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Abstract. In this paper we establish the stability of Jensen’s functional equation on
some classes of groups. We prove that Jensen equation is stable on noncommutative
groups such as metabelian groups and T (2,K), where K is an arbitrary commutative
field with characteristic different from two. We also prove that any group A can be
embedded into some group G such that the Jensen functional equation is stable on G.
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1. Introduction

Given an operator T and a solution class {u} with the property that T (u) = 0, when does
‖T (v)‖ ≤ ε for an ε > 0 imply that ‖u − v‖ ≤ δ(ε) for some u and for some δ > 0?
This problem is called the stability of the functional transformation. A great deal of work
has been done in connection with the ordinary and partial differential equations. If f is a
function from a normed vector space into a Banach space, and ‖f (x+y)−f (x)−f (y)‖ ≤
ε, Hyers in 1941 proved that there exists an additive mapA such that ‖f (x)−A(x)‖ ≤ ε.
If f (x) is a real continuous function of x over R, and |f (x + y) − f (x) − f (y)| ≤
ε, it was shown by Hyers and Ulam in 1952 that there exists a constant k such that
|f (x) − kx| ≤ 2ε. Taking these results into account, we say that the additive Cauchy
equation f (x + y) = f (x) + f (y) is stable in the sense of Hyers and Ulam. For more
on stability of homomorphisms, the interested reader is referred to [22, 8–11] and [1].
After Hyers’s 1941 result a great number of papers on the subject have been published,
generalizing Ulam’s problem and Hyers’s theorem in various directions (see [7], [10–14]
and [20]).

In this paper we study the stability of Jensen’s functional equation

f (xy)+ f (xy−1) = 2f (x)

on some classes of noncommutative groups. This Jensen’s equation was studied in the
papers [2], [3] and [19]. The question of stability of this equation was investigated in [16,
15, 17, 21] and [18]. In all these papers domain of f is either an abelian group or some of
its subsets.
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2. Auxiliary results

Suppose thatG is an arbitrary group andE is an arbitrary real Banach space. In this sequel,
we will write the arbitrary group G in multiplicative notation so that 1 will denote the
identity element of G.

DEFINITION 2.1

We will say that a function f :G → E is a (G;E)-Jensen function if for any x, y ∈ G we
have

f (xy)+ f (xy−1)− 2f (x) = 0. (2.1)

We denote the set of all (G;E)-Jensen functions by J (G;E).
Denote by J0(G;E) the subset of J (G;E) consisting of functions f such that f (1) = 0.

Obviously J0(G;E) is a subspace of J (G;E) and J (G;E) = J0(G;E)⊕ E.

DEFINITION 2.2

We will say that a function f :G → E is a (G;E)-quasi-Jensen function if there is c > 0
such that for any x, y ∈ G we have

‖f (xy)+ f (xy−1)− 2f (x)‖ ≤ c. (2.2)

It is clear that the set of (G;E)-quasi-Jensen functions is a linear real space. Denote it
by KJ(G;E). From (2.2) we obtain

‖f (y)+ f (y−1)− 2f (1)‖ ≤ c.

Therefore

‖f (y)+ f (y−1)‖ ≤ c1, (2.3)

where c1 = c + ‖2f (1)‖. Now letting x for y in (2.2), we get

‖f (x2)+ f (1)− 2f (x)‖ ≤ c.

Hence

‖f (x2)− 2f (x)‖ ≤ c2, (2.4)

where c2 = c + ‖f (1)‖. Again substitution of y = x2 in (2.2) yields

‖f (x3)+ f (x−1)− 2f (x)‖ ≤ c.

Thus taking into account (2.3) we obtain

‖f (x3)− 3f (x)‖ ≤ c3, (2.5)

where c3 = c + c1.
Let c be as in (2.2) and define the set C as follows: C = { cm | m ∈ N }, where

c1 = c + 2‖f (1)‖, c2 = c + ‖f (1)‖, c3 = c + c1 and cm = c + c1 + cm−2, if m > 3.
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Lemma 2.3. Let f ∈ KJ(G;E) such that

‖ f (xy)+ f (xy−1)− 2f (x) ‖ ≤ c.

Then for any x ∈ G and any m ∈ N the following relation holds:

‖f (xm)−mf (x)‖ ≤ cm. (2.6)

Proof. The proof is by induction onm. Form = 3, the Lemma is established. Suppose that
for m the lemma has been already established, let us verify it for m+ 1. Letting y = xm

in (2.2), we have

‖f (xm+1)+ f (x−(m−1) − 2f (x)‖ ≤ c.

From (2.3) we obtain

‖f (xm+1)− f (xm−1)− 2f (x)‖ ≤ c + c1.

By induction hypothesis we have

‖f (xm−1)− (m− 1)f (x)‖ ≤ cm−1

and hence,

‖f (xm+1)− (m+ 1)f (x)‖ ≤ cm+1 = c + c1 + cm−1.

Now the lemma is proved. �

Lemma 2.4. Let f ∈ KJ(G;E). For any m > 1, k ∈ N and x ∈ G we have

‖f (xmk )−mkf (x)‖ ≤ cm(1 +m+ · · · +mk−1) (2.7)

and ∥∥∥∥ 1

mk
f (xm

k

)− f (x)

∥∥∥∥ ≤ cm. (2.8)

Proof. The proof will be based on induction on k. If k = 1, then (2.7) follows from (2.6).
Suppose that (2.7) for k is true, let us verify it for k + 1. Substituting xm for x in (2.7)
implies

‖f (xmk+1
)−mkf (xm)‖ ≤ cm(1 +m+ · · · +mk−1).

Now using (2.6) we obtain

‖mkf (xm)−mk+1f (x)‖ ≤ cmm
k

and hence

‖f (xmk+1
)−mk+1f (x)‖ ≤ cm(1 +m+ · · · +mk).

The latter implies∥∥∥∥ 1

mk+1
f (xm

k+1
)− f (x)

∥∥∥∥ ≤ cm(1 +m+ · · · +mk)
1

mk+1
≤ cm.

This completes the proof of the lemma. �



34 Valeriĭ A Faĭziev and Prasanna K Sahoo

From (2.8) it follows that the set
{

1

mk
f (xm

k

) | k ∈ N

}

is bounded.
Substituting xm

n
in place of x in (2.8), we obtain

∥∥∥∥ 1

mk
f (xm

n+k
)− f (xm

n

)

∥∥∥∥ ≤ cm,

∥∥∥∥ 1

mn+k
f (xm

n+k
)− 1

mn
f (xm

n

)

∥∥∥∥ ≤ cm

mn
→ 0, as n → ∞.

From the latter it follows that the sequence
{

1

mk
f (xm

k

) | k ∈ N

}

is a Cauchy sequence. Since the space E is complete, the above sequence has a limit and
we denote it by ϕm(x). Thus

ϕm(x) = lim
k→∞

1

mk
f (xm

k

).

From (2.8) it follows that

‖ϕm(x)− f (x)‖ ≤ cm, ∀x ∈ G. (2.9)

Lemma 2.5. Let f ∈ KJ(G;E) such that

‖f (xy)+ f (xy−1)− 2f (x)‖ ≤ c, ∀x, y ∈ G.
Then for any m ∈ N we have ϕm ∈ KJ(G;E).
Proof. Indeed, by (2.9)

‖ϕm(xy)+ ϕm(xy
−1)− 2ϕm(x)‖

= ‖ϕm(xy)− f (xy)+ ϕm(xy
−1)− f (xy−1)− 2ϕm(x)+ 2f (x)

+ f (xy)+ f (xy−1)− 2f (x)‖

≤ ‖ϕm(xy)− f (xy)‖ + ‖ϕm(xy−1)− f (xy−1)‖

+ 2‖ϕm(x)− f (x)‖ + ‖f (xy)+ f (xy−1)− 2f (x)‖

≤ 4cm + c.

This completes the proof of the lemma. �
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For any x ∈ G we have the relation

ϕm(x
mk ) = mkϕm(x). (2.10)

Indeed

ϕm(x
mk ) = lim

�→∞
1

m�
f ((xm

k

)m
�

)

= lim
�→∞

mk

mk+�
f (xm

k+�
)

= mk lim
p→∞

1

mp
f (xm

p

)

= mkϕm(x).

Lemma 2.6. If f ∈ KJ(G;E), then ϕ2 = ϕm for any m ≥ 2.

Proof. By Lemma 2.5 we have ϕ2, ϕm ∈ KJ(G;E). Hence the function

g(x) = lim
k→∞

1

mk
ϕ2(x

mk )

is well-defined and is a (G;E)-quasi-Jensen function.
It is clear that g(xm

k
) = mkg(x) and g(x2k ) = 2kg(x) for any x ∈ G and any k ∈ N.

From (2.9) it follows that there are d1, d2 ∈ R+ such that for all x ∈ G,

‖ϕ2(x)− g(x)‖ ≤ d1 and ‖ϕm(x)− g(x)‖ ≤ d2. (2.11)

Hence g ≡ ϕ2 and g ≡ ϕm and we obtain ϕ2 ≡ ϕm. �

DEFINITION 2.7

By (G;E)-pseudo-Jensen function we will mean a (G;E)-quasi-Jensen function f such
that f (xn) = nf (x) for any x ∈ G and any n ∈ Z.

Lemma 2.8. For any f ∈ KJ(G;E) the function

f̂ (x) = lim
k→∞

1

2k
f (x2k )

is well-defined and is a (G;E)-pseudo-Jensen function such that for any x ∈ G,

‖f̂ (x)− f (x)‖ ≤ c2.

Proof. By Lemma 2.5, f̂ is a (G;E)-quasi-Jensen function. Now by Lemma 2.6, we
have f̂ (xm) = ϕm(x

m) = mϕm(x) = mf̂ (x). Thus ϕm(x) = f̂ (x) and hence ϕ2(x) =
f̂ (x) by Lemma 2.6. From equality f̂ = ϕ2 we have ‖f̂ (x)−f (x)‖ = ‖ϕ2(x)−f (x)‖ ≤
c2. �
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Remark 2.9. If f ∈ PJ(G;E), then

1. f (x−n) = −nf (x) for any x ∈ G and n ∈ N;
2. if y ∈ G is an element of finite order then f (y) = 0;
3. if f is a bounded function on G, then f ≡ 0.

Proof. For some c > 0 the following relation holds:

‖f (xy)+ f (xy−1)− 2f (x)‖ ≤ c.

From (2.3) it follows that

‖f (yk)+ f (y−k)‖ ≤ c1 ∀y ∈ G, ∀k ∈ N.

The last inequality is equivalent to k‖f (y) + f (y−1)‖ ≤ c1 or ‖f (y) + f (y−1)‖ ≤ c1
k

for all y ∈ G and all k ∈ N. The latter implies f (y−1) = −f (y). Thus for any n ∈ N we
have f (y−n) = f ((yn)−1) = −f (yn) = −nf (y). Hence, the assertion 1 is established.

Similarly we verify assertions 2 and 3. �

We denote by B(G;E) the space of all bounded functions on a groupG that take values
in E.

Theorem 2.10. For an arbitrary group G the following decomposition holds:

KJ(G;E) = PJ(G;E)⊕ B(G;E).
Proof. It is clear that PJ(G;E) and B(G;E) are subspaces of KJ(G;E), and
PJ(G;E) ∩ B(G;E) = {0}. Hence the subspace of KJ(G;E) generated by PJ(G;E)
and B(G;E) is their direct sum. That is PJ(G;E) ⊕ B(G;E) ⊆ KJ(G;E). Let us
verify that KJ(G;E) ⊆ PJ(G;E) ⊕ B(G;E). Indeed, if f ∈ KJ(G;E), then by
Lemma 2.8 we have f̂ ∈ PJ(G;E) and f̂ − f ∈ B(G;E). �

DEFINITION 2.11

Let E be a Banach space andG be a group. A mapping f :G → E is said to be a (G;E)-
quasiadditive mapping of a group G if set {f (xy)− f (x)− f (y)|x, y ∈ G} is bounded.

DEFINITION 2.12

By a (G;E)-pseudoadditive mapping of a group G we mean its (G;E)-quasiadditive
mapping f that satisfies f (xn) = nf (x) for all x ∈ G and all n ∈ Z.

DEFINITION 2.13

A quasicharacter of a groupG is a real-valued function f onG such that the set {f (xy)−
f (x)− f (y)|x, y ∈ G} is bounded.

DEFINITION 2.14

By a pseudocharacter of a group G we mean its quasicharacter f that satisfies f (xn) =
nf (x) for all x ∈ G and all n ∈ Z.
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The set of all (G;E)-quasiadditive mappings is a vector space (with respect to the
usual operations of addition of functions and their multiplication by numbers), which
will be denoted by KAM(G;E). The subspace of KAM(G;E) consisting of (G;E)-
pseudoadditive mappings will be denoted by PAM(G;E) and the subspace consisting of
additive mappings from G to E will be denoted by Hom(G;E). We say that a (G;E)-
pseudoadditive mapping ϕ of the group G is nontrivial if ϕ /∈ Hom(G;E).

The space of quasicharacters will be denoted byKX(G), the space of pseudocharacters
will be denoted by PX(G), and the space of real additive characters onG will be denoted
by X(G).

Remark 2.15. If a group G has nontrivial pseudocharacter, then for any Banach space E
there is nontrivial (G;E)-pseudoadditive mapping.

Proof. Let f be a nontrivial pseudocharacter of the group G and e ∈ E such that e 
= 0.
Consider a mapping ϕ: G → E such that ϕ(x) = f (x) · e. It easy to see that ϕ is a
nontrivial (G;E)-additive mapping. �

In [5] and [6] some classes of groups having nontrivial pseudocharacters are considered.

Theorem 2.16. For any group G the following relations hold:

1. KAM(G;E) ⊆ KJ(G;E), PAM(G;E) ⊆ PJ(G;E), Hom(G;E) ⊆ J0(G;E).
2. If f ∈ PJ(G;E) and for any x, y ∈ G f (xy) = f (yx), then f ∈ PAM(G;E).

Proof.

1. Let f ∈ KAM(G;E) and c > 0 such that ‖f (xy) − f (x) − f (y)‖ ≤ c for all
x, y ∈ G. Then we have

‖f (xy)+ f (xy−1)− 2f (x)‖
= ‖f (xy)− f (x)− f (y)+ f (xy−1)− f (x)− f (y−1)

+ 2f (x)+ f (y)+ f (y−1)− 2f (x)‖
= ‖f (xy)− f (x)− f (y)+ f (xy−1)− f (x)− f (y−1)‖
≤ ‖f (xy)− f (x)− f (y)‖ + ‖f (xy−1)− f (x)− f (y−1)‖
≤ 2c,

that is, KAM(G;E) ⊆ KJ(G;E). Hence, PAM(G;E) ⊆ PJ(G;E).
2. Let f ∈ PJ(G;E), c > 0 such that ‖f (xy)+ f (xy−1)− 2f (x)‖ ≤ c and f (xy) =
f (yx) for all x, y ∈ G. Then we have

2‖f (xy)− f (x)− f (y)‖
= ‖f (xy)+ f (xy−1)− 2f (x)+ f (xy)+ f (yx−1)− 2f (y)‖
≤ ‖f (xy)+ f (xy−1)− 2f (x)‖

+ ‖f (xy)+ f (yx−1)− 2f (y)‖ ≤ 2c.

Hence ‖f (xy)− f (x)− f (y)‖ ≤ c and f ∈ PAM(G;E). �
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COROLLARY 2.17

If G is an abelian group, then PJ(G;E) = Hom(G;E).
Proof. By Theorem 2.16 we have PJ(G;E) = PAM(G;E). Let f ∈ PAM(G;E).
Then for some c > 0 and for any n ∈ N, and a, b ∈ G we have

n‖f (ab)− f (a)− f (b)‖ = ‖ f ((ab)n)− f (an)− f (bn) ‖
= ‖f (anbn)− f (an)− f (bn)‖
≤ c.

The latter is possible only if f ∈ Hom(G;E). �

3. Stability

Suppose that G is a group and E is a real Banach space.

DEFINITION 3.1

We shall say that eq. (2.1) is stable for the pair (G;E) if for any f : G → E satisfying
functional inequality

‖f (xy)+ f (xy−1)− 2f (x)‖ ≤ c ∀x, y ∈ G
for some c > 0 there is a solution j of the functional equation (2.1) such that the function
j (x)− f (x) belongs to B(G;E).

It is clear that eq. (2.1) is stable on G if and only if PJ(G;E) = J0(G;E). From
Corollary 2.17 it follows that eq. (2.1) is stable on any abelian group. We will say that a
(G;E)-pseudo-Jensen function f in nontrivial if f /∈ J0(G;E).
Theorem 3.2. Let E1, E2 be a Banach space over reals. Then eq. (2.1) is stable for the
pair (G;E1) if and only if it is stable for the pair (G;E2).

Proof. Let E be a Banach space and R be the set of reals. Suppose that eq. (2.1) is stable
for the pair (G;E). Suppose that (2.1) is not stable for the pair (G,R), then there is a
nontrivial real-valued pseudo-Jensen function f on G. Now let e ∈ E and ‖e‖ = 1.
Consider the function ϕ: G → E given by the formula ϕ(x) = f (x) · e. It is clear that ϕ
is a nontrivial pseudo-Jensen E-valued function, and we obtain a contradiction.

Now suppose that eq. (2.1) is stable for the pair (G,R), that is, PJ(G,R) = J0(G,R).
Denote by E∗ the space of linear bounded functionals on E endowed by functional norm
topology. It is clear that for any ψ ∈ PJ(G,H) and any λ ∈ H ∗ the function λ ◦ ψ
belongs to the space PJ(G,R). Indeed, let for some c > 0 and any x, y ∈ G we have
‖ψ(xy)+ ψ(xy−1)− 2ψ(x)‖ ≤ c. Hence

|λ ◦ ψ(xy)+ λ ◦ ψ(xy−1)− λ ◦ ψ(2x)|
= |λ(ψ(xy)+ ψ(xy−1)− 2ψ(x))| ≤ c‖λ‖.

Obviously, λ ◦ ψ(xn) = nλ ◦ ψ(x) for any x ∈ G and for any n ∈ N. Hence the function
λ ◦ ψ belongs to the space PJ(G,R). Let f : G → H be a nontrivial pseudo-Jensen
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mapping. Then x, y ∈ G such that f (xy)+f (xy−1)−2f (x) 
= 0. Hahn–Banach theorem
implies that there is a � ∈ H ∗ such that �(f (xy)+f (xy−1)−2f (x)) 
= 0, and we see that
� ◦ f is a nontrivial pseudo-Jensen real-valued function on G. This contradiction proves
the theorem. �

In what follows the space KJ(G,R) will be denoted by KJ(G), the space PJ(G,R)
will be denoted by PJ(G), the space J (G,R) will be denoted by J (G,R), and the space
J0(G,R) will be denoted by J0(G).

COROLLARY 3.3

Equation (2.1) over a group G is stable if and only if PJ(G) = J0(G).

Due to the previous theorem we may simply say that eq. (2.1) is stable or not stable.

Remark 3.4. For any group G and any Banach space E the following relation
PAM(G;E) ∩ J (G;E) = Hom(G;E) holds.

Proof. It is clear that Hom(G;E) ⊆ PAM(G;E) ∩ J (G;E).
Suppose that f ∈ PAM(G;E) ∩ J (G;E). Then by Lemma 1 from [4] we have

f (xy) = f (yx). Since f ∈ J (G;E), the map f satisfies

f (xy)+ f (xy−1)− 2f (x) = 0. (3.1)

Interchanging x with y in (3.1), we have

f (yx)+ f (yx−1)− 2f (y) = 0

which is

f (xy)− f (xy−1)− 2f (y) = 0. (3.2)

Adding (3.1) and (3.2) we obtain 2f (xy)− 2f (x)− 2f (y) = 0. Hence f (xy) = f (x)+
f (y) and f ∈ Hom(G;E). Thus we obtain

PAM(G;E) ∩ J (G;E) = Hom(G;E) (3.3)

and the proof is complete. �

Remark 3.5. If a groupG has nontrivial pseudocharacter, then eq. (2.1) is not stable onG.

Proof. Let let ϕ be a nontrivial pseudocharacter of G. Suppose that there is j ∈ J0(G)

such that the function ϕ − j is bounded. Then there is c > 0 such that |ϕ(x)− j (x)| ≤ c

for any x ∈ G. Hence for any n ∈ N we have c ≥ |ϕ(xn) − j (xn)| = n|ϕ(x) − j (x)|
and we see that the latter is possible if ϕ(x) = j (x). So, ϕ ∈ PX(G) ∩ J0(G). Hence,
f ∈ X(G) and we come to a contradiction with the assumption about f . �

LetG be an arbitrary group. For a, b, c ∈ G, we set [a, b] = a−1b−1ab and [a, b, c] =
[[a, b], c].
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DEFINITION 3.6

We shall say that G is metabelian if for any x, y, z ∈ G we have [[x, y], z] = 1.

It is clear that if [x, y] = 1 then [[x, y], z] = 1, and hence any abelian group is
metabelian.

Our next goal is to prove a stability theorem for any metabelian group. Consider the
group H over two generators a, b and the following defining relations:

[b, a]a = a[b, a], b[b, a] = [b, a]b.

If we set c = [b, a] we get the following representation of H in terms of generators and
defining relations:

H = 〈a, b, ‖c = [b, a], [c, a] = [c, b] = 1〉. (3.4)

It is well-known that each element of H can be uniquely represented as g = ambnck ,
where m, n, k ∈ Z. The mapping

g = ambnck →

1 n k

0 1 m

0 0 1




is an isomorphism between H and UT (3,Z).

Lemma 3.7. Let f ∈ PJ(H) and f (c) = 0. Then f ∈ PX(H) = X(H).

Proof. Let x = ambnck and y = am1bn1ck1 be two elements from H . Then from the
representation (3.4) it follows that

xy = am+m1bn+n1cm1n+k+k1 , yx = am+m1bn+n1cmn1+k+k1 .

Hence

f (xy) = f (am+m1bn+n1)+ f (cm1n+k+k1) = f (am+m1bn+n1),

f (yx) = f (am+m1bn+n1)+ f (cmn1+k+k1) = f (am+m1bn+n1).

Thus f (xy) = f (yx) for any x, y ∈ G. By Theorem 2.16 we obtain that f ∈ PX(G).
From the representation (3.4) it follows that the subgroup of H generated by element c is
the commutator subgroup of H . Lemma 2 from [4] establishes that if ϕ ∈ PX(G) such
that f

∣∣
G′ ≡ 0, then ϕ ∈ X(G). Hence, f ∈ X(H) and PX(G) = X(G). �

Lemma 3.8. Let f ∈ PJ(H) and f (a) = f (b) = f (c) = 0. Then f ≡ 0.

Proof. By Lemma 3.7 we have f (ambnck) = f (am)+ f (bn)+ f (ck) = 0. �

Lemma 3.9. A function φ defined by the formula φ(ambnck) = mn− 2k is an element of
J0(G).
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Proof. It is clear that φ(1) = 0. Now let x = ambnck , y = am1bn1ck1 , then xy−1 =
ambnckc−k1b−n1a−m1 = am−m1bn−n1cm1n1−m1n+k−k1 . Hence

f (xy)+ f (xy−1)− 2f (x)

= (m+m1)(n+ n1)− 2(m1n+ k + k1)+ (m−m1)(n− n1)

− 2(m1n1 −m1n+ k − k1)− 2(mn− 2k)

= 0

and the proof of the lemma is now complete. �

Lemma 3.10. PJ(H) = J0(H).

Proof. Let g ∈ PJ(H) and g(a) = α, g(b) = β, g(c) = γ . Then there are ψ ∈ X(H)

and λ ∈ R such that ψ(a) = α, ψ(b) = β, and λφ(c) = γ . Furthermore, we have
j = ψ + λφ ∈ J0(H) and (g − j)(a) = (g − j)(b) = (g − j)(c) = 0. By Lemma 3.8
we get (g − j) ≡ 0. Hence g = j and g ∈ J0(H). �

Theorem 3.11. Equation (2.1) is stable on any metabelian group.

Proof. Let G be a metabelian group and f ∈ PJ(G). Let x, y ∈ G. Then there is a
homomorphism τ of H into G such that τ(a) = x and τ(b) = y. Obviously, the function
f ∗(g) = f (τ(g)) belongs to PJ(H). Now if f (xy) + f (xy−1) − 2f (x) 
= 0, then
f ∗(ab) + f ∗(ab−1) − 2f ∗(a) 
= 0 and we arrive at a contradiction with the previous
lemma. Thus f ∈ J0(G), PJ(G) = J0(G) and the eq. (2.1) is stable on G. �

DEFINITION 3.12

Let G be a group, f ∈ PJ(G;E), and b an automorphism of G. We will say that f is
invariant relative to b if for any x ∈ G the relation f (xb) = f (x) holds. If the latter
relation is valid for any b ∈ B, where B is a group of automorphism of G, then we will
say that f is invariant relative to B.

Lemma 3.13. Let f be an element from PJ(G;E) and b an element of order two fromG.
Then f is invariant relative to inner automorphism of G corresponding to element b.

Proof. Let ‖f (xy)+ f (xy−1)− 2f (x)‖ ≤ c for some c > 0 and for any x, y ∈ G. Then
we have

‖f (bxb)+ f (bb−1x−1)− 2f (b)‖ ≤ c

‖f (bxb)+ f (x−1)− 2f (b)‖ ≤ c

‖f (xb)+ f (x−1)‖ ≤ c

‖f (xb)− f (x)‖ ≤ c.

From the latter we obtain ‖f (xnb) − f (xn)‖ ≤ c for any n ∈ N. Therefore n‖f (xb) −
f (x)‖ ≤ c and we get f (xb) = f (x). �
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Let K be an arbitrary commutative field. Let K∗ be the set of nonzero elements of K
with operation of multiplication. Denote by G the group T (2,K) consisting of matrices
of the form [

α t

0 β

]
; α, β ∈ K∗; t ∈ K.

Denote by T , E, D the subgroups of G = T (2,K) consisting of matrices
[

1 t

0 1

]
,

[±1 0
0 ±1

]
,

[
a 0
0 b

]
,

respectively, where a, b ∈ K∗ and t ∈ K .
It is clear that T � G and we have the following semidirect products, G = D · T .

Subgroup C ofG generated by T andE is a semidirect product C = E ·T . Now we prove
a stability theorem on the noncommutative group T (2,K).

Theorem 3.14. Let K be an arbitrary commutative field. If the characteristic of K is not
equal to two, then the Jensen functional equation is stable on G.

Proof. Let f ∈ PJ(G). Every element of E has order two. Hence, by Lemma 3.13 we
have f e = f for any e ∈ E. Here f e denotes f (xe) for x ∈ G, and xe denotes e−1xe.
Now from the relation[−1 0

0 1

]
·
[

1 t

0 1

]
·
[−1 0

0 1

]
=

[
1 −t
0 1

]
,

it follows that if e = [ −1 0
0 1

]
and v = [

1 t
0 1

]
, then

f (v) = f e(v) = f (v−1) = −f (v).

Hence f
∣∣
T

≡ 0. It is clear that the map

τ :

[
α t

0 β

]
→

[
α 0
0 β

]

is a homomorphism ofG ontoD. Let ϕ = f
∣∣
D

. Then we can extend ϕ ontoG by the rule
ϕ(g) = ϕ(gτ ). It clear that ϕ ∈ PJ(G) and for any d ∈ D we have the following relation
ϕ(d) = f (d).

Now let ω(x) = f (x)− ϕ(x). So ω ∈ PJ(G) and ωD∪T ≡ 0. Let us show that ω ≡ 0
on G. For some nonnegative number δ, we have

|ω(xy)+ ω(xy−1)− 2ω(x)| ≤ δ (3.5)

for any x, y ∈ G. Let x = au, y = bv, where a, b ∈ D and u, v ∈ T . Then

xy = abubv, xy−1 = ab−1(uv−1)a
−1
.

Now from (3.5) it follows

|ω(abubv)+ ω(ab−1(uv−1)a
−1
)− 2ω(au)| ≤ δ.
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If we put a = b and u = 1, then from the last relation we get

|ω(a2v)+ ω((v−1)a
−1
)− 2ω(a)| = |ω(a2v)| ≤ δ.

Taking into account equality (a2v)n = (an)2va
2(n−1)

va
2(n−2) · · · va2

v we get

n|ω(a2v)| = |ω((a2v)n)| = |ω((an)2va2(n−1)
va

2(n−2) · · · va2
v)| ≤ δ,

that is

|ω(a2v)| ≤ 1

n
δ, for any n ∈ N.

It follows that

ω(a2v) ≡ 0 for any a ∈ D and any v ∈ T . (3.6)

Now let x = bu be an arbitrary element of G. Then x2 = b2ubu. Therefore ω(x) =
1
2ω(x

2) = 0. So, ω ≡ 0 onG, and PJ(G) = PJ(D) = J0(D). The proof of the theorem
is now complete. �

4. The theorem of embedding

In this setion, we prove that any group A can be embedded into some group G such that
the Jensen functional equation is stable on G. From now on, the set of pseudo-Jensen
functions onG invariant relative toB will be denoted by PJ(G,B;E) and ifE = R, then
the space PJ(G,B; R) will be denoted PJ(G,B).

Let A and B be arbitrary groups. For each b ∈ B denote by A(b) a group that is
isomorphic to A under isomorphism a → a(b). Denote by D = A(B) = ∏

b∈B A(b) the
direct product of groups A(b). It is clear that if a1(b1)a2(b2) · · · ak(bk) is an element of
D, then for any b ∈ B, the mapping

b∗: a1(b1)a2(b2) · · · ak(bk) → a1(b1b)a2(b2b) · · · ak(bkb)

is an automorphism of D and b → b∗ is an embedding of B into AutD.
Hence, we can form a semidirect product G = B · D. This group is called the wreath

product of the groups A and B, and will be denoted by G = A � B. We will identify
the group A with subgroup A(1) of D, where 1 ∈ B. Hence, we can assume that A is a
subgroup of D.

Let us denote, byC, the group
∏
i∈N

Ci , whereCi is a group of order two with generator
bi .

Theorem 4.1. LetA be an arbitrary group. ThenA can be embedded into a groupG such
that PJ(G) = J0(G) = X(G). Hence eq. (2.1) is stable on group G.

Proof. LetC be a group as described above. Let us verify that eq. (2.1) is stable onG = A�
C. Denote byD the subgroup ofGgenerated byA(b), b ∈ C. By Lemma 3.13 we have that
if f ∈ PJ(G), then f

∣∣
D

∈ PJ(D,C). Let bi, i = 1, 2, . . . , k be distinct elements from
C. Then for any ai, i = 1, 2, . . . , k the subgroup ofD generated by ai(bi), i = 1, 2, . . . , k
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is abelian. Hence if u = a1(b1)a2(b2) · · · ak(bk), v = α1(b1)α2(b2) · · ·αk(bk) ∈ D and
f ∈ PJ(D,C), then by Corollary 2.17

|f (uv)+ f (uv−1)− 2f (u)|

=
∣∣∣∣∣
k∑
i=1

[f (aiαi(bi))+ f (aiα
−1
i (bi))− 2f (ai(bi))]

∣∣∣∣∣ .
Let bi for i ∈ N be distinct elements from C. Let a, α ∈ A. Consider elements uk =
a(b1)a(b2) · · · a(bk) and vk = α(b1)α(b2) · · ·α(bk). Then by Corollary 2.17, for any
k ∈ N, we have

|f (ukvk)+ f (ukv
−1
k )− 2f (uk)|

=
∣∣∣∣∣
k∑
i=1

[f (aα(bi))+ f (aα−1(bi))− 2f (a(bi))]

∣∣∣∣∣ .
By Lemma 3.13 we have f (d(bi)) = f (d(1)) for any d ∈ A and for any i ∈ N. Let
r = f (aα(bi))+ f (aα−1(bi))− 2f (a(bi)). Hence

|f (ukvk)+ f (ukv
−1
k )− 2f (uk)|

=
∣∣∣∣∣
k∑
i=1

[f (aα(bi))+ f (aα−1(bi))− 2f (a(bi))]

∣∣∣∣∣ .

= |k[f (aα(1))+ f (aα−1(1))− 2f (a(1))]|.
= k · |r|.

Further we have

|f (ukvk)+ f (ukv
−1
k )− 2f (uk)| ≤ c.

Hence

k|r| ≤ c,

and

|r| ≤ c
1

k
∀k ∈ N.

The latter is possible only if r = 0. Thus f ∈ J0(D,B). Denote by jb the restriction of f
toA(b). Let a be an arbitrary element fromA. According to the action of C onD we have

f (a(b)) = f (a(1)b) = f b(a(1)) = f (a(1)),

that is, jb(a(b)) = j1(a(1)). Hence, there is an element j in J0(A) such that jb(a(b)) =
j (a) for any a ∈ A and for any b ∈ B. Therefore, for any u = a1(b1)a2(b2) · · · ak(bk) the
relation

f (a1(b1)a2(b2) · · · ak(bk)) =
k∑
i=i

j (ai)
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holds. Let b, b1, b2 ∈ C; d, d1, d2 ∈ D and u = b1d1, v = b2d2. Then

|f (uv)+ f (uv−1)− 2f (u)|

= |f (b1b2d
b2
1 d2)+ f (b1b

−1
2 d

b−1
2

1 d−1
2

b−1
2 )− 2f (b1d1)| ≤ c. (4.1)

Further we have

|f (db)+ f (db−1)− 2f (d)| ≤ c,

|f (db)+ f (db)− 2f (d)| ≤ c,

|2f (db)− 2f (d)| ≤ c

or

|f (db)− f (d)| ≤ c

2
.

The latter is equivalent to

|f (bdb)− f (d)| ≤ c

2
. (4.2)

Taking into account f (db) = f (d) we get

|f (bd)− f (d)| ≤ c

2
. (4.3)

Putting b1 = b2 in (4.1) we obtain

|f (db2
1 d2)+ f (d

b2
1 d

−1
2

b2
)− 2f (b2d1)| ≤ c. (4.4)

Now taking into account (4.3) and the relation f (db) = f (d) we obtain from (4.4)

2c ≥ |f (db2
1 d2)+ f (d1d

−1
2 )− 2f (d1)

= |f (db2
1 d2)− f (d1d2)+ f (d1d2)+ f (d1d

−1
2 )− 2f (d1)|.

Hence

|f (db1d2)− f (d1d2)|
= |f (db1d2)− f (d1d2)+ [f (d1d2)+ f (d1d

−1
2 )− 2f (d1)]

− [f (d1d2)+ f (d1d
−1
2 )− 2f (d1)]|

≤ |f (db1d2)− f (d1d2)+ [f (d1d2)+ f (d1d
−1
2 )− 2f (d1)]|

+ |[f (d1d2)+ f (d1d
−1
2 )− 2f (d1)]|

≤ 2c + c = 3c (4.5)

for any d1, d2 ∈ D and any b ∈ C.
Let b 
= 1. Then from (4.5) we obtain |f (a1(b)a2(1))−f (a1a2)| ≤ 3c for any a1, a2 ∈

A, that is, |j (a1(b))+ j (a2(1))− j (a1a2)| ≤ 3c for any a1, a2 ∈ A, and |j (a1)+ j (a2)−
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j (a1a2)| ≤ 3c for any a1, a2 ∈ A. Hence, j ∈ PX(A). But PX(A)∩ J0(A) = X(A) and
we see that j ∈ X(A).

Let ψ = f
∣∣
D

. Thenψ is an element ofX(D) invariant relative to C. Let us extendψ to
G as follows: ψ1(bd) = ψ(d). It is easy to see that ψ1 ∈ KX(G). From Theorem 2.16 it
follows that ψ1 ∈ KJ(G). From Lemma 2.8 we see that ψ̂1 ∈ PJ(G). Let us verify that
ψ̂1(xy) = ψ̂1(yx) for all x, y ∈ G.

Indeed, by Lemma 2.8 there is q > 0 such that

|ψ̂1(x)− ψ1(x)| ≤ q, ∀x ∈ G. (4.6)

From the relation ψ1 ∈ KX(G) we see that for some δ > 0,

|ψ1(xy)− ψ1(x)− ψ1(y)| ≤ δ, ∀x, y ∈ G. (4.7)

This implies that for x, y, z ∈ G the following relation holds:

|ψ1(xyz)− ψ1(x)− ψ1(y)− ψ1(z)| ≤ 2δ, (4.8)

From (4.6) and (4.8) we have

|ψ̂1((xy)
n+1)− ψ1(x)− ψ1((yx)

n)− ψ1(y)| ≤ q + 2δ, ∀x, y ∈ G. (4.9)

Now applying (4.7) we obtain

|ψ̂1((xy)
n+1)− ψ1((yx)

n+1)| ≤ q + 3δ, ∀x, y ∈ G. (4.10)

Similarly, we get

|ψ̂1((yx)
n+1)− ψ1(x)− ψ1((xy)

n)− ψ1(y)| ≤ q + 2δ, ∀x, y ∈ G. (4.11)

Now again using (4.6), (4.7) and (4.8) we obtain

|ψ̂1((xy)
n+1)− ψ1((yx)

n)− ψ1(yx)| ≤ q + 3δ, ∀x, y ∈ G.
From the equality

ψ̂1((yx)
n+1) = ψ̂1((yx)

n)+ ψ̂1(yx)

and (4.6) we get

|ψ̂1((yx)
n+1)− ψ1((yx)

n)− ψ1(yx)| ≤ 2q. (4.12)

From (4.11) and (4.12) we obtain that for p = 3q + 3δ the following relations hold:

|ψ̂1((xy)
n+1)− ψ̂1((yx)

n+1)| ≤ p ∀x, y ∈ G and ∀n ∈ N.

(n+ 1)|ψ̂1(xy)− ψ̂1(yx)| ≤ p.

This implies that

|ψ̂1(xy)− ψ̂1(yx)| ≤ p

n+ 1
∀x, y ∈ G and ∀n ∈ N.

The latter is possible only if ψ̂1(xy) ≡ ψ̂1(yx).
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Now by Theorem 2.16 we get that ψ̂1 ∈ PX(G) such that ψ̂1
∣∣
D

= ψ .

It is clear that g = f − ψ̂1 ∈ PJ(G) and g
∣∣
C∪D ≡ 0. Let us verify that g ≡ 0 on G.

Indeed, for any bd ∈ G we have 2g(bd) = g((bd)2) = g(b2dbd) = g(dbd) = 0. Hence
g(bd) = 0. So, we see that f = ψ̂1 and f ∈ PX(G).

Now let us verify that f ∈ X(G). To do it we verify that 2f is a character of the group
G. Indeed,

2f (b1d1b2d2)− 2f (b1d1)− 2f (b2d2)

= f (d
b2b1b2
1 d

b1b2
2 d

b1
1 d2)− f (d

b1
1 d1)− f (d

b2
2 d2)

= f (d
b1
1 )+ f (d

b1b2
2 )+ f (d

b1
1 )+ f (d2)− f (d1)

− f (d1)− f (d2)− f (d2)

≡ 0.

So, 2f ∈ X(G) and we obtain that f ∈ X(G). Hence, f ∈ J0(G) and the equation (2.1)
is stable on G. This completes the proof. �
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