heteroclinic of (1.4) which is the collapse of the manifolds Wu

andWs . As the origin (1.4) was unfold into two singularities (0, 0),
(
0, 1 + B̄C0

1−α0

)
, and as

the point (1, 0) is invariant under the function ψ , ψ−1(
) is the manifold that joins the

singularities
(
0, 1+ B̄C0

1−α0

)
and (1, 0) to form the polycycle with vertex (0, 0), (1, 0),

(
0, 1+

B̄C0
1−α0

)
.
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For the vector field Zαη (x, y) we have

DZαη (x, y) =




(
α0 0

0 −(B̄C0 + 1 − α0)

)
, if(x, y) = (0, 0)

(
−1 −α0

0 B̄(1 − C0)

)
, if(x, y) = (1, 0)

(
α0B̄C0
1−α0

0

0 B̄C0 + 1 − α0

)
, if(x, y) =

(
0, 1 + B̄C0

1 − α0

)
.

Then the vertex of the polycycle are hyperbolic saddles. If k = 1, 2, 3, λk > 0 and µk < 0

denote the eigenvalues of the hyperbolic saddle points (0, 0), (1, 0) and
(
0, 1 + B̄C0

1−α0

)
respectively, and the rate of hyperbolicity (see [7, 9]) is

r(α0, C0) = λ1λ2λ3

|µ1µ2µ3| = (1 − C0)(1 − α0)

C0
.

If C0 ∈ [ 1
2 , 1), for all α ∈ ]o, 1[, r(α, C0) < 1, r(α0, C0) < 1 and the polycycle of (3.8)

is stable. Therefore the polycycle of (1.4) is stable. �

Proof of Theorem 2. If in (1.4) α = 1, the vector field Y 1
η is quadratic, and it is known that

in ϕ−1(�) the unique singularity p1
C = (C, 1 −C) is a hyperbolic focus which is globally

asymptotically stable as shown in figure 8. By Theorem 1, in the parameter space�B̄ , for
each C0 ∈ [ 1

2 , 1) there exists α0 ∈ (0, 1) with the hyperbolicity rate r(α0, C0) < 1, such
that the vector field Yα0

η̄ , where η̄ = (B̄, C0) has a stable hyperbolic polycycle.
Then there exists in the interior of the polycycle a continuous curve γ close to the

polycycle. This curve is transversal to the vector field (1.4) and the sense of the vector
field (1.4) is toward the exterior of the region contained by γ . If α0 < α 	 1 and by the
Poincaré–Bendixon theorem, the heteroclinic proved in Theorem 1 is broken toward the
interior generating a stable limit cycle (see figure 9). �

4. Computer simulations

In this section we show a numeric simulation of (1.4) made with the Runge Kutta package
of the Mathematica software. The values of the parameters are given by α = 0.345;

W s

Wu

1

γ•

Stable limit cycle

C

α

r < 1

r = 1

•C0

α0

Figure 9.
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Figure 10.

C = 0.7;B = 2 and the initial conditions for two orbits x(0) = 1, y(0) = 0.2 and
x(0) = 0.5, y(0) = 0.5.

In figure 10, we show the stable limit cycle generated by the break of the heteroclinic
that joins the stable manifold of the singularities (0, 0) and the unstable manifold of the
singularity (1, 0).
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