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1. Introduction

In the literature devoted to the theory of probabilistic normed spaces (PN spaces, briefly),
topological and completeness questions, boundedness and compactness concepts [4, 5,
71, linear operators, probabilistic norms for linear operators [6], product spaces [3] and
fixed point theorems have been studied by various authors. However quotient spaces of
PN spaces have never been considered. This note is a first attempt to fill this gap.

The present paper is organized as follows. In §2 all necessary preliminaries are recalled
and notation is established. In §3, the quotient space of a PN space with respect to one of
its subspaces is introduced and its properties are studied. Finally, in §4, we investigate the
completeness relationship among the PN spaces considered.

2. Definitions and preliminaries

In the sequel, the space of all probability distribution functions (briefly, d.f’s) is AT =
{F: RU{—00, 400} —> [0, 1]: F is left-continuous and non-decreasing on R, F(0) = 0
and F(4-00) = 1} and the subset D™ C At isthe set D¥ = {F € A*: [~ F(4+00) = 1}.
Here ™ f(x) denotes the left limit of the function f atthe pointx,!™ f(x) = lim,_, .- f(¢).
The space A™ is partially ordered by the usual point-wise ordering of functions, i.e., F < G
if and only if F(x) < G(x) for all x in R. The maximal element for AT in this order is
the d.f. given by

0, ifx <0,
g0 =
1, ifx>0.
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Also the minimal element for A™ in this order is the d.f. given by
0, ifx <oo,
Eoo =

1, ifx =o0.

We assume that A is metrized by the Sibley metric dg, which is the modified Lévy metric
[8,9].If F and G are d.f.’s and A is in (0, 1], let (F, G; h) denote the condition

Fx—h)—h=Gx)<Fx+h)+h
for all x in (—1/h, 1/h). Then the modified Lévy metric (Sibley metric) is defined by
ds(F, G) := inf{h > 0: both (F, G; h) and (G, F; h) hold}.
Forany F in AT,
ds(F, o) = inf{h > 0: (F, &o; h) holds}
=inf{h > 0: F(h") > 1 — h},
and for any ¢ > 0,
F(t) >1—t<=ds(F,e0) <t.
It follows that, for every F, G in AT,
F <G = ds(G, gy) <ds(F, ).

A sequence (F;,) of d.f.’s converges weakly to ad.f. F if and only if the sequence (F;, (x))
converges to F'(x) at each continuity point x of F. For the proof of the next theorem see
Theorem 4.2.5 of [8].

Theorem 2.1. Let (F,,) be a sequence of functions in A, and let F be in A. Then F,, — F
weakly if and only if ds(F,, F) — O.

DEFINITION 2.2

A triangular norm T (briefly, a t-norm) is an associative binary operation on [0, 1] (hence-
forth, ) that is commutative, nondecreasing in each place, such that 7'(a, 1) = a for all
acl.

DEFINITION 2.3

Let T be a binary operation on /. Denote by T* the function defined by T*(a, b) :=
1—T({ —a,l—>b)foralla,b e I.If T is a t-norm, then T* will be called the t-conorm
of T. A function § is a r-conorm if there is a z-norm 7 such that S = T*.

Clearly, T* is itself a binary operation on /, and 7** = T. Instances of such ¢t-norms and
t-conorms are M and M*, respectively, defined by M (x, y) = min(x, y) and M*(x, y) =
max(x, y).

DEFINITION 2.4

A triangle function t is an associative binary operation on A7 that is commutative, non-
decreasing in each place, and has &g as identity.
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Also we let t! = 7 and
T(F1, ... Far) = (@ N(F1, .. Fy), Fay) forn > 2.

Let T be a left-continuous z-norm and T* a right-continuous z-conorm. Then instances
of such triangle functions are 7 and 77+ defined for all F, G € AT and every x € RT,
respectively, by

7 (F, G)(x) = sup{T (F(u), G(v)) | u+v =x}
and
+(F,G)(x) = £~ inf{T*(F(u),G()) | u+v =x}.

The triangular function 7 is said to be Archimedean on A" if ©(F, G) < F forany F, G
in AT, such that F # g4 and G # &q.

DEFINITION 2.5

Let 71, 72 be two triangle functions. Then 71 dominates 15, and we write 71 > 12, if for
all Fi, F>,G1,Gy e AT,

T1(12(F1, G1), 12(F2, G2)) = 1o (11 (F1, F2), 11(G1, G2)).

In 1993, Alsina, Schweizer and Sklar [1] gave a new definition of a probabilistic normed
space as follows:

DEFINITION 2.6

A probabilistic normed space, briefly a PN space, is a quadruple (V, v, 7, t*) in which
V is a linear space, t and t™ are continuous triangle functions with 7 < t* and v, the
probabilistic norm, is a map v: V — A™ such that

(N1) v, = gg if and only if p = 6, 6 being the null vector in V;

(N2) v_p, =v, forevery peV;

(N3) vpig = 1(vp,vy) forall p,g € V;

(N4) v, < t*(Vap, V(1—a)p) for every a € [0, 1] and for every p € V.

If, instead of (N1), we only have vg = &g, then we shall speak of a probabilistic pseudo
normed space, briefly a PPN space. If the inequality (N4) is replaced by the equality
vp = Ty (Vap, V(1—a)p), then the PN space is called a Serstnev space; in this case, a
condition stronger than (N2) holds, namely

vxpzvp<|/]\—|>, VA #£0, Vp eV

here j is the identity map on R. A Serstnev space is denoted by (V, v, 7).
There is a natural topology in a PN space (V, v, t, t¥), called the strong topology; it is
defined, for t > 0, by the neighbourhoods

Npt):={q e V:ds(vg_p,€0) <t} ={g € Vivg_ () >1—1t}.
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The strong neighbourhood system for V is the union | J pev Np(x) where N, =
{N,(X): A > 0}. The strong neighborhood system for V determines a Hausdorff topology
for V.

Alinearmap T: (V, v, 7, t*) — (V',V/, 0, 0%), is said to be strongly bounded, if there
exists a constant k > 0 such that, forall p € V and x > 0,

Vi, () = vy (/).
DEFINITION 2.7

A Menger PN space is a PN space (V, v, T, T¥) in which t = 77 and t* = t7+ for some
t-norm T and its t-conorm 7*. It will be denoted by (V, v, T).

DEFINITION 2.8

Let (V, v, 7, 7*) be a PN space. A sequence (p,), in V is said to be strongly convergent
to p in V if for each A > 0, there exists a positive integer N such that p, € N,(4), for
n > N. Also the sequence (py), in V is called a strong Cauchy sequence if, for every
A > 0, there is a positive integer N such that v, (1) > 1 — A, whenever m,n > N.
A PN space (V, v, T, %) is said to be strongly complete in the strong topology if and only
if every strong Cauchy sequence in V is strongly convergent to a pointin V.

Lemma 2.9 [2]. If |a| < |B], then vg, < vup for every pin'V.

DEFINITION 2.10

Let (Vq, vy, T, 7%) and (V,, 12, T, T*) be two PN spaces under the same triangle functions
7 and t*. Let o be a triangle function. The o -product of the two PN spaces is the quadruple

(V1 x Vo, viov, 7, 77),

where
viovy: Vi x Vo —> AT

is a probabilistic semi-norm given by
(wio)(p, q) := o i(p), v2(q))

forall (p,q) € Vi x V,.

3. Quotient PN space
According to [8] (see Definition 12.9.3 in p. 215), one has the following:

DEFINITION 3.1

A triangle function t is sup-continuous if, for every family {Fy: A € A} of d.f’sin AT
and every G € AT,

supt(F,,G) =1 <sup F;, G) .
AEA AEA
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In view of Lemma 4.3.5 of [8], this supremum is in A™. An example of a sup-continuous
triangle function is 7, where T is a left continuous #-norm.

DEFINITION 3.2

Let W be a linear subspace of V and denote by ~y a relation on the set V defined via

P~wqd @ P—qeW,
for every p,qg € V.

Obviously this relationship is an equivalence relation and therefore the set V is partitioned
into equivalence classes, V/~w.

PROPOSITION 3.3

Let (V, v, t, t*) be a PN space. Suppose that T and T are sup-continuous. Let W be a
subspace of V and V | ~w its quotient defined by means of the equivalence relation ~yy.
Let V' be the restriction of v to W and define the mapping v: V/~w — A, forallp € V,
by

Vp4w (x) 1= sup {vp4q(x)}.
qeWw

Then, (W, V', 7, t*) is a PN space and (V/ ~w, v, T, T¥) is a PPN space.

Proof. The first statement is immediate. The remainder of the theorem is guaranteed by
the fact that W is not necessarily closed in the strong topology. O

Notice that by Lemma 4.3.5 of [8], 1w isin A™.
Hereafter we denote by pw the subset p + W of V, i.e. an element of quotient, and the
strong neighbourhood of pw by N, (t).

Theorem 3.4. Let W be a linear subspace of V. Then the following statements are equiv-
alent:

(@ (V/~w, v, t,1*) is a PN space;
(b) W is closed in the strong topology of (V, v, T, T*).

Proof. Let (V, v, 7, ) be a PN space. For every p in the closure of W and foreachn € N
choose g, € N,(1/n) N W. Then

Dy (1/0) = sup Vpig(1/n) = vp_g (1/n) > 1= 1/n,
q€

and hence, ds(Vpy,, €0) < 1/n. Thus pyy = W and hence, p € W and W is closed.
Conversely, if W is closed, let p € V be such that v, = 9. If p ¢ W, then N, (¢) N

W = @, for some ¢ > 0. That is to say, for every ¢ € W, v, _4(¢) < 1 — t. Therefore

Vpy (1) = SUp, ey Vp4q(1) < 1 —1, which is a contradiction. a

It is of interest to know whether a PN space can be obtained from a PPN space. An
affirmative answer is provided by the following proposition.
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PROPOSITION 3.5
Let (V,v, t, t*) be a PPN space and define

C={peV:iv, =g
Then C is the smallest closed subspace of (V, v, T, 7).

Proof. If p,q € C, then p + g € C because vy, > T(vp,vy) = &0. Now suppose
p € C.Fora € [0, 1] one has vy, > v, by Lemma 2.9. For o > 1, letk = [a] + 1. Then,
using the iterates of (N3) one has, v, > k-1 (Vp, ..., Vp) = &o. By the above-mentioned
lemma one has vy, > vg,. As a consequence, ap belongs to C for all @ € R.

Furthermore it is easy to check that the set C is closed because of the continuity of the
probabilistic norm, v (see Theorem 1 in [2]).

Now, let W be a closed linear subspace of V and p € C. Suppose that for some ¢ > 0,
N,(t)NW = g, then v,(¢) < 1 — ¢, which is a contradiction; hence C C W. O

Remark 3.6. Moreover, with V and C as in Proposition 3.5, forall p € V and r € C, one
has

Vpw = Vp = Vpir—r = T(Vptr, Vp) = Vpir.
Thus the probabilistic norm v in (V/~¢, v, t, T*) coincides with that of (V, v, 7, 7).

Example 3.7. Let (V,v,T) be a Menger PN space. Suppose that W is a closed sub-
space of V, and V/ ~y its quotient. Then (W, V', T) and (V/~w, v, T) are Menger PN
spaces.

COROLLARY 3.8

Let (V, v, T, t*) be a Serstnev PN space. Suppose that t is sup-continuous. Let W be a
closed subspace of V and V | ~v its quotient. Then, (W, V', 7, t*) and (V/~w, v, T, T%)
are Serstnev PN spaces.

Theorem 3.9. Let (V, v, 7, T*) be a PN space. Suppose that T and t™ are sup-continuous.
Let W be a closed subspace of V with respect to the strong topology of (V, v, T, t*). Let

w:V—> V/~y

be the canonical projection. Then 1 is strongly bounded, open, and continuous with respect
to the strong topologies of (V, v, t,1t*) and (V/~w, v, T, T*). In addition, the strong
topology and the quotient topology on V / ~w, induced by m, coincide.

Proof. One has thatv,,, > v, which implies 7 is strongly bounded, and hence continuous
(see Theorem 3.3 in [5]).
The map 7 is open because of the equality 7 (N, (¢)) = N ;,W (). O

Example 3.10. Let (V, |-|) be a normed space and define v: V — A™T via vy 1= g|p| for
every p € V. Let 7, T* be continuous triangle functions such that t < t* and 7 (g4, &p) =
ga+b, for all a, b > 0. For instance, it suffices to take T = t7 and t* = t7*, where
T is a continuous ¢-norm and T* is its -conorm. Then (V, v, 7, 7*) is a PN space (see
Example 1.1 of [5]).
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Assume that t is sup-continuous. Let W be a closed linear subspace of V with respect
to the strong topology of (V, v, 7, t*). By Theorem 3.4, (V/~w, i, T, T*) is a PN space
in which, wpy, = sup,cw €| p+w|- On the other hand, if one considers the normed space
(V/~w, I-I"), where | pw |'= infyew | p + w|, then one can easily prove that the PN
structure given to the normed space (V/~w, |-|") by means of 1,,, := €|, |’ coincides
with (V/~w,n, 1, t%).

4. Completeness results

Here we study the completeness of a quotient PN space. When a PN space (V, v, 7, T¥) is
strongly complete, then we say that it is a probabilistic normed Banach (henceforth PNB)
space.

Lemma 4.1. Given the PN space (V/~w, v, T, T*) in which T and t* are sup-continuous,
let W be a closed subspace of V.

(1) If p € V, then for every € > Othereisa p' inV suchthat p' + W = p + W and
ds(vp, e0) < ds(Vpyw, €0) + €.
(i) If pisinV and vpyw > G for some d.f. G # eo, then there exists p’ € V such that
p+W=p' +Wandv, > t(psw, G).
Proof.
(i) We know
Vprw =sup{v,_4:q € W}
Now, let g be an element of W such that

_ €
Vpt+Ww < Vp—g + 3
We put p — g = p’. Now,

ds(Dpsw. £0) = inf{h > 0: Dy (h) > 1 — h)
> inf[h > 0t vy (hT) +§ > 1 —h}

= inf {h > 0: vy () > 1= (h + %)}

zinf{h>0: vy <(h+§)+> >1—(h+§)}

> ds(vy, g9) — €.
(ii) Because of the definition of supremum and sup-continuity of z, there existsa g, € W
such that g, — ¢ if n - 400 and
_ 1 _ 1
Votgy > T(Wpy s €0) — ” > t(Vpy, G) — e

Now it is enough to put p’ = p + ¢ and see that, when n — 400, one has v,,, >
T(Vpy, G). O
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Let p, g be elements of V such that ds(v(p,—q)+w, €0) < & for some positive §. By
Lemma 4.1, there isa g’ € V such that (p —q) + W = (p — q) + W and

ds(vp—g', €0) < 9.

Theorem 4.2. Let W be a closed subspace of V and suppose that (V, v, T, t*) is a PNB
space with T and t* sup-continuous. Then, (V/~w, v, T, T*) is also a PNB space.

Proof. Let (a,) be a strong Cauchy sequence in (V/~w, v, t, T¥), i.e. for every § > 0,
there exists ng = no(8) € N such that, for all m, n > ny,

ds(Va,—ay,» €0) < 8.

Now, define a strictly decreasing sequence (8,) with §, > 0 in the following way: let
81 > 0 be such that T (By,(0; 61) X Bgg(g0; 81)) C By (€05 1) where By, (eo; A) = {F €
A", dg(F, g9) < A}). For n > 1, define §, by induction in such a manner that

A
T(Bug (€05 8n) X Bug(€0; 6n)) S Byg (80; min (;, 5n_1>> . (D
There is a subsequence (ay,; ) of (a,) with
ds(Va,, —an, ,, » €0) < Bit1. 2

Because of the definition of the canonical projection 7t one can say that 7 NN ;,W (1) =

N, () and consequently 7 ay, ;) = x; exists. Inductively, from Lemma 4.1 we can find
x; € V such that 7 (x;) = a,, and then

ds(Vy;—x;41» €0) < Siy1 (3)

holds. We claim that (x;) is a strong Cauchy sequence in (V, v, 7, T*). By applying the
relations (1), (2) and 3)toi =m — 1 and i = m — 2, and using Lemma 4.3.4 of [8], one
obtains the inequalities

dS(me—xm_zv &) < dS(f(me_] —Xm s VX2 —Xm—1 ), €0)

1
< min (—, (Sm_2> .
m—1

Following this reasoning, we obtain that ds(vy,—x,, €0) < 1/n and therefore, (x;) is a
strong Cauchy sequence. Since it was assumed that (V, v, t, 7¥) is strongly complete, (x;)
is strongly convergent and hence, by the continuity of 7, (a,,) is also strongly convergent.
From this and taking into account the continuity of T and Lemma 4.3.4 of [8], one sees
that the whole sequence (a,) strongly converges. O

The converse of the above theorem also holds.

Theorem 4.3. Let (V, v, T, T*) be a PN space in which T and t™* sup-continuous, and let
(V/~w, v, 1, T*) be its quotient space with respect to the closed subspace W. If any two
of the three spaces V, W and V | ~w are strongly complete, so is the third.
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Proof. If V is a strongly complete PN space, so are V/~w and W. Therefore all one
needs to check is that V is strongly complete whenever both W and V / ~y are strongly
complete. Suppose W and V/~y are strongly complete PN spaces and (p,,) be a strong
Cauchy sequence in V. Since

V(pm—pn)+W = Vpm—pa

whenever m, n € N, the sequence (p, + W) is strong Cauchy in V/~yw and, therefore, it
strongly converges to ¢ + W for some g € V. Thus there exists a sequence of d.f’s (Hy)
such that H, —> &g and vV, ¢)+w > H,. Now by Lemma 4.1 there exists (g,) in V
such that g, + W = (p, —q) + W and

Vg, > TW(p,—q)+w> Hy)-

Thus vy, —> &9 and consequently g, —> 6. Therefore (p, — g, — q) is a strong Cauchy
sequence in W and is strongly convergent to a point » € W and implies that (p,) strongly
converges to r + g in V. Hence V is strongly complete. O

Theorem 4.4. Let (Vi vl T, ™), ..., (Vy, V', t, ©*) be PNB spaces in which T and t*
are sup-continuous. Suppose that there is a triangle function o such that v > o and
o > 1. Then their o -product is a PNB space.

Proof. One proves for n = 2 (see Theorem 2 in [3]), and then we apply induction for an
arbitrary n. Since the quotient norm of

Vi x WV,

~V
V1x92( 2)

is the same as v? and the restriction of the product norm of Vi x Vs to Vi x 62(~V}) is
the same as v! (see [3]), and in view of Theorem 4.3, the proof is complete. O

By Theorem 3.9 the following corollaries can be proved easily.

COROLLARY 4.5

Under the assumptions of Proposition 3.3 and if W is a closed subset of V, the probabilistic
normv: V/~w — AT in (V/~w, v, T, T*) is uniformly continuous.

Proof. Let n be a positive real number, n > 0. By Theorem 3.9 there exists a pair
(p',q") in (V x V) such that ds(Vy(,—py, £0) < n and ds(br(g—g'), €0) < 1, Whenever
ds(vp—p»€0) < nandds(vg—g, €0) < 1.

On the other hand, we have

Vr(p'—¢") Z T(TWr(p—p)s Vr(g—g))> Vn(p—q))
and
Vr(p—q) = T(TWr(p—ps Vag—q"))s Va(p'—q)-

Thus, from the relationship (12.1.5) and Lemma 12.2.1 in [8] it follows that for any 2 > 0
there is an appropriate # > 0 such that

ds(Vr(p—q)» Va(p'—q)) < I,
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whenever p’ € N,(n) and ¢' € N4 (n). This implies that v is a uniformly continuous
mapping from V/~y into AT, 0

Also the inequality ds(Vr((p4+q)—(p'+¢")s €0) =< ds(V(p+q)—(p'+¢’)» €0) implies that
(V/~w, +) is a topological group.

COROLLARY 4.6

Let (V, v, T, t*) be a PN space such that T is Archimedean, T and t™* are sup-continuous,
and v, # e for all p € V. If we define quotient probabilistic norm via Proposition 3.3,
then (V/~w, v, 1,t*) is a PPN space where the scalar multiplication is a continuous
mapping from R X V [~y into V[ ~y.

Proof. For any p € V and o, 8 € R we know ds(Vz(ap), Vz(8p)) is small whenever
ds(ljﬂ((a_ﬁ)p), &p) is small. But

ds(Vr(@—p)p)» €0) < ds(V@—p)p» £0)

and by Lemma 3 of [2], ds(v(@—p)p, €0) is small whenever |o — B] is small. O
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