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Abstract. In this article, we study tensor product of Hilbert C∗-modules and Hilbert
spaces. We show that if E is a Hilbert A-module and F is a Hilbert B-module, then
tensor product of frames (orthonormal bases) for E and F produce frames (orthonormal
bases) for Hilbert A ⊗ B-module E ⊗ F , and we get more results.

For Hilbert spaces H and K , we study tensor product of frames of subspaces for H
and K , tensor product of resolutions of the identities of H and K , and tensor product of
frame representations for H and K .
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1. Introduction

Gabor [12], in 1946 introduced a technique for signal processing which eventually led
to wavelet theory. Later in 1952, Duffin and Schaeffer [7] in the context of nonharmonic
Fourier series introduced frame theory for Hilbert spaces. In 1986, Daubechies, Grassman
and Meyer [6] showed that Duffin and Schaeffer’s definition was an abstraction of Gabor’s
concept. Frames are used in signal processing, image processing, data compression, sam-
pling theory, migrating the effect of losses in packet-based communication systems and
improving the robustness of data transmission. Since tensor product is useful in the approxi-
mation of multi-variate functions of combinations of univariate ones, Khosravi and Asgari
[15] introduced frames in tensor product of Hilbert spaces. Meanwhile, the notion of
frames in Hilbert C∗-modules was introduced and some of their properties were inves-
tigated [9–11,14,16]. In this article, we study the frames and bases in tensor product of
Hilbert C∗-modules which were introduced in [16] and we generalize the techniques of
[15] to C∗-modules.

In §2, we briefly recall the definitions and basic properties of Hilbert C∗-modules. In
§3, we investigate tensor product of Hilbert C∗-modules, which is introduced in [16] and
we show that tensor product of frames for Hilbert C∗-modules E and F , present frames
for E ⊗ F , and tensor product of their frame operators is the frame operator of the tensor
product of frames. We also show that tensor product of frames of subspaces produce a
frame of subspaces for their tensor product. In §4, we study resolution of the identity and
prove that tensor product of any resolutions of H and K , is a resolution of the identity
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for H ⊗ K . In §5, we study the frame representation and we show that tensor product of
frame vectors is a frame vector. Also we show that tensor product of analysis operators
(resp. decomposition operators) is an analysis operator (resp. a decomposition operator).

Throughout this paper, N and C will denote the set of natural numbers and the set of
complex numbers, respectively. A and B will be unital C∗-algebras.

2. Preliminaries

Let I and J be countable index sets. In this section we briefly recall the definitions and
basic properties of Hilbert C∗-modules and frames in Hilbert C∗-modules. For information
about frames in Hilbert spaces we refer to [3,14,5,19]. Our reference for C∗-algebras is
[17,18]. For a C∗-algebra A if a ∈ A is positive we write a ≥ 0 and A+ denotes the set of
positive elements of A.

DEFINITION 2.1

Let A be a unital C∗-algebra and let H be a left A-module, such that the linear structures of
A and H are compatible. H is a pre-Hilbert A-module if H is equipped with an A-valued
inner product 〈., .〉: H × H → A, that is sesquilinear, positive definite and respects the
module action. In other words,

(i) 〈x, x〉 ≥ 0 for all x ∈ H and 〈x, x〉 = 0 if and only if x = 0;
(ii) 〈ax + y, z〉 = a〈x, z〉 + 〈y, z〉 for all a ∈ A and x, y, z ∈ H ;

(iii) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ H .

For x ∈ H , we define ‖x‖ = ‖〈x, x〉‖1/2. If H is complete with ‖.‖, it is called a
Hilbert A-module or a Hilbert C∗-module over A. For every a in C∗-algebra A, we have
|a| = (a∗a)1/2 and the A-valued norm on H is defined by |x| = 〈x, x〉1/2 for x ∈ H .

DEFINITION 2.2

Let H be a Hilbert A-module. A family {xi}i∈I of elements of H is a frame for H , if there
exist constants 0 < A ≤ B < ∞, such that for all x ∈ H ,

A〈x, x〉 ≤
∑
i∈I

〈x, xi〉〈xi, x〉 ≤ B〈x, x〉. (1)

The numbers A and B are called lower and upper bound of the frame, respectively. If
A = B = λ, the frame is λ-tight. If A = B = 1, it is called a normalized tight frame or a
Parseval frame. If the sum in the middle of (1) is convergent in norm, the frame is called
standard.

If {xi}i∈I is a standard frame in a finitely or countably generated Hilbert A-module, it
has a unique operator S ∈ End∗

A(H), where End∗
A(H) is the set of adjointable A-linear

maps on H , such that for every x ∈ H ,

x =
∑
i∈I

〈x, Sxi〉xi =
∑
i∈I

〈x, xi〉Sxi.

Moreover S is positive and invertible.

DEFINITION 2.3

Let H be a Hilbert A-module, and let v ∈ H . We say that v is a basic element if e = 〈v, v〉
is a minimal projection in A, i.e. eAe = Ce. A system {vλ: λ ∈ �} of basic elements of
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H is called orthonormal if 〈vλ, vµ〉 = 0 for all λ �= µ. An orthonormal basis for H is an
orthonormal system which generates a dense submodule of H .

3. Main results

Let A and B be C∗-algebras, E a Hilbert A-module and let F be a Hilbert B-module. We
take A ⊗ B as the completion of A ⊗alg B with the spatial norm. Hence A ⊗ B is a C∗-
algebra and for every a ∈ A, b ∈ B we have ‖a ⊗ b‖ = ‖a‖ · ‖b‖. The algebraic tensor
product E ⊗alg F is a pre-Hilbert A ⊗ B-module with module action

(a ⊗ b)(x ⊗ y) = ax ⊗ by (a ∈ A, b ∈ B, x ∈ E, y ∈ F),

and A ⊗ B-valued inner product

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉 ⊗ 〈y1, y2〉 (x1, x2 ∈ E, y1, y2 ∈ F).

We also know that for z = ∑n
i=1 xi ⊗ yi in E ⊗alg F we have

〈z, z〉 =
∑
i,j

〈xi, xj 〉 ⊗ 〈yi, yj 〉 ≥ 0

and 〈z, z〉 = 0 if and only if z = 0. Just as in the case of ordinary pre-Hilbert space, we
can form the completion E ⊗ F of E ⊗alg F , which is a Hilbert A ⊗ B-module. It is
called the tensor product of E and F (see [16]). We note that if a ∈ A+ and b ∈ B+, then
a ⊗ b ∈ (A ⊗ B)+. Plainly if a, b are hermitian elements of A and a ≥ b, then for every
positive element x of B, we have a ⊗ x ≥ b ⊗ x.

Lemma 3.1. Let {ui}i∈I be a frame for E with frame bounds A and B, and let {vj }j∈J be
a frame for F with frame bounds C and D. Then {ui ⊗ vj }i∈I,j∈J is a frame for E ⊗ F

with frame bounds AC and BD. In particular, if {ui}i∈I and {vj }j∈J are tight or Parseval
frames, then so is {ui ⊗ vj }i∈I,j∈J .

Proof. Let x ∈ E and y ∈ F . Then we have

A〈x, x〉 ≤
∑
i∈I

〈x, ui〉〈ui, x〉 ≤ B〈x, x〉, (2)

C〈y, y〉 ≤
∑
j∈J

〈y, vj 〉〈vj , y〉 ≤ D〈y, y〉. (3)

Therefore

A〈x, x〉 ⊗ 〈y, y〉 ≤
∑

i

〈x, ui〉〈ui, x〉 ⊗ 〈y, y〉

≤ B〈x, x〉 ⊗ 〈y, y〉.
Now by (3), we have

AC〈x, x〉 ⊗ 〈y, y〉 ≤
∑

i

∑
j

〈x, ui〉〈ui, x〉 ⊗ 〈y, vj 〉〈vj , y〉

≤ B〈x, x〉 ⊗
∑
j

〈y, vj 〉〈vj , y〉

≤ BD〈x, x〉 ⊗ 〈y, y〉.
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Consequently we have

AC〈x ⊗ y, x ⊗ y〉 ≤
∑

i

∑
j

〈x ⊗ y, ui ⊗ vj 〉〈ui ⊗ vj , x ⊗ y〉

≤ BD〈x ⊗ y, x ⊗ y〉.
From these inequalities it follows that for all z = ∑n

k=1 xk ⊗ yk in E ⊗alg F ,

AC〈z, z〉 ≤
∑
i,j

〈z, ui ⊗ vj 〉〈ui ⊗ vj , z〉 ≤ BD〈z, z〉. (4)

Hence relation (4) holds for all z in E ⊗ F . �

From Theorem 1 of [2] and the above lemma we have the following result.

Theorem 3.2. Let E be a Hilbert A-module and F be a Hilbert B-module. Let {ui}i∈I

and {vj }j∈J be orthonormal bases in E and F , respectively. Then {ui ⊗ vj }i∈I,j∈J is an
orthonormal basis for E ⊗ F .

Proof. It is clear that each ui ⊗ vj is a basic element of E ⊗ F and {ui ⊗ vj }i∈I,j∈J

is an orthonormal system in E ⊗ F . Now for each x ∈ E and each y ∈ F , we have
x = ∑

i∈I 〈x, ui〉ui and y = ∑
j∈J 〈y, vj 〉vj . Hence

x ⊗ y =
∑
i∈I

∑
j∈J

〈x ⊗ y, ui ⊗ vj 〉ui ⊗ vj .

Similar to the above lemma we can show that for each z in E ⊗ F , we have z =∑
i∈I

∑
j∈J 〈z, ui ⊗ vj 〉ui ⊗ vj . But Bakic and Guljas in Theorem 1 of [2] showed that

if W is a Hilbert C∗-module over a C∗-algebra A, and (vλ)λ∈� is an orthonormal sys-
tem in W , then (vλ)λ∈� is an orthonormal basis for W if and only if for every w ∈ W ,
w = ∑〈w, vλ〉vλ. Now by using this fact we have the result. �

Let {ui}i∈I and {vj }j∈J be standard frames for E and F , respectively. So {ui⊗vj }i∈I,j∈J

is a standard frame for E ⊗ F .
Let S, S′ and S′′ be the frame operators of {ui}i∈I , {vj }j∈J and {ui ⊗ vj }i∈I,j∈J ,

respectively. So S is A-linear and S′ is B-linear. Hence for every x ∈ E and y ∈ F , we
have x = ∑

i〈x, Sui〉ui , y = ∑
j 〈y, S′vj 〉vj . Therefore

x ⊗ y =
∑

i

∑
j

〈x, Sui〉ui ⊗ 〈y, S′vj 〉vj

=
∑

i

∑
j

(〈x, Sui〉 ⊗ 〈y, S′vj 〉)(ui ⊗ vj )

=
∑

i

∑
j

(〈x ⊗ y, Sui ⊗ S′vj 〉ui ⊗ vj .

Now by the uniqueness of frame operator we have S′′(ui ⊗ vj ) = Sui ⊗ S′vj . Hence
S′′ = S⊗S′, which is a bounded A⊗B-linear, self-adjoint, positive and invertible operator
on E ⊗ F . We note that ‖S′′‖ = ‖S ⊗ S′‖ ≤ ‖S‖.‖S′‖. Now we summarize the above
results as follows:
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Theorem 3.3. Let {ui}i∈I and {vj }j∈J be standard frames in the Hilbert C∗-modules
E and F , respectively. If S, S′ and S′′ are the frame operators of {ui}i∈I , {vj }j∈J and
{ui ⊗ vj }i∈I,j∈J , respectively, then S′′ = S ⊗ S′.

For the frame operator we prove the following result.

Lemma 3.4. If {xi}i∈I is a frame in Hilbert A-module X with frame operator S and Q ∈
End∗

A(X) is invertible, then {Qxi}i∈I is a frame in X with frame operator Q∗−1SQ−1.

Proof. Let {xi}i∈I be a frame of X with frame operator S. Then there exist constants A,
B > 0 such that for every x ∈ X,

A〈x, x〉 ≤
∑

i

|〈x, xi〉|2 ≤ B〈x, x〉, (5)

and S−1x = ∑
i〈x, xi〉xi . Since Q is invertible and Q ∈ End∗

A(X), then Q is a bounded
A-linear map with invertible adjoint Q∗. So for every x ∈ X, we have

‖Q∗−1‖−1 · |x| ≤ |Q∗x| ≤ ‖Q∗‖ · |x|. (6)

Since Q is A-linear, QS−1x = ∑
i〈x, xi〉Qxi . So QS−1Q∗(Q∗−1x) = ∑

i〈Q∗−1x, Qxi〉
Qxi , because

〈x, xi〉 = 〈Q∗Q∗−1x, xi〉 = 〈Q∗−1x, Qxi〉.

Consequently, for every x ∈ X,

QS−1Q∗(x) =
∑

i

〈x, Qxi〉Qxi. (7)

Now by using (5) and (6) we have

A‖Q∗−1‖−2〈x, x〉 ≤ A〈Q∗x, Q∗x〉

≤
∑

i

|〈Q∗x, xi〉|2 ≤ B〈Q∗x, Q∗x〉 ≤ B‖Q∗‖2〈x, x〉.

On the other hand, 〈Q∗x, xi〉 = 〈x, Qxi〉, so {Qxi}i∈I is a frame for X and by (7),
Q∗−1SQ−1 = (QS−1Q∗)−1 is the frame operator of {Qxi}i∈I . �

Theorem 3.5. If Q ∈ End∗
A(E) is an invertible A-linear map and {Ti}i∈J is a frame in

E ⊗ F with frame operator S, then {(Q∗ ⊗ I )(Ti)}i∈J is a frame of E ⊗ F with frame
operator (Q ⊗ I )−1S(Q∗ ⊗ I )−1.

Proof. Since Q ∈ End∗
A(E), Q ⊗ I ∈ End∗

A(E ⊗ F) with inverse Q−1 ⊗ I . It is obvious
that Q ⊗ I is A ⊗ B-linear, adjointable, with adjoint Q∗ ⊗ I . An easy calculation shows
that for every elementary tensor x ⊗ y,

‖(Q ⊗ I )(x ⊗ y)‖2 = ‖Q(x) ⊗ y‖2 = ‖Q(x)‖2 · ‖y‖2

≤ ‖Q‖2 · ‖x‖2 · ‖y‖2 = ‖Q‖2 · ‖x ⊗ y‖2.
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So Q ⊗ I is bounded, and therefore it can be extended to E ⊗ F . Similarly for Q∗−1 ⊗ I .
Hence Q ⊗ I is A ⊗ B-linear, adjointable with adjoint Q∗ ⊗ I , and as we mentioned in
the proof of Lemma 3.4, Q∗ is invertible and bounded. Hence for every T ∈ E ⊗ F , we
have

‖Q∗−1‖−1 · |T | ≤ |(Q∗ ⊗ I )T | ≤ ‖Q‖ · |T |. (8)

Hence Q ⊗ I ∈ End∗
A⊗B(E ⊗ F). Now by the above lemma we have the result. �

Now we generalize some of the results in [15] to frame of subspaces. First we recall the
definition of frame of subspaces (for basic definitions and properties, see [4]).

DEFINITION 3.6

Let H be a separable Hilbert space and let {vi}i∈I be a sequence of weights, i.e., vi > o

for all i ∈ I . A sequence {Wi}i∈I of closed subspaces of H is a frame of subspaces with
respect to {vi}i∈I if there exist real numbers A, B > 0 such that for every x ∈ H ,

A‖x‖2 ≤
∑
i∈I

v2
i ‖πWi

(x)‖2 ≤ B‖x‖2,

where for each i ∈ I , πWi
is the orthogonal projection of H onto Wi . Similar to frames, A

and B are called the frame bounds. 1f A = B = λ, the frame of subspaces is λ-tight and
it is a Parseval frame of subspaces if A = B = 1.

Let H and K be Hilbert spaces and let W , Z be closed subspaces of H and K , respec-
tively. Then πW ⊗πZ: H ⊗alg K → W ⊗Z is a bounded linear map, and it can be extended
to a bounded linear map from H ⊗ K into W ⊗ Z. We also denote it by πW ⊗ πZ and
clearly it is surjective. Hence πW ⊗πZ is the orthogonal projection of H ⊗K onto W ⊗Z.

Theorem 3.7. Let {Wi}i∈I be a frame of subspaces with respect to {ui}i∈I for H , with
frame bounds A, B, and let {Zj }j∈J be a frame of subspaces with respect to {vj }j∈J for K

with frame bounds A′, B ′. Then {Wi ⊗ Zj }i∈I,j∈J is a frame of subspaces with respect to
{uivj }i∈I,j∈J for H ⊗ K with frame bounds AA′ and BB ′. It is tight or Parseval if {Wi}i
and {Zj } are tight or Parseval.

Proof. Let x ⊗ y be an elementary tensor. Then A‖x‖2 ≤ ∑
i∈I u2

i ‖πWi
(x)‖2 ≤ B‖x‖2

and A′‖y‖2 ≤ ∑
j∈J v2

j ‖πZj
(y)‖2 ≤ B ′‖y‖2.

A simple calculation shows that

AA′‖x ⊗ y‖2 ≤
∑

i

∑
j

u2
i v

2
j ‖πWi

(x)‖2 · ‖πZj
(y‖2

≤ BB ′‖x ⊗ y‖2.

Hence

AA′‖x ⊗ y‖2 ≤
∑
i,j

u2
i v

2
j ‖πWi

(x) ⊗ πZj
(y)‖2 ≤ BB ′‖x ⊗ y‖2.

Therefore

AA′‖x ⊗ y‖2 ≤
∑
i,j

u2
i v

2
j ‖πWi

⊗ πZj
(x ⊗ y)‖2 ≤ BB ′‖x ⊗ y‖2. (9)

Consequently, for every z = ∑n
l=1 xl ⊗ yl in H ⊗alg K and every z in H ⊗K , the relation

(9) holds. Hence we have the result. �
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Now we try to generalize a known result of frames (Proposition 3.1 of [15]) to frames
of subspaces.

DEFINITION 3.8

Let {Wi}i∈I be a frame of subspaces for H with respect to {vi}i∈I . Then the frame operator
SW,v for {Wi}i∈I and {vi}i∈I is defined by

SW,v(x) =
∑
i∈I

v2
i πWi

(x), x ∈ H

COROLLARY 3.9

With the hypothesis in Theorem 3.7, if SW,u and SZ,v are frame operators for {Wi}i∈I , {ui}
and {Zj }, {vj }, respectively, then SW,u ⊗ SZ,v is the frame operator for {Wi ⊗ Zj }i∈I,j∈J

and {uivj }i∈I,j∈J .

Proof. Let x ⊗ y be an elementary tensor. Therefore

SW,u ⊗ SZ,v(x ⊗ y) = SW,u(x) ⊗ SZ,v(y)

=
∑

i

u2
i πWi

(x) ⊗
∑
j

v2
j πZj

(y)

=
∑

i

∑
j

u2
i v

2
j (πWi

⊗ πZj
)(x ⊗ y).

Now the uniqueness of frame operator implies that SW,u ⊗ SZ,v is the desired frame
operator. �

Remark 3.10. Let H and K be Hilbert spaces. A map T : H −→ K is antilinear (or
conjugate linear) if T (λx + y) = λ̄T (x) + T (y) for all λ ∈ C and x, y ∈ H . By the
techniques in [8], H ⊗ K is the set of anti-linear maps T : K → H with the norm ‖.‖
defined by

‖T ‖ = sup{‖Ty‖: y ∈ K, ‖y‖ ≤ 1}.

So Wi ⊗ Zj is the set of anti-linear maps T : Zj → Wi and therefore πWi
⊗ πZj

is the
map which assigns to every T ∈ H ⊗ K , the restriction of πWi

◦ T to Zj , i.e. πWi
◦ T |Zj .

4. Resolution of the identity

In this section we present the notion of �2-resolution of the identity with lower resolution
bound in tensor product of Hilbert spaces (for more information see [4,9]).

DEFINITION 4.1

Let I be a countable index set and let H be a Hilbert space. Let {vi}i∈I be a family of
weights, i.e., for all i, vi > 0. Then a family of bounded operators {Ti}i∈I on H is called
a �2-resolution of the identity with lower resolution bound with respect to {vi}i∈I on H if
there are positive real numbers C and D such that for all f ∈ H ,
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(i) C‖f ‖2 ≤ ∑
i∈I v−2

i ‖Ti(f )‖2 ≤ D‖f ‖2,
(ii) f = ∑

i∈I Ti(f ) (and the series converges unconditionally for every f ∈ H ).

The optimal values of C and D are called the bounds of the resolution of the identity.

PROPOSITION 4.2

Let {Ti}i∈I be a �2-resolution of the identity with lower resolution bound with respect to
{vi}i∈I on H , and let {Sj }j∈J be a �2-resolution of the identity with lower resolution bound
with respect to {uj }j∈J on K . Then {Ti ⊗ Sj }i∈I,j∈J is a �2-resolution of the identity with
lower resolution bound with respect to {viuj }i∈I,j∈J on H ⊗ K .

Proof. Let f ∈ H , g ∈ K . Then f = ∑
i∈I Ti(f ), g = ∑

j∈J Sj (g), and consequently∑
i,j

(Ti ⊗ Sj )(f ⊗ g) =
∑
i,j

Ti(f ) ⊗ Sj (g)

=
∑

i

Ti(f ) ⊗
∑
j

Sj (g) = f ⊗ g.

Since both the series f = ∑
i∈I Ti(f ) and g = ∑

j∈J Sj (g) are unconditionally con-
vergent, the above series is unconditionally convergent. So for every h ∈ H ⊗alg K and
consequently for every h ∈ H ⊗ K the above relation holds. Let C, D and C′, D′ be the
bounds of the resolutions {Ti} and {Sj }, respectively. Then for every f ∈ H , g ∈ K we
have

CC′‖f ⊗ g‖2 = CC′‖f ‖2 · ‖g‖2 ≤ C′∑
i

v−2
i ‖Ti(f )‖2 · ‖g‖2

≤
∑

i

v−2
i ‖Ti(f )‖2 ·

∑
j

u−2
j ‖Sjg‖2

=
∑
i,j

v−2
i u−2

j ‖(Ti ⊗ Sj )(f ⊗ g)‖2

≤ DD′‖f ⊗ g‖2. (10)

Now by using the fact that

‖(T ⊗ S)

(
n∑

i=1

fi ⊗ gi

)
‖2 = ‖T

(
n∑

i=1

fi

)
‖2 · ‖S

(
n∑

i=1

gi

)
‖2,

and ‖∑n
i=1 fi ⊗ gi‖2 = ‖∑n

i=1 fi‖2 · ‖∑n
i=1 gi‖2, we conclude that for every h =∑n

i=1 fi ⊗ gi and consequently for every h ∈ H ⊗ K the relation (10) holds. �

From the above proposition and Proposition 3.26 of [4] we have the following result.

COROLLARY 4.3

With the hypothesis in Corollary 3.9, if Ti = πWi
SW,vi

and Sj = πZj
SZ,uj

, then {v2
i u

2
j Ti ⊗

Sj }i∈I,j∈J is a �2-resolution of the identity with lower resolution bound with respect to
{viuj }i∈I,j∈J on H ⊗ K and for all z ∈ H ⊗ K,
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C

D2
· C′

D′2 ‖z‖2 ≤
∑
i∈I

∑
j∈J

v2
i u

2
j‖(Ti ⊗ Sj )(z)‖2 ≤ D

C2
· D′

C′2 ‖z‖2.

5. Frame representation

Let H be a separable Hilbert space, and let G be a discrete countable abelian group. Let
π : G → B(H) be a unitary representation of G on H . If there is a vector v ∈ H such that
{π(g)v|g ∈ G} is a frame for H , then the representation π is called a frame representation.
Let Ĝ denote the dual group of G, i.e., the group of characters on G and let λ be the
normalized Haar measure on Ĝ. Let π : G −→ B(H) be a frame representation with
frame vector v. As we have in [1,13,17] there is a spectral measure E on Ĝ such that

π(g) =
∫

Ĝ

g(ξ)dE(ξ).

Since π is a frame representation, by using the results in §2 of [1] and the properties
of spectral measure there is a unitary operator U : H −→ L2(F, λ|F), where F is a
measurable subset of Ĝ with λ(F ) > 0 and λ|F is the restriction of Haar measure λ to F

such that U interwines the spectral measure on H and the canonical spectral measure on Ĝ.
The operator U is called the decomposition operator. Moreover π is unitarily equivalent
to the representation σ : G −→ B(L2(F, λ|F)) defined by σ(g) = Mg , where Mg is the
multiplication operator with symbol g. In fact, U∗MgU = π(g).

We also note that if θv is the analysis operator of H for frame vector v, then θvπ(g) =
Lgθv , where Lg: �2(G) −→ �2(G) is defined by (Lgx)(h) = x(g−1h) for all h ∈ G.
In fact, if J is the range of θv , then the representation π of G is unitarily equivalent to
ρ = Lg|J (see Lemma 3 of [1]). For more details see [1] or [13].

Let H and K be separable Hilbert spaces and let π : G1 → B(H) and σ : G2 → B(K)

be frame representations on H and K with frame vectors v ∈ H and w ∈ K , respectively.
Since G1 and G2 are discrete countable abelian groups, their direct sum G = G1 ⊕G2 is a
discrete countable abelian group. Hence we can consider the representation π ⊗ σ : G →
B(H ⊗ K) defined by

(π ⊗ σ)(g, h) = πg ⊗ σh, (g, h) ∈ G.

Since {π(g)v: g ∈ G1} is a frame for H and {σ(h)w: h ∈ G2} is a frame for K , by Lemma
3.1 and the definition of π ⊗ σ ,

{π ⊗ σ(g, h)(v ⊗ w) : (g, h) ∈ G} = {(πg)v ⊗ (σh)w : (g, h) ∈ G}
is a frame for H ⊗K . So π ⊗σ is a frame representation of H ⊗K with frame vector v⊗w.
Moreover, if θv and θw are the analysis operators of H and K for frame vectors v and w,
respectively, then θv ⊗θw is the analysis operator of H ⊗K for frame vector v⊗w. Hence
we have proved the following result.

Theorem 5.1. Let π : G1 → B(H) and σ : G2 → B(K) be frame representations with
frame vectors v and w, respectively. Then π ⊗ σ : G1 ⊕ G2 → B(H ⊗ K) is a frame
representation with frame vector v ⊗ w. If θv and θw are the analysis operators for frame
vectors v and w, respectively, then θv ⊗ θw is the analysis operator for v ⊗ w. �

For the decomposition operators we have the following result.
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Theorem 5.2. With the hypothesis in Theorem 5.1, suppose that U : H → L2(E, λ|E)

and V : K → L2(F, λ|F) are the decomposition operators of π and σ , respectively, then
U ⊗ V : H ⊗ K → L2(E ⊕ F, λ × µ|E ⊗ F) is the decomposition operator of π ⊗ σ .

Proof. It is clear that (G1 ⊕ G2)
∧ = Ĝ1 ⊕ Ĝ2. If U : H −→ L2(E, λ|E) and V : K −→

L2(F, µ|F), where Ĝ1 ⊇ E, Ĝ2 ⊇ F , then Ĝ1 ⊕ Ĝ2 ⊇ E ⊕ F and U ⊗ V : H ⊗ K −→
L2(E ⊕ F, λ × µ|E ⊕ F), where λ × µ is the product measure of λ and µ. We note that
for every x ∈ H , y ∈ K , the function (U ⊗ V )(x ⊗ y) = Ux ⊗ Vy defined on E ⊕ F by
(Ux ⊗Vy)(ζ, η) = (Ux)(ζ ).(Vy)(η) and since L2(E, λ|E)⊗L2(F, λ|F) is isomorphic
to L2(E ⊕F, λ×µ|E ⊕F) we can take Ux ⊗Vy ∈ L2(E ⊕F, λ×µ|E ⊕F). Since G1
and G2 form an orthonormal basis of L2(Ĝ1, λ) and L2(Ĝ2, µ), respectively (Corollary
4.26 of [8]), a simple calculation shows that

‖Uv ⊗ V w‖2 = ‖χE⊕F · Uv ⊗ V w‖2

=
∫

Ĝ1

|χE(ζ )Uv(ζ )|2dλ ·
∫

Ĝ2

|χF (η)V w(η)|2dµ

= ‖χEUv‖2 · ‖χF V w‖2 = ‖Uv‖2 · ‖V w‖2 < ∞. �

COROLLARY 5.3

Let {π(g)v}g∈G1 and {σ(h)w}h∈G2 be frames for H and K with frame bounds A1, B1 and
A2, B2, respectively. Then {(π ⊗σ)(g, h)(v ⊗w)}g∈G1,h∈G2 is a frame with frame bounds
A1A2 and B1B2.

Proof. First we note that for all x ∈ H ,

∑
g∈G1

|〈x, π(g)v〉|2 =
∑
g∈G

∫
Ĝ1

|Ux(ζ )Uv(ζ )|2dλ = ‖(Ux)(Uv)‖2

and

A1‖x‖2 ≤
∑
g∈G1

|〈x, π(g)v〉|2 ≤ B1‖x‖2, for all x ∈ H.

Similarly

A2‖y‖2 ≤
∑
h∈G2

|〈y, σ (h)w〉|2 ≤ B2‖y‖2, for all y ∈ K.

Hence for every elementary tensor x ⊗ y we have ‖x ⊗ y‖ = ‖x‖.‖y‖ and∑
g∈G1

∑
h∈G2

|〈x ⊗ y, π(g) ⊗ σ(h)(v ⊗ w)〉|2

=
∫

Ĝ1

∫
Ĝ2

|v(x)|2 · |Uv|2 · |w(x)|2 · |V w|2d(λ × µ)

= ‖(Ux)(Uv)‖2 · ‖(Vy)(V w)‖2.

So we have the result. �
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We can also state similar results for Bessel vectors.

DEFINITION 5.4

Let π : G −→ B(H) be a frame representation with frame vector v. We say v′ ∈ H is a
Bessel vector for the frame representation if there exists C2 > 0 such that for all x ∈ H ,∑

g∈G

|〈x, π(g)v′〉|2 ≤ C2‖x‖2.

Lemma 5.5. Suppose π and σ are frame representations on H and K with frame vectors v

and w, respectively. If v′ and w′ are Bessel vectors for π and σ , respectively, then v′ ⊗w′
is a Bessel vector for π ⊗ σ .

Proof. By Theorem 5.1, π ⊗ σ is a frame representation with frame vector v ⊗ w, and
since v′ and w′ are Bessel vectors for π and σ , respectively, there are constants C2 and C′

2
such that ∑

g∈Ĝ1

|〈x, π(g)v′〉|2 ≤ C2‖x‖2, x ∈ H,

∑
h∈Ĝ2

|〈y, σ (h)w′〉|2 ≤ C′
2‖y‖2, y ∈ K.

Hence for every elementary tensor x ⊗ y we have∑
g∈Ĝ1

∑
h∈Ĝ2

|〈x ⊗ y, π ⊗ σ(g, h)(v′ ⊗ w′)〉|2 ≤ C2C
′
2‖x ⊗ y‖2.

As we have in $ 4, the above relation holds for every z = ∑n
i=1 xi ⊗ yi and so for every

z ∈ H ⊗ K . Therefore v′ ⊗ w′ is a Bessel vector for π ⊗ σ . �
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