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Abstract.  In this paper, we study the weighted compositon operators on weighted
Bergman spaces of bounded symmetric domains. The necessary and sufficient conditions
for a weighted composition operator W,, , to be bounded and compact are studied by
using the Carleson measure techniques. In the last section, we study the Schatten p-class
weighted composition operators.
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1. Introduction

Let 2 be a bounded symmetric domain in C" with Bergman kernel K (z, w). We assume
that € is in its standard representation and the volume measure dV of €2 is normalised so
that K (z,0) = K (0, w), for all z and w in 2. By Theorem 5.7 of [11] and using the polar
coordinates representation, there exists a positive number g, such that for A < e, we have

Cy =/ K(z,2)"dV(z) < oo.
Q

For each A < ¢gq, define dV, (z) = C;IK(z, 2)*dV (2). Then {dV,} defines a weighted
family of probability measures on 2. Also, throughout the paper A < ¢egq is fixed. We
define the weighted Bergman spaces Af (£2,dVy), on £, as the set of all holomorphic
functions f on 2 so that

i1 = ([ 1rrav)" < oo,

Note that A} (2, dV}) is a closed subspace of L? (2, dV;). For A = 0, AY (R, dVy) is just
the usual Bergman space. For p = 2, there is an orthogonal projection Pj from L?($2, dV;)
onto Ai (€2, dV,) given by

Pf(s) = /Q K.z, ) f(@)dV (@),

where K (z, w) = K (z, w)' ™ is the reproducing kernel for Ai(Q, dvy).
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Suppose, ¢, ¥ are holomorphic mappings defined on €2 such that ¢(2) € Q2. Then the
weighted composition operator W, y is defined as

Wo.u f(2) = ¥ (2) f(p(2)), for all f holomorphic in 2, and z € Q.

For the study of weighted composition operators one can refer to [4, 6, 13, 15] and ref-
erences therein. Recently, Smith [16] has made a nice connection between the Brennan’s
conjecture and weighted composition operators. He has shown that Brennan’s conjecture
is equivalent to the existence of self-maps of unit disk that make certain weighted compo-
sition operators compact.

We know that the bounded symmetric domain 2 in its standard representation with
normalised volume measure, the kernel function K(:,-) has the following special
properties:

(1) K0,a)=1= K(a,0).

(2) K(z,a) # 0 (forall zin 2 and a in Q).

3) limg—y0 K(a,a) = oo.

4) K(z,a)~! is a smooth function on C* x C". Here Q denotes the closure of € in C"
and 90<2 is the topological boundary, see [8] and [10] for details.

For any a in €2, let

K(z,a)

VK(a,a)

The ks are called normalised reproducing kernels for A?(Q,dV). They are unit vectors
in A2(§2, dV). Moreover, k;_A is a unit vector of A%(Q, dV,) for any a in Q2.

Let u be a finite complex Borel measure on €2. Then the Berezin transform of measure
W, denoted by fi,, is defined as

kq(2) =

zh@>=/ﬁ@wm”“”muw,zesx
Q

We will denote by S(z, w) the Bergman distance function on 2. For z € Q and r > 0, let
E(z,r)={w e Q: B(z,w) <r}.

We denote by | E(z, r)| the normalised volume of E(z, r), that is,
Ecnl=[ v
E(z,r)

Given a finite complex Borel measure p on 2, we define a function (i, on by

E(,
() = ALE& )

= —"- zeQ.
EG i ©

Theorem 1.1 [17]. Take 1 < p < oo. Let u be a finite positive Borel measure on Q2. Then
the following conditions are equivalent:

(1) The inclusion map i: Af (2,dV,) — LP(R2,dV,) is bounded.
(2) The Berezin transform [i), is bounded.
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(3) fiy is bounded on 2 for all (or some) r > 0.
@ {fir(ay)}is a bounded sequence, where {a,} is some bounded sequence in S2 indepen-
dent of 1.

A positive Borel measure p satisfying any one of the conditions of Theorem 1.1 is called
a Carleson measure on the weighted Bergman space A )’f (22,dVy)

Theorem 1.2 [17]. Take 1 < p < 00. Let u be a finite positive Borel measure on Q2. Then
the following conditions are equivalent:

(1) The inclusion map i: Af(Q, dV,) — LP(R2,dV,) is compact.
(2) The Berezin transform [i)(z) — 0 as z — 9L2.

3) fr(z) = 0asz — 3 for all (or some) r > 0.

@) [r(ay) = 0asn — oo.

A positive Borel measure p satisfying any one of the conditions of Theorem 1.2 is called
a vanishing Carleson measure on the weighted Bergman space Af (2,dVy).
A positive compact operator 7' on Ai(Q, dV,) is in the trace class if

tr(T) = Z(Ten, ey) < 00,

n=1

for some (or all) orthonormal basis {e,} of A%(Q, dvy).

Take 1 < p < oo, and T be a compact linear operator on A%(Q, dV,). Then we say
that T belongs to the Schatten p-class S, if (T*T)P/? is in the trace class. Also, the Sp
norm of 7 is given as

ITls, = [tr((T*T)P/*)]"/P.

Moreover, S, is a two-sided ideal of the full algebra B (A}L(Q, dV,)) of bounded linear
operators on A/z\ (2,dVy).

2. Preliminaries

To make the paper self-contained we state the following lemmas.

Lemma 2.1[12]. The Bergman kernel K (z, w) is conjugate symmetric. That is,
K(z. 0) = K(,2);

and it is the function of z in A%(Q, dv;).

Lemma 2.2[17]. Let T be a trace class operator or a positive operator on Ai(Q, dvy).
Then

tr(T) = / (TK} ™, KZ‘**)A%do—(z),
Q

where do (z) = K (z, 2)dV (2).



188 Sanjay Kumar and Kanwar Jatinder Singh

Lemma 2.3[9]. Let 2 be a bounded symmetric domain in C" and let W, y, be a weighted
composition operator on A%(Q, dV;). Then

K@), go(z))}“z” |

IWg ylla2 = Ilﬁ(z)l[ X0

Lemma 2.4[1]. Suppose T is a positive operator on a Hilbert space H and x is a unit
vector in H. Then

(1) (T?x, x)
(2) (TPx, x)

(Tx,x)P for all p> 1.

>
<(Tx,x)? for all 0 < p <1.

Lemma 2.5 (Theorem 18.11(f), p. 89 of [S]). Suppose T is a bounded linear operator on
a Hilbert space H. If T € S, then

tw(IT17) = w(T*|P).

Lemma 2.6 [17]. Take 1 < p < 0o. Suppose > 0 is a finite Borel measure on Q2. Then
 is a Carleson measure on Af(Q, dV,) ifandonly if u(E(z,r))/1E(z, )| 1=%is bounded
on 2 (as a function of z) for all (or some) r > 0. Moreover, the following quantities are
equivalent for any fixedr > 0 and p > 1:

M(E(z, 1)) Q}

Q0 = SU s ————
It oo p{uz(z,r)ﬂ—k 2

and

Jo I f@1Pdu(z)

: AP(Q,dVv)}.
T lf@pavie | €A “}

il = Sup{

Lemma 2.7[2]. For any r > 0, there exists a constant C (depending only on r) such that
Cl< |E@ k@I =C,

foralla € Qandz € E(a,r).
Note that if we take z = a in the above estimate, then we get

c'< |E@,r)|K(@,a) <C,
foralla € Q.

Lemma 2.8[2]. Forany r > 0,s > 0, R > 0, there exists a constant C (depending on
r, s, R) such that

o1 < |E@n)]
T IE@s)l

foralla, bin Q with B(a,b) < R.

Lemma 2.9[3]. Forany r > 0, there exists a sequence {a,} in 2 satisfying the following
two conditions:
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() Q=2 E(an,r);
(2) There is a positive integer N such that each point 7 in Q2 belongs to at most N of the
sets E(ay, 2r).

Lemma 2.10[3]. For anyr > 0and p > 1, there exists a constant C (depending only on
r) such that

C
P — PAV (z),
[ f@]” < E@ Nl Jran [f(2)] (2)

for all f holomorphic and a in Q2.

3. Bounded and compact weighted composition operators

By using [7], we can prove the following lemma.

Lemma3.1. Take 1 < p < oo. Let Q2 be a bounded symmetric domain in C", and
A < gq. Suppose ¢, be holomorphic functions defined on 2 such that ¢(2) C Q.
Also, suppose that the weighted composition operator W, v is bounded on Af\) (2,dVy).
Then Wy y is compact on A/’\j (2, dVy) if and only if for any norm bounded sequence
{fu}in Af (2, dVy) such that f,, — 0 uniformly on compact subsets of 2, then we have

”W(p,lpfn”Ai’ — 0.

Lemma 3.2. Suppose {f,} is a sequence in Af(Q, dV,) such that f,, — 0 weakly in
Af(Q, dVy). Then {f,} is a norm bounded sequence and f, — 0 uniformly on each
compact subsets of Q2.

Let ¢ be a holomorphic function defined on 2 such that ¢(2) € . Suppose ¢ €
AY(Q,dV;) and A < eq. Then the nonnegative measure iy , is defined as

Ho.y,p(E) = / [Y[PdVy,
o~ 1(E)

where E is a measurable subset of 2.
Using Lemma 2.1 of [4], we can prove the following result.

Lemma 3.3. Take 1 < p < 00. Let Q2 be a bounded symmetric domain in C", and A < egq.
Let ¢ be a holomorphic mapping from Q into Q and € Af (2,dV)). Then

/gdu<p,¢,p=f W17 (g 0 @)dVy,
Q Q

where g is an arbitrary measurable positive function on 2.

Theorem 3.4. Take 1 < p < o0. Let Q2 be a bounded symmetric domain in C"*, and
A < eq. Suppose ¢, ¥ are holomorphic functions defined on Q2 such that ¢(2) C Q.
Then the weighted composition operator W, y is bounded on Af(Q, dVy) if and only if
the measure [Ly y. p is a Carleson measure.
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Proof. Suppose W,, y is bounded on Af (£2,dVy). Then there exists a constant M > 0
such that

Wy fllaz < MILFlLars

forall f € AL(Q,dVy).
Take

2(1—1)

gw) = |k (w)| »

From Lemma 2.1 and using the fact that K (w, z) # 0 for any z and w in 2, we get that
g € A7(Q2,dV,). Thus, we have

/Q (@)1 Pd gty (@) = /Q 12@)[Pdity. g p(@)
< /Q ¥ (@)1 g ((@))[PdVi (@)

= ||W<p,1pg||Z1r < 00.
x

By Lemma 2.7, there exists a constant C > 0 (depending only on r) such that

Moy, p(E(Z, 1)) 1 /
= dpeg,y, p(@)
|E(z, r)|1=* IEG NI Jeen 7 vr

<c / ey (@) PU P d it p (@) < o0,
E(z,r)

for any z € Q.
Thus, by using Lemma 2.6, we get that 1y, p is a Carleson measure on Af(Q, dvy).
Conversely, suppose [ty y,p is a Carleson measure on Af(Q, dV;). Then by Theo-
rem 1.1, there exists a constant M > 0 such that

/Qlf(Z)lpd#«p,w,p(Z) < MPIfI5,,

forall f € AY(Q,dV)).
Hence, using Lemma 3.3, we have

IWoy FlLa =/Qltlf(z)lplf(w(z))lpde(z)
_ /Q @1 diggp@)
< M”f L (@)1PdV, (@) < oo,
Q

forall f € AY(Q,dV)).
Hence, W, y is a bounded operator on Af (2,dV;).
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Theorem 3.5. Take 1 < p < o0o. Let Q2 be a bounded symmetric domain in C"*, and
A < &q. Suppose ¢, are holomorphic functions defined on Q2 such that ¢(2) C Q.

Then the weighted composition operator W, y, is compact on Af (2, dVy) if and only if
the measure [Ly y. p is a vanishing Carleson measure.

Proof. Suppose W, y is compacton Aﬁ: (2, dV,). Since, k; ~* — Oweaklyin Af (2,dVy)
as z — 02, by Lemmas 3.1 and 3.2, we have

”Ww/szl_'\HAf — 0 as z — 0. 3.1

Again, by using Lemma 2.7, we get a constant C > 0 (depending only on r) such that

oy, p(E(z, 1)) 1 /
= d/.,l/ RVS (a))
|E(z, r)|1—* |E(z, )" JE@n ovr

<c f e @) PPty (@)
E(z,r)

<cC /E ( )|w<w)|2|kz(¢(w»|2<1—”du¢,¢,p<w>

< ClWypk; ™l g2-

Thus, condition (3.1) implies that iy y, » is a vanishing Carleson measure on Af (22,dV,).

Conversely, suppose that /44,y p is a vanishing Carleson measure on A)’f (€2,dVy). Then,
by Theorem 1.2, we have

Moy, p(E(z, 1))
—de  |E(z, r)|1=* =0 (3-2)

for all (or some) r > 0.

So, from Theorem 3.4, we conclude that W,  is bounded on Af (2,dV;). We will
prove that W,  is a compact operator.

Let {f,} be a sequence in Af(Q, dV,) and f,, — 0 weakly. By Lemma 3.2, f, isa
norm bounded sequence and f,, — 0 uniformly on each compact subsets of 2.

By Lemmas 2.7 and 2.10, there exists a constant C > 0 (depending only on ) such that

C
P = P4
TP = iy o @V
. CC)L p dV,\(a))
CE@ )| JEen /@) K (0, ®)*
C’ dV,(w)
- - p__— ~ 77
=T Jeon TV B .01

1
< c”—/ | f (@) [PV (),
EG, O Jeen *
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for all z € 2, where the last inequality is obtained by using Lemma 2.8. By combining
the above inequality with Lemma 2.8, we get

Ci

sup{| f(2)|”: z € E(a, r)} < sup {W

/ |f(@)|PdVi(w): z € E(d,r)}
E(a,2r)

>

Iy Ty p
= |E(a, r)|—* /;S(a,Zr) | f (@)|PdVy(w),

where C and C» are constants depending only on A and r. Hence, we have

IWoy full ar = /Q [V @171 fa(@(2))[PdVi (@)

_ / @412 p
Q

=3[ P,
i=1

(ai,r)

<Y gy p(Eai, 1) sup{| fu(@)|”: @ € E(ai, r))
i=1

o

Ky p(Eai, 1))

<C | fa (@) dVi (@),
; E@n o Jpwan g

where the sequence {a,} is the same as in Lemma 2.9.
From condition (3.2), for every € > 0, there existsad > 0 (0 < § < 1) such that

Po.y,p(E(z, 1))
|E(z, '

whenever d(z, 0Q2) < 6.
Take

Q ={weQ:d(iz Q) =68, Bz,w) <r}.

Then, €21 is a compact subset of Q2 (as 0 < 2r < %). Thus, we have

/QIWw,wfn(Z)lpde(Z) =/Q|fn(w)|”duw,w,p(w)

- Moy, p((E(ai, r))
D (@) |PdV.
B ; |E(ai, r)[' = E(a;,2r) [l »(@)

=C =
daaoy=s E@ NI E(a;,2r)

| fu(@)|P AV (@)

Mo, y,p ((E(ai, 1))
daoomy<s |E@i, NI Je@,on

+C | fn(@)|PdV). ()
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<CN | fn(@)|Pd V) (w)

d(a,39)>8 /E(“iﬂr)

+ Ce | fu(@)|PdV). (@)

d(a,0Q)<8 /E<ﬂis2r>

SCNKf | fa(@)|PdV).(0) + CeK / | fn(@)|Pd V). (o),
Q Q

where the constant N is the same as in Lemma 2.9. Since, f; is a norm bounded sequence
and f, converges to zero uniformly on compact subsets of €2, we have |Wy_ y fu |l AP = 0
asn — 0o.

The following theorem follows by combining Theorems 1.1, 1.2, 3.4 and 3.5.

Theorem 3.6. Tauke 1 < p < oo and let A < £q. Suppose @, W be holomorphic functions
defined on 2 such that ¢(2) C Q. Then

(1) The weighted composition operator W, y, is bounded on Af (2, dVy) if and only if

sup / ke (@) M d g,y p(@) < oo.
zeQJQ

(2) The weighted composition operator W, y is compact on Af (2, dV,) if and only if

lim / ko (@)* M dpg g p(@) = 0.
z€0Q J

4. Schatten class weighted composition operators

Theorem 4.1. Take 1 < p < coandlet . < eq. Suppose ¢,  are holomorphic functions
defined on Q2 such that ¢(2) C Q. Let Wy, y be compact on A%(Q, dV;). Then Wy y €
Sp if and only if the Berezin symbol of measure |y y. , belongs to LP2(Q, do), where
do(z) = K(z,2)dV (2).

Proof. Forany f, g € A%(Q, dV,), we have

<(W(,0,l//)*(W(p,¢')f’ g)A% = ((W(/),I/f)f7 (th,w)g>,4§
=/Qf(fﬂ(Z))g(QD(Z))|¢(Z)|2dVA(Z)

= /Q f(@)g@)|¥ (@) dpg.y.p(@).

Consider the Toeplitz operator

T,y ,f (@)= /Q F(@)K;.(z, w) dpg,y, p(w).



194 Sanjay Kumar and Kanwar Jatinder Singh

Then, by using Fubini’s theorem, we have

(Thagoyp [ 8) g2 = /Q fQ F(@) K (z, 0)dpig,y. p(@)g(z) dVi(z)

=/Qf(w)/9g(z)1<x(w,z)de(z) dptg,y, p(@)

= /Q f(@)g(w) dig y p(@).
Thus, Ty, ,, = Wy y)*(Wy y). Also, by definition an operator T € S, if and only

if (T*T)P/? is in the trace class, and this is equivalent to saying that T*T € S,
(Lemma 1.4.6, p. 18 of [18]). Thus Wy, y € S if and only if 7, , , € S,/2. Again, by
Theorem C of [17], T}, owp € Sp 2 if and only if the Berezin symbol of the measure (g, y, p

belongs to LP2(Q, do).
Theorem 4.2. Take 2 < p < oo and let . < gq. Take W, y the weighted composition

operator on Ai(Q, dV)). If Wy y € S), then

3}

K
[ we )|[ W) *")(Z))} do () < o,

where do (z) = K (z, 2)dV (2).
Proof. By using Lemmas 2.2-2.5, we get

tr(|Wyyl?) = (W, |1P) = tr W,y Wi, )P/

=/Q((Wq),,,,wg,l,,)’)/zk;”,k§*“>Aida(z)
> /{2<(W¢,¢,W;¢)k§—*,kzl—ky’/zda(z)

_ * 1—a P
_/QHW(kaZ ||A%dU(Z)

X)

K(p(2), 9(2))
/|w()|[ i } 1o ().

Theorem 4.3. Take 0 < p < 2 and let A < &q. Take Wy, y the weighted composition
operator Wy, y on AK(Q, dviy). If

-1

/W( )|[K“‘;((f) *")(Z”} do(2) < oo,

where do (z) = K(z,2)dV (z), then Wy y € Sp.
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Proof. By using Lemmas 2.2-2.5, we get

Wy 1) = [ (W W5 )R K o)
- — 2
z/ﬁ«w(p,lpw;,w)k; Ak} *)P/ do (z)

_ * 1—a P
_/anw,,kz 1,40 (2)

—1)

K
/nzf( )|[ (")(? ‘”)(Z))} do(2) < 0o,

Thus, Wy y € Sp.
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