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Abstract. In this article, we study tensor product of Hilbert C*-modules and Hilbert
spaces. We show that if E is a Hilbert A-module and F is a Hilbert B-module, then
tensor product of frames (orthonormal bases) for E and F' produce frames (orthonormal
bases) for Hilbert A ® B-module £ ® F, and we get more results.

For Hilbert spaces H and K, we study tensor product of frames of subspaces for H
and K, tensor product of resolutions of the identities of H and K, and tensor product of
frame representations for H and K.
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1. Introduction

Gabor [12], in 1946 introduced a technique for signal processing which eventually led
to wavelet theory. Later in 1952, Duffin and Schaeffer [7] in the context of nonharmonic
Fourier series introduced frame theory for Hilbert spaces. In 1986, Daubechies, Grassman
and Meyer [6] showed that Duffin and Schaeffer’s definition was an abstraction of Gabor’s
concept. Frames are used in signal processing, image processing, data compression, sam-
pling theory, migrating the effect of losses in packet-based communication systems and
improving the robustness of data transmission. Since tensor product is useful in the approxi-
mation of multi-variate functions of combinations of univariate ones, Khosravi and Asgari
[15] introduced frames in tensor product of Hilbert spaces. Meanwhile, the notion of
frames in Hilbert C*-modules was introduced and some of their properties were inves-
tigated [9—-11,14,16]. In this article, we study the frames and bases in tensor product of
Hilbert C*-modules which were introduced in [16] and we generalize the techniques of
[15] to C*-modules.

In §2, we briefly recall the definitions and basic properties of Hilbert C*-modules. In
§3, we investigate tensor product of Hilbert C*-modules, which is introduced in [16] and
we show that tensor product of frames for Hilbert C*-modules E and F, present frames
for E ® F, and tensor product of their frame operators is the frame operator of the tensor
product of frames. We also show that tensor product of frames of subspaces produce a
frame of subspaces for their tensor product. In §4, we study resolution of the identity and
prove that tensor product of any resolutions of H and K, is a resolution of the identity
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for H ® K. In §5, we study the frame representation and we show that tensor product of
frame vectors is a frame vector. Also we show that tensor product of analysis operators
(resp. decomposition operators) is an analysis operator (resp. a decomposition operator).

Throughout this paper, N and C will denote the set of natural numbers and the set of
complex numbers, respectively. A and B will be unital C*-algebras.

2. Preliminaries

Let I and J be countable index sets. In this section we briefly recall the definitions and
basic properties of Hilbert C*-modules and frames in Hilbert C*-modules. For information
about frames in Hilbert spaces we refer to [3,14,5,19]. Our reference for C*-algebras is
[17,18]. For a C*-algebra A if a € A is positive we write a > 0 and A" denotes the set of
positive elements of A.

DEFINITION 2.1

Let A be a unital C*-algebra and let H be a left A-module, such that the linear structures of
A and H are compatible. H is a pre-Hilbert A-module if H is equipped with an A-valued
inner product (., .): H x H — A, that is sesquilinear, positive definite and respects the
module action. In other words,

(1) (x,x) >0forallx € H and (x, x) = 0if and only if x = 0;
(i) (ax +y,z) =alx,z) + (y,z)foralla € Aand x, y,z € H;
(iii) (x,y) = (y,x)*forallx,y € H.

For x € H, we define ||x|| = |(x, x)||'/2. If H is complete with ||.||, it is called a
Hilbert A-module or a Hilbert C*-module over A. For every a in C*-algebra A, we have
la| = (a*a)'/?* and the A-valued norm on H is defined by |x| = (x, x)!/? forx € H.

DEFINITION 2.2

Let H be a Hilbert A-module. A family {x;};c; of elements of H is a frame for H, if there
exist constants 0 < A < B < o0, such that for all x € H,

Alx, x) <) (x, xi){x;, x) < B(x, x). ()
iel
The numbers A and B are called lower and upper bound of the frame, respectively. If
A = B = A, the frame is A-tight. If A = B = 1, it is called a normalized tight frame or a
Parseval frame. If the sum in the middle of (1) is convergent in norm, the frame is called
standard.
If {x;}ies is a standard frame in a finitely or countably generated Hilbert A-module, it
has a unique operator S € End’ (H), where End’ (H) is the set of adjointable A-linear
maps on H, such that for every x € H,

X = Z(x, Sxi)xi = Z(x,x,-)Sxi.

iel iel
Moreover S is positive and invertible.

DEFINITION 2.3

Let H be a Hilbert A-module, and let v € H. We say that v is a basic element if e = (v, v)
is a minimal projection in A, i.e. eAe = Ce. A system {vy: A € A} of basic elements of



Frames and bases in tensor products 3

H is called orthonormal if (v, v,,) = O for all A # w. An orthonormal basis for H is an
orthonormal system which generates a dense submodule of H.

3. Main results

Let A and B be C*-algebras, E a Hilbert A-module and let F be a Hilbert B-module. We
take A ® B as the completion of A ®;; B with the spatial norm. Hence A ® B is a C*-
algebra and for every a € A, b € B we have |la ® b|| = ||a|| - ||b]|. The algebraic tensor
product E ®ag F is a pre-Hilbert A ® B-module with module action

@®b)(x ®y) =ax Q by (aeA,beB, xeE, yeF),
and A ® B-valued inner product

(X1 ® y1, 22 @ y2) = (x1, x2) ® (y1, y2)  (x1,x2 € E, y1, 2 € F).
We also know that for z = Y| x; ® y; in E ®qg F we have

(2,2) = ) _{xi, xj) ® (yi, ) = 0
iJ
and (z, z) = 0 if and only if z = 0. Just as in the case of ordinary pre-Hilbert space, we
can form the completion £ @ F of E ®g F, which is a Hilbert A ® B-module. It is
called the tensor product of E and F (see [16]). We note thatifa € AT and b € BT, then
a®bec(A® B)T. Plainly if a, b are hermitian elements of A and a > b, then for every
positive element x of B, we havea @ x > b ® x.

Lemma 3.1. Let {u;}ie; be a frame for E with frame bounds A and B, and let {v;}jcj be
a frame for F with frame bounds C and D. Then {u; @ vj}ie jey is a frame for E @ F
with frame bounds AC and BD. In particular, if {u;}ie; and {v;} jc; are tight or Parseval
frames, then so is {u; @ vj}icy, jeJ.

Proof. Letx € E and y € F. Then we have

Alx, x) < ) (g, x) < B(x, x), 2)
iel

Cly,y) < ) (3w, y) < Dy, y). (3)
jedJ

Therefore

A, x) ® (v, 3) < Y (%, uid(ui, x) ® (v, ¥)

< B{x,x) ® (y, ).
Now by (3), we have
AC(x, ) @ (y,¥) < DY (¢, ui){ui, X) @ (v, v,)(v;, ¥)
i

< B(x,x)® Y (v, v,){vj, )
J

< BD{x,x) ® (y, y).
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Consequently we have

AC®y,x®Y) <D Y (x®y,ui ®v;)(ui @), x @)
i

<BD(x®y,x®y).

From these inequalities it follows that forall z = ;| xx @ yk in E Qg F,

AC(z,z) < Z(Z, u; @ vj)(u; ®vj,z) < BD(z,2). 4
ij

Hence relation (4) holds forall zin E ® F. O

From Theorem 1 of [2] and the above lemma we have the following result.

Theorem 3.2. Let E be a Hilbert A-module and F be a Hilbert B-module. Let {u;}ict
and {v;}jey be orthonormal bases in E and F, respectively. Then {u; ® vj}ies jey is an
orthonormal basis for E Q F.

Proof. Tt is clear that each u; ® v; is a basic element of E ® F and {u; ® vj}iey, jes
is an orthonormal system in £ ® F. Now for each x € E and each y € F, we have

x =2 e x uiujandy =3, (y,v;)v;. Hence

X®y= ZZ(X(X)y,ui ®vj)ui @ vj.
iel jeJ

Similar to the above lemma we can show that for each z in £ ® F, we have z =
Dier Zjej(z, u; ® vj)u; ® v;. But Bakic and Guljas in Theorem 1 of [2] showed that
if W is a Hilbert C*-module over a C*-algebra A, and (vy)yca is an orthonormal sys-
tem in W, then (v))yea is an orthonormal basis for W if and only if for every w € W,
w = Y {(w, vy)vy. Now by using this fact we have the result. O

Let{u;}icr and {v;} ;c s be standard frames for E and F, respectively. So {u; ®v;}icr, jes
is a standard frame for £ ® F.

Let S, S" and S” be the frame operators of {u;}ics, {v;}jes and {u; ® vj}icr jes,
respectively. So S is A-linear and S’ is B-linear. Hence for every x € E and y € F, we
have x =}, (x, Su;j)ui, y = }_;(y, S'v;)v;. Therefore

X®y= E E (x, Sujyu; @ (y, S'vj)v;
i
= E E ((x, Sui) ® (y, S'v;))(u; @ vj)
i
= E E (x®y, Sui®S’vj)u,-®vj.
i

Now by the uniqueness of frame operator we have S”(u; ® v;) = Su; ® S'v;. Hence
S” = §®S’, which is abounded A ® B-linear, self-adjoint, positive and invertible operator
on E® F. We note that ||S”|| = IS ® S| < |IS]I.]S’]l. Now we summarize the above
results as follows:
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Theorem 3.3. Let {u;};e; and {vj};cj be standard frames in the Hilbert C*-modules
E and F, respectively. If S, S" and S" are the frame operators of {ui}ier, {v;}jes and
{u; @ vjlier, jes, respectively, then §" = S ® §'.

For the frame operator we prove the following result.

Lemma 3.4. If {x;}icy is a frame in Hilbert A-module X with frame operator S and Q €
End’, (X) is invertible, then { Qx;}ic; is a frame in X with frame operator o*1so-1.

Proof. Let {x;};cs be a frame of X with frame operator S. Then there exist constants A,
B > 0 such that for every x € X,

Alx, x) < DI, x)|* < Blx, x), (5)

and S~ lx = > i {x, xi)x;. Since Q is invertible and Q € End’ (X), then Q is a bounded
A-linear map with invertible adjoint Q*. So for every x € X, we have

1O* M7 - x| < 1Q*x| < 1Q*|| - Ix]. (6)
Since Q is A-linear, QS 'x = 3, (x, x;) Qx;.So QS 0*(0*'x) = 3, (0* " !x, Ox;)

Qx;, because

(x, x) = (0*0* 'x, x;) = (0*1x, Oxy).

Consequently, for every x € X,

0871 0*(x) =) (x, 0x;) Qxi. (7)

1

Now by using (5) and (6) we have
AQ* M7 (x, x) < A(Q*x, Q*x)
<Y HQ*x.x)I* < B(Q*x, 0*x) < B| Q*|*(x. x).
i
On the other hand, (Q*x, x;) = (x, Qx;), so {Qx;}ics is a frame for X and by (7),
0* 1501 = (0S~' 0*)~! is the frame operator of {Qx;}ie;]. O

Theorem 3.5. If Q € Endz (E) is an invertible A-linear map and {T;}icy is a frame in
E ® F with frame operator S, then {(Q* ® I)(T})}icy is a frame of E @ F with frame
operator (Q @ N~'S(Q* @ 1)~ .

Proof. Since Q € End’(E), Q ® I € End’(E ® F) with inverse 0! ® I. It is obvious
that Q ® I is A ® B-linear, adjointable, with adjoint Q* ® I. An easy calculation shows
that for every elementary tensor x ® y,

@ ® D @MI*=112x) @ ylII> = 12 - Iyl

<o IxI* - IyI> = 1e1? - lIx ® yII*.
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So O ® I is bounded, and therefore it can be extended to E ® F. Similarly for Q*_1 ®I.
Hence Q ® I is A ® B-linear, adjointable with adjoint Q* ® I, and as we mentioned in
the proof of Lemma 3.4, Q* is invertible and bounded. Hence for every T € E ® F, we
have

o*="=" 111 < 1@* @ DT| < |0l - IT]. (8)
Hence Q ® I € End2® g(E ® F). Now by the above lemma we have the result. O

Now we generalize some of the results in [15] to frame of subspaces. First we recall the
definition of frame of subspaces (for basic definitions and properties, see [4]).

DEFINITION 3.6

Let H be a separable Hilbert space and let {v;};<; be a sequence of weights, i.e., v; > o
foralli € I. A sequence {W;};¢c; of closed subspaces of H is a frame of subspaces with
respect to {v; };ey if there exist real numbers A, B > 0 such that for every x € H,

AllxII? <) v llrw, (011> < Blix|,
iel
where for eachi € I, my, is the orthogonal projection of H onto W;. Similar to frames, A
and B are called the frame bounds. 1f A = B = A, the frame of subspaces is A-tight and
it is a Parseval frame of subspacesif A = B = 1.

Let H and K be Hilbert spaces and let W, Z be closed subspaces of H and K, respec-
tively. Then my ® wz: H ®g K — W ® Z is a bounded linear map, and it can be extended
to a bounded linear map from H ® K into W ® Z. We also denote it by 7w ® mwz and
clearly it is surjective. Hence mw ® w7 is the orthogonal projection of H @ K onto W ® Z.

Theorem 3.7. Let {W;}icr be a frame of subspaces with respect to {u;}icy for H, with
frame bounds A, B, and let {Z;} jcj be a frame of subspaces with respect to {v;} jey for K
with frame bounds A’, B'. Then {W; ® Zj}ic1,jeJ is a frame of subspaces with respect to
{uivjlicr jes for H® K with frame bounds AA" and BB'. It is tight or Parseval if {W;};
and {Z ;} are tight or Parseval.

Proof. Let x ® y be an elementary tensor. Then Allx|? < Yier ul.2||7rW,. )% < B|x||?

and A'ly|2 = 3,0, vz, ()I? < Byl
A simple calculation shows that

AN Nx @ yI> <Y ) wivillaw ) - Iz, Ol
i

< BB'|Ix® y|*.
Hence

AN x @yl < Y uivilmw, (x) @ mz,(»)II° < BB |x ® y|*.
i,J

Therefore
AAx @ yI* < ulvilimw, @ 1z, (x ® y)|I* < BB'||lx ® y|. ©)
i,J
Consequently, forevery z = Y ;_; x; ® y in H ®ag K and every z in H ® K, the relation
(9) holds. Hence we have the result. O
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Now we try to generalize a known result of frames (Proposition 3.1 of [15]) to frames
of subspaces.

DEFINITION 3.8
Let {W;};c; be a frame of subspaces for H with respect to {v; };c;. Then the frame operator
Sw v for {W;};es and {v;};¢; is defined by
Swal0) =) vinw, ()., xeH
iel
COROLLARY 3.9

With the hypothesis in Theorem 3.7, if Sw ., and Sz, are frame operators for {W;}icr, {u;}
and {Z;}, {v;}, respectively, then Sy , ® Sz, is the frame operator for {W; @ Z}ier, jes
and {u;vjlier, jeJ.

Proof. Let x ® y be an elementary tensor. Therefore

SW,u ® SZ,U(-X Ry) = SW,u(x) ® SZ,v(y)

=Y wlrw, () ® Y vinz,(y)
i J

= Z Z ujvi Ty, @ mz,)(x ® y).
i

Now the uniqueness of frame operator implies that Sy, ® Sz, is the desired frame
operator. O

Remark 3.10. Let H and K be Hilbert spaces. A map T: H — K is antilinear (or
conjugate linear) if T(Ax + y) = AT (x) + T(y) forall A € C and x,y € H. By the
techniques in [8], H ® K is the set of anti-linear maps T: K — H with the norm |[.||
defined by

ITIl = sup{lTyl:y € K, |lyll = 1}.

So Wi ® Z; is the set of anti-linear maps 7: Z; — W; and therefore 7w, ® 7z, is the
map which assigns to every T € H ® K, the restriction of ww, o T to Z;,i.e. 7w, o T|Z;.

4. Resolution of the identity

In this section we present the notion of £2-resolution of the identity with lower resolution
bound in tensor product of Hilbert spaces (for more information see [4,9]).

DEFINITION 4.1

Let I be a countable index set and let H be a Hilbert space. Let {v;};c; be a family of
weights, i.e., for all i, v; > 0. Then a family of bounded operators {7;};c; on H is called
a 2-resolution of the identity with lower resolution bound with respect to {v;};c; on H if
there are positive real numbers C and D such that for all f € H,
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@) CIFIP < Xies v 2 ITH(OI* < DISIP,
(i) f =) ;c; Ti(f) (and the series converges unconditionally for every f € H).

The optimal values of C and D are called the bounds of the resolution of the identity.

PROPOSITION 4.2

Let {Tj}ic1 be a €3-resolution of the identity with lower resolution bound with respect to
{vilieron H,andlet{S;} ey bea 02 -resolution of the identity with lower resolution bound
with respectto {(u}jcy on K. Then {T; ® Sj}ier, jey isa 02-resolution of the identity with
lower resolution bound with respect to {viu}ics jej on H ® K.

Proof. Let f e H,g e K. Then f =), T;(f), g = Zje] S;(g), and consequently

Y TSHU®) =) Ti(f)® S;(g)
i,j iJj

=S n(Hed sie=res
i j

Since both the series f = ) ;.; Ti(f) and g = Zjej S;(g) are unconditionally con-
vergent, the above series is unconditionally convergent. So for every h € H ®, K and
consequently for every i € H ® K the above relation holds. Let C, D and C’, D’ be the
bounds of the resolutions {7;} and {S;}, respectively. Then for every f € H, g € K we
have

CC'lf @ gl = CCIfIP - lgl* < €Y v 2T (O - llgl?
i

<Y VIO Y u IS el

J

=Y 07U T @ SHf @ )
iJ

<DD'|f ® gl (10)

Now by using the fact that

n n n
(T ® ) (Z fi® gi) I>=IT (Z ﬁ-) (RN (Zg,-) I,
i=1 i=1 i=1
and | Y0, fi @ gl = 120, £ill> - 1220, gill>, we conclude that for every h =
>'_, fi ® gi and consequently for every h € H ® K the relation (10) holds. O
From the above proposition and Proposition 3.26 of [4] we have the following result.

COROLLARY 4.3

With the hypothesis in Corollary 3.9, if T; = ww,Sw,y; and S; = Tz, Sz,uj , then {v?u?Ti ®

Sitier,jes is a 02-resolution of the identity with lower resolution bound with respect to
{viujtier,jes on H @ K and forall z € H ® K,
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C’ 2 2.2 2 D D' 2
-5 pall sgzjviu,-u(n@s,)(z)n <oz oall’
iel je

5. Frame representation

Let H be a separable Hilbert space, and let G be a discrete countable abelian group. Let
m: G — B(H) be a unitary representation of G on H. If there is a vector v € H such that
{r(g)vlg € G}isaframe for H, then the representation r is called a frame representation.
Let G denote the dual group of G, i.e., the group of characters on G and let A be the
normalized Haar measure on G. Let 7 : G —> B(H) be a frame representation with
frame vector v. As we have in [1,13,17] there is a spectral measure E on G such that

(g) = /ég(é)dE(E)-

Since 7 is a frame representation, by using the results in §2 of [1] and the properties
of spectral measure there is a unitary operator U: H —> L*(F, A|F), where F is a
measurable subset of G with MA(F) > 0 and M| F is the restriction of Haar measure A to F'
such that U interwines the spectral measure on H and the canonical spectral measure on G.
The operator U is called the decomposition operator. Moreover 7 is unitarily equivalent
to the representation 0: G —> B(L*(F, A|F)) defined by o (g) = M, where M, is the
multiplication operator with symbol g. In fact, U*M,U = n(g).

We also note that if 8, is the analysis operator of H for frame vector v, then 8,7 (g) =
L6y, where Lg: £2(G) —> €*(G) is defined by (Lgx)(h) = x(g~'h) forall h € G.
In fact, if J is the range of 6,, then the representation 7w of G is unitarily equivalent to
p = Lg|J (see Lemma 3 of [1]). For more details see [1] or [13].

Let H and K be separable Hilbert spaces and let 7: G — B(H) and 0: G, — B(K)
be frame representations on H and K with frame vectors v € H and w € K, respectively.
Since G| and G are discrete countable abelian groups, their directsum G = G @ G, is a
discrete countable abelian group. Hence we can consider the representation 7 ® o: G —
B(H ® K) defined by

(T®o)g h)=nmg®ch, (g, h)e€G.

Since {(g)v: g € G1}isaframe for H and {o (h)w: h € G,}is aframe for K, by Lemma
3.1 and the definition of 7 ® o,

{m®o(g. MNww): (g h) e G ={mgv (chw: (g, h) € G}

is a frame for H ® K. So 7w Q@ o is a frame representation of H ® K with frame vector v @ w.
Moreover, if 6, and 6,, are the analysis operators of H and K for frame vectors v and w,
respectively, then 6, ® 6,, is the analysis operator of H ® K for frame vector v ® w. Hence
we have proved the following result.

Theorem 5.1. Let m: Gi — B(H) and o: Go — B(K) be frame representations with
frame vectors v and w, respectively. Then 1 @ o: G1 & Go — B(H ® K) is a frame
representation with frame vector v ® w. If 0, and 6,, are the analysis operators for frame
vectors v and w, respectively, then 6, ® 0y, is the analysis operator for v ® w. |

For the decomposition operators we have the following result.
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Theorem 5.2. With the hypothesis in Theorem 5.1, suppose that U: H — L*(E, A|E)
and V: K — L*(F, A|F) are the decomposition operators of w and o, respectively, then
UQV:H®K — L*(E® F, A x u|E ® F) is the decomposition operator of 1 @ o.

Proof. Itis clear that (G ® G2)" = G ® Gz IfU: H— L*E,A|E)and V: K —>
L2(F, u|F), whereG1 DE, G2 DF, thenGlean DE®FandUQ®V :HRK —
L*(E® F, » x u|E @ F), where A x pu is the product measure of A and p. We note that
forevery x € H, y € K, the function (U ® V)(x ® y) = Ux ® Vy defined on E & F by
Ux®@Vy)(,n) = Ux)().(Vy)(n) and since L*(E, ME)® L%(F, Al F) is isomorphic
toLZ(E@F A X u|E & F) we can take Ux®Vy € L2(E69F A X u|E @ F).Since G
and G, form an orthonormal basis of L2(Gl 2) and L2(G2 W), respectively (Corollary
4.26 of [8]), a simple calculation shows that

IUv® Vwl* = | xeer - Uv @ Vul?
=f |xE(c)Uv(;>|2dx-[ LxF () Vw(n|*du
G Gy

2 2 2 2
= llxeUvl” - lIxrVwll” = Uv]” - [Vw]]” < oo. o

COROLLARY 5.3

Let {m(g)vlgec, and {0 (h)w}heg, be frames for H and K with frame bounds Ay, By and
Az, By, respectively. Then {(m ® 0)(g, h) (V® W)} eeG,,heG, IS a frame with frame bounds
A1Ay and By B;.

Proof. First we note that for all x € H,

3w mgm) P / U@ UL Pdh = [Ux)U)2
g€G) geG
and
AlllxlI? < Y7 [, w(@)v)* < Billx|?, forallx € H.
g€l
Similarly
Arllyl* = ) [y o(mw)* < By|ly|?, forally e K.
heG,
Hence for every elementary tensor x ® y we have [|x ® y|| = ||lx||.||y|| and
DD ey @ ®c(h)vew)l?
g€G heG,

=[ / ) - U2 Jw) - (Vw2 d(h x )
G1 4Gy

= (U)W - [(Vy)(Vw)|?.

So we have the result. O
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‘We can also state similar results for Bessel vectors.

DEFINITION 5.4

Let m: G —> B(H) be a frame representation with frame vector v. We say v’ € H is a
Bessel vector for the frame representation if there exists C» > 0 such that for all x € H,

D e ()P < Callx|

geG

Lemma 5.5. Suppose w and o are frame representations on H and K with frame vectors v
and w, respectively. If v/ and w' are Bessel vectors for w and o, respectively, then v’ @ w’
is a Bessel vector form ® o.

Proof. By Theorem 5.1, 7 ® o is a frame representation with frame vector v ® w, and
since v" and w’ are Bessel vectors for 7 and o, respectively, there are constants C, and Cé
such that

> e @) < Callxl’, x € H,
gEGl

>y o) P < Glyl*, yeK.
hEGz

Hence for every elementary tensor x ® y we have

DD @y ®0(g. M ®@w))* < CCIx ® vl
gEélheéz

As we have in $ 4, the above relation holds for every z = )/, x; ® y; and so for every
z € H ® K. Therefore v ® w’ is a Bessel vector for 7 ® o. a
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