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Abstract. We study homogeneous quantum Lévy processes and fields with independent
additive increments over a noncommutative *-monoid. These are described by infinitely
divisible generating state functionals, invariant with respect to an endomorphic injec-
tive action of a symmetry semigroup. A strongly covariant GNS representation for the
conditionally positive logarithmic functionals of these states is constructed in the com-
plex Minkowski space in terms of canonical quadruples and isometric representations
on the underlying pre-Hilbert field space. This is of much use in constructing quantum
stochastic representations of homogeneous quantum Lévy fields on Itô monoids, which
is a natural algebraic way of defining dimension free, covariant quantum stochastic inte-
gration over a space-time indexing set.
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1. Introduction

The reconstruction theorem due to Kolmogorov is a celebrated result in the theory of
stochastic processes. It allows one to build versions of a stochastic process Zt : � �→ R

d in
the narrow sense from a consistent family of joint probabilities, called a stochastic process
in the wide sense, parametrised by t . There is a quantum multiparameter generalisation of
this theorem [1] allowing the construction of quantum stochastic processes and fields given
a projective homogeneous system of multikernel maps describing the process in the wide
sense. The reconstruction of stationary quantum weak Markov processes [4] and quantum
Lévy fields [2] parametrised by x ∈ R+ × R

d instead of t ∈ R+ are particular interesting
cases of this construction.

Our concern in this paper will be the quantum stochastic processes and fields having
independent increments in a weak differential sense, called wide quantum Lévy fields. No
assumption of stationary increments will be made, instead we will consider homogeneous
processes with respect to a given action of a symmetry semigroup in the field parameter
space X. Classical nonstationary Lévy processes are characterised by infinitely divisi-
ble probability distributions, giving convolution hemigroups [7] of probability measures
parametrised by the intervals � = [t0, t1) of R+. In the quantum setting, a commutative
convolution hemigroup of states can be defined by restricting the construction of [2] to one
dimensional fields (that is, two parameter processes indexed by intervals � = [t0, t1)).
There the coalgebra structure determining the convolution of states was implicitly defined
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as the commutative pointwise multiplication of generating state functionals on the non-
commutative monoid of a unital �-semigroup b, which will also be used here. However,
by enriching the enveloping semigroup algebra Cb of the �-monoid b with a noncommu-
tative coproduct one could use our results for general Lévy processes and homogeneous
fields as in the stationary, one-parameter case [8].

One can encode infinite divisibility without defining convolution explicitly by using
the necessary and sufficient exponential form of the characteristic functional, called the
generating state functional in the quantum case. This generating state functional is deter-
mined by its exponent, called the cumulant generating state functional. This can be any
Hermitian, absolutely continuous, conditionally positive state functional on b which has
unit u ∈ b in its kernel. The problem of reconstructing a quantum Lévy process in
the narrow sense is then reduced to finding a representation of the cumulant generating
state and exponentiating it in some sense. This exponentiation is defined, similarly to
the noncommutative convolution, by a variety of independences (Boolean, tensor, mono-
tone and so on) which all coincide with the usual exponential in the weak sense for
the commutative coalgebra structure implicit here. For non-commutative convolutions,
this will result in the noncommutative exponentiation depending on the choice of inde-
pendence, as in [6]. Regardless, in all cases the representation of the exponent is the
same.

Here we present the first step by constructing ‘differential’ type representations asso-
ciated with conditionally positive functionals b → C depending covariantly on the
field parameter x ∈ X with respect to a semigroup of symmetries acting both on X

and b. Later work will consider the exponentiation mentioned above, giving stochas-
tic integral representations of covariant infinitely divisible positive definite functionals.
Covariant quantum dynamical semigroups are an example of the noncommutative exten-
sion of this, and their representations have been studied in [5]. Our main interest is
when b is obtained by a unitization of a noncommutative Itô algebra a as a parame-
terising algebra for the quantum stochastic differentials of a quantum Lévy process as
operator-valued processes with independent increments in a quite general noncommutative
sense.

2. Representations of homogeneous conditionally positive functionals
on �-semigroups

Let (X, F, µ) be a measurable space X with a σ -algebra F and a positive σ -finite atomless
measure µ: F � � �→ µ�, µdx ≡ dx := dµ(x), and let b be a semigroup with involution

b �→ b�, (a · c)� = c� · a�,

and neutral element (unit) u = u�, u · b = b = b · u for any b ∈ b. Typically b will be a
unitization of a noncommutative Itô �-algebra a, in which case

a · c = a + c + ac.

if u is identified with zero, or simply write a · c = ac if a is realised as a �-subalgebra of
a unital algebra by taking u = 1. However in what follows one can take any group with
u = 1 and b� = b−1 or any �-submonoid of an operator algebra B, a unit ball of a unital
C∗-algebra say, or even a filter (i.e. a submonoid) of an idempotent, Boolean say, algebra
B with trivial involution b� = b.
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Denote by m the monoid of integrable step-maps g: X → b, that is, b-valued functions
x �→ g(x) having countable images g(X) = {g(x): x ∈ X} ⊆ b and integrable preimage
�(b) = {x ∈ X: g(x) = b} ∈ F in the sense µ�(b) < ∞ for all b ∈ b except b = u.
We define on m an inductive structure of a �-monoid with pointwise defined operations
g�(x) = g(x)�, (f · h)(x) = f (x) · h(x) and unit e(x) = u for all x ∈ X, considering
m as the union ∪m� of subsemigroups m� of functions g ∈ m having integrable
supports

supp g = {x ∈ X: g(x) 
= u}

in a � ∈ F with µ� < ∞.
It is convenient to describe the �-monoid b by means of a single Hermitian operation

a � c = a · c�, satisfying the relations

b � u = b, u � (u � b) = b ∀b ∈ b

defining u = u� as right unit for the composition �, b� as u � b, and

u � ((c � b) � a) = a � ((u � b) � c)

corresponding to (a · c�)� = (a � c)� = c � a = c · a� and associativity of the semigroup
operation a · c. This allows us to define both the product and involution in a �-monoid
m by a single Hermitian binary operation f � h = g, g(x) = f (x) � h(x) with left unit
e ∈ m which recovers the involution by g�(x) = e � g and the associative product by
f · h = f � (e � h) for all f, h ∈ m.

We introduce a semigroup S, called the symmetry semigroup, which has a measurable
action on X given by injections x �→ sx, and denote for each x ∈ sX its preimage s−1x

which is the unique element xs ∈ X such that sxs = x. The measure µ is assumed
invariant under this action in the sense that µ�s = µ� for each s ∈ S and any measurable
� ⊆ sX with �s = s−1�. We admit also an action b �→ bs of S on b determined by a
representation of S in the semigroup of unital injective �-endomorphisms θs : b → b, so
that θs(u) = u, θs(a � b) = θs(a) � θs(b), and therefore

(a · c)s = as · cs, bs� = b�s, us = u ∀a, b, c ∈ θs(b)

with respect to the inverse action b �→ θ−1
s (b) ≡ bs of each θs on the �-submonoid bs =

θs(b). These actions induce a representation of S on m by the injective �-endomorphisms
g �→ gs ,

gs(x) =
{

g(xs)s, x ∈ sX

u, x /∈ sX
,

obviously having the property that for any s ∈ S and f, g ∈ m there exist unique fs, gs ∈
ms such that

(fs � gs)
s(x) := (fs(sx) � gs(sx))s = (f � g)(x)

for all x ∈ X. Here we denoted by ms the �-submonoid of m consisting of functions g

such that g(x) ∈ bs if x ∈ sX and g(x) = u if x /∈ sX, of which gs is a member.
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We say that a complex functional ϕ on m is a generating state functional over the monoid
m (briefly, a state over m), if the mapping ϕ: m → C satisfies the normalisation condition
ϕ(e) = 1 and positive definiteness∑

f,h∈m

κf ϕ(f � h)κ∗
h ≥ 0, ∀κg ∈ C: |supp κ| < ∞, (2.1)

where | · | denotes the cardinality of the set supp κ = {g ∈ m: κg 
= 0}. Every such function
is lifted to a positive normalised linear functional on the semigroup enveloping algebra
B = Cb. The state ϕ is called S-homogeneous if ϕ(gs) = ϕ(g) for all s ∈ S and g ∈ m.

Following [2] we introduce on m a commutative and associative partial operation f 

h := f ·h for any functions f, h ∈ m with disjoint supports supp f ∩supp h = ∅. Thus the
defined map m� × m�′ → m� 
 m�′ for any measurable disjoint �, �′ ∈ F is obviously
lifted to the tensor product Cm� ⊗ Cm�′ of the enveloping semigroup algebras of the
�-monoids m� and m�′ . The operation 
 is well defined even for an infinite countable
family {gn}, gn ∈ m with mutually disjoint supports �n = supp gn, by 
gn(x) = gm(x)

for all x ∈ supp gm and any m, otherwise 
gn(x) = u if x /∈ ∑
�n. Taking any g ∈ m

and the partition supp g = ∑
�n into the co-images �n = �(bn) where bn = g(x) for

any x ∈ �n, we see that any function g ∈ m can be written as 
gn, where gn = (bn)�n ,
the bn-valued indicator on �n. The b-valued indicator of the subset � ⊆ X is defined in
the usual way: b�(x) = b for all x ∈ � and b�(x) = u for x /∈ �.

We call a state ϕ over m chaotic if it satisfies the σ -multiplicativity condition

ϕ

( ∞⊔
n=1

gn

)
=

∞∏
n=1

ϕ(gn),

where
∏∞

n=1 ϕ(gn) = limN→∞
∏N

n=1 ϕ(gn) for any functions gn ∈ m with pairwise
disjoint supports: supp gn ∩ supp gm = ∅ for all n 
= m. This condition is obviously
fulfilled for ϕ of the exponential form ϕ(g) = eλ(g) with

λ(g) =
∫

l(x, g)dx, l(x, g) = lx(g(x)), (2.2)

which corresponds to absolute continuity (for all � ∈ F we have µ� = 0 ⇒ λ�(b) = 0)
of the σ -additive measure λ�(b) := λ(b�) for each b ∈ b.

The family ϕ�: b �→ C defined by any chaotic state ϕ as ϕ�(b) = ϕ(b�) is called
infinitely divisible in the sense of the equality ϕ�(b) = ∏

ϕ�l
(b) which also holds in the

limit of any integral sum sequence given by the decomposition � = 	�i , µ�i
↘0 since

ϕ�i
(b) → 1 for any b ∈ b. The function ϕ�: b → C given by

ϕ�(b) = exp

{∫
�

lx(b)dx

}
, (2.3)

is clearly infinitely divisible in this sense.
Note that if the Radon–Nikodym derivative lx(b) = dλ(b)/dx of the absolutely contin-

uous measure dλ(b) = λdx(b) does not depend on x, the states ϕ�(b) = el(b)µ� ≡ ϕµ�(b)

form a continuous Abelian semigroup

{ϕt : t ∈ R
+}, ϕ0(b) = 1, [ϕr · ϕs](b) = ϕr+s(b)

with respect to the pointwise multiplication of ϕt .
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The λ� introduced above is called the cumulant generating state functional and in
general these are defined as any function b �→ λ�(b) which is conditionally positive
definite ∑

a,c∈b

κaλ�(a � c)κ∗
c ≥ 0, ∀κ: |supp κ| < ∞,

∑
b∈b

κb = 0, (2.4)

such that λ�(u) = 0, λ�(b�) = λ�(b)∗ for any b ∈ b. They are called S-homogeneous
if λ(gs) = λ(g) for all g ∈ m, which implies the S-homogeneity of the generating state
functional ϕ.

The following theorem shows that, along with some differentiability conditions, the
properties of a cumulant generating state functional are necessary and sufficient conditions
for eλ� to be an S-homogeneous infinitely divisible state. They are also necessary and
sufficient to allow the construction of a covariant Minkowski space dilation. We assume
that X admits a net of decompositions of the Vitali system in which µ� ↘ 0, x ∈ �, as
� ↘ {x}.
Theorem 1. Consider an arbitrary functional ϕ�: b �→ C, defined for any set � ∈ F
of finite measure µ� < ∞ as ϕ(b�) by an S-homogeneous functional ϕ: m → C. The
following are equivalent:

(i) ϕ� is an infinitely divisible state over b, and is an absolutely continuous multiplicative
measure in the sense that µ� = 0 ⇒ ϕ�(b) = 1 for all measurable � ∈ F, b ∈ b,

and the limit

lx(b) = lim
�↓{x}

1

µ�

(ϕ�(b) − 1) (2.5)

exists in the Lebesgue–Vitali sense.
(ii) The functional λ(g) = ln ϕ(g) is defined, is absolutely continuous in the sense that

µ� = 0 ⇒ λ�(b) = 0 for all measurable � ∈ F, b ∈ b, and is an S-homogeneous
cumulant generating functional with S-covariant Radon–Nikodym derivative

lx(b) = lim
�↓{x}

λ�(b)

µ�

= lsx(bs)

for each b ∈ b.
(iii) There exists:

(1) an S-homogeneous integral �-functional λ(g) = ∫
l(x, g) dx = ln ϕ(g) which

has complex S-covariant density l(x, g) = lx(g(x)) = l(sx, gs) such that
l(x, g)∗ = l(x, g�) and whose values l(x, g)= 0 for all g(x) = u and l(x, b�) =
lx(b) with x ∈ � are independent of �;

(2) a vector map k: g �→ ∫ ⊕
k(x, g) dx into a pre-Hilbert subspace K ⊆ ∫ ⊕

Kxdx

of square integrable functions x �→ k(x, g) = kx(g(x)) ∈ Kx which are
S-covariant

k(sx, gs) = ksx(g(x)s) = Vsk(x, g)

in terms of an isometric representation s �→ Vs of S with respect to the scalar
products 〈k|k〉 ≡ ∫

k∗
xkxdx = ‖Vsk‖2. It has values k(x, b�) = kx(b) ∈ Kx



482 V P Belavkin and L Gregory

independent of � � x and k(x, b�) = 0 if x /∈ � such that k(x, g) = 0 if
g(x) = u. The map k, together with the adjoint functions k�(x, g) = k(x, g�)∗
as the linear functionals k�(g) = ∫ ⊕

k�(x, g)dx ∈ K∗, satisfies the condition

k�(f )k(h) = λ(f · h) − λ(f ) − λ(h), ∀f, h ∈ m; (2.6)

(3) a unital ∗-representation j : g �→ G := ∫ ⊕
j (x, g)dx,

j (g · h) = j (g)j (h), j (g�) = j (g)∗, j (e) = I,

of the �-monoid m in the ∗-algebra of decomposable operators G: K � k �→∫ ⊕
j (x, g)k(x)dx with j (x, b�) = jx(b) independent of � � x and j (x, b�) =

Ix if x /∈ �, which are S-covariant in the sense Vsj (g) = j (gs)Vs , where
j (x, gs) = jx(g(xs)s), x ∈ sX, otherwise j (x, gs) = Ix , satisfy the cocycle
property

j (g)k(h) = k(g · h) − k(g), k�(f )j (g) = k�(f · g) − k�(g) (2.7)

for all f, g, h ∈ m, and are continuous in K with respect to the polynorm

‖k‖h =
(∫

‖j (x, h)k(x)‖2
xdx

)1/2

, h ∈ m. (2.8)

(iv) For each integrable � ∈ F there exists a unital †-representation j�: b → b(K�),

j�(a · b) = j�(a)j�(b), j�(b�) = j�(b)†, j�(u) = I�

in the algebra b(K�) of linear triangular operators L = j�(b). The integrals

λ�(b) =
∫

�

lx(b)dx = ln ϕ�(b), j�(b) =
∫ ⊕

�

jx(b)dx,

which correspond to σ -additivity and absolute continuity with respect to the
S-homogeneous measure µ, appear in the explicit form of j� given by

j�(b) =




1 k�
�(b) λ�(b)

0 j�(b) k�(b)

0 0 1


 , j�(b)† =




1 k�(b)∗ λ�(b�)

0 j�(b)∗ k�(b�)

0 0 1




on the pseudo-Hilbert space K� = C ⊕ K� ⊕ C defined by a pre-Hilbert space
K� ⊆ ∫ ⊕

�
Kxdx with respect to the Minkowski scalar product

(k|k)� := k∗
−k+ +

∫
�

〈kx |kx〉 + k∗
+k− ≡ 〈k†

�, k�〉. (2.9)

L† is the pseudo-Hermitian adjoint (k|L†k) = (Lk|k), k ∈ K� and λ�(b) =
〈e†, j�(b)e〉 with respect to the row-vector e† = (1, 0, 0) ∈ K

†
� of zero pseudo-norm

〈e†, e〉� = 0. The family of representations {j�} is S-covariant in the sense that there
exists a representation Vs of S in the pseudo-isometric operators K� → Ks� such
that Vsj�(b) = js�(bs)Vs for any b ∈ b and integrable � ⊆ X. The pseudo-isometry
Vs is block-diagonal with [Vs]−− = [Vs]++ = 1, [Vs]◦◦ = Vs for some direct integral
pseudo-isometry Vs : K� �→ Ks�, with all other components zero.
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We will prove that (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) ⇒ (iv) following [2] (see also [3]), adding
homogeneity and covariance.
(iv) ⇒ (iii). First let us define the density jx(b) = lim�↓{x} j�(b)

µ�
with the limit understood

in the appropriate sense for each of the blocks. Then jx(b) is a unital †-representation
of b in b(Kx). Thus we can define j(x, g) = jx(g(x)) which has direct integral j(g) =∫ ⊕
X

j(x, g)dx. Furthermore, S-homogeneity of µ gives the covariance

Vsjx(b) = lim
�↓{x}

Vsj�(b)

µ�

= lim
�↓{x}

js�(bs)Vs

µ�

= lim
�↓{sx}

j�(bs)Vs

µ�

= jsx(bs)Vs .

Each of the components λ(g), k(g) and j (g) of j(g) is the direct integral of the component
densities lx(g(x)) = l(x, g), kx(g(x)) = k(x, g), jx(g(x)) = j (x, g) existing due to the
σ -additivity and absolute continuity assumed in (iv). We can now use the properties of jx
to verify those required by (iii).

Starting with λ(g) = ∫ ⊕
X

l(x, g)dx we have l(x, g) = 〈e†, j(x, g)e〉 so that l(x, g�) =
〈e†, j(x, g�)e〉 = 〈e†, j(x, g)†e〉 = l(x, g)∗ and therefore l(x, e) = 〈e†, j(x, u)e〉 = 0.
Hence l(x, g) = lx(u) = 0 for any x in the kernel of g, and also l(x, b�) is independent
of � � x. The covariance of jx gives

l(x, g) = 〈e†, jx(g)e〉 = 〈e†, Vsjsx(g(x)s)Vse〉 = l(sx, gs)

as required. The S-homogeneity λ(g) = λ(gs) follows straight away by integrating and
noting that l(x, gs) = 0 for x /∈ sX.

The vector map density k(x, g) is given by the density [jx(g(x))]◦+. Due to the unitality
of jx , k(x, g(x)) = 0 for x in the kernel of g, and clearly k(x, b�) is independent of � � x.
To prove condition (2.6) consider

λ(f · g) = 〈e†, j(f · g)e〉 = λ(g) + k�(f )k(g) + λ(f ). (2.10)

This also shows that ‖k‖2 = k�(f )k(g) < ∞ so that k(x, g) is square integrable as
required. Covariance again follows trivially by taking the appropriate component of the
covariance for jx :

Vsk(x, g) = [Vsj(x, g)]◦+ = [j(sx, gs)Vs]◦+ = k(sx, gs).

Extending Vs to K by its direct integral Vsk(g) = ∫ ⊕
X

Vsk(x, g)dx also gives a linear
pseudo-isometry.

That the decomposable linear operator j (g) = [j(g)]◦◦ on K is a unital ∗-representation
of m follows from the upper triangular form of j(g) and its †-multiplicativity and unitality.
The cocycle property (2.7) is seen straightforwardly by calculating k(g ·h) = [j(g)j(h)]◦+.
Completing K with respect to the seminorms (2.8) obviously makes j continuous. Covari-
ance of j again follows simply by taking the appropriate component of the covariance
condition for j.

(iii) ⇒ (ii). It is immediate that the absolutely continuous measure λ�(b) satisfies the
conditions λ�(b�) = λ�(b)∗ and λ�(u) = 0, since the functional lx satisfies the respec-
tive conditions. Also the condition lx(u) = 0 along with the integral form of λ� ensure its
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σ -additivity on disjoint integrable subsets of X, and so is the cumulant generating func-
tional of an infinitely divisible state if it is conditionally positive definite. The conditional
positivity (2.4) follows from (2.6) and the positive definiteness of the inner product
on K: ∑

f,g∈m

κf λ(f � g)κ∗
g =

∑
f,g∈m

κf (λ(g�) + λ(f ) + k�(f )k(g�))κ∗
g

=
∑

f,g∈m

κf k�(f )k(g�)κ∗
g ≥ 0

for
∑

f κf = 0. S-homogeneity of λ(g) and lx are trivial.
(ii) ⇒ (i). If the function λ�(b) is a (complex) absolutely continuous measure, then

ϕ�(b) = exp{λ�(b)} has the property ϕ
�l
(b) = ∏

ϕ�l
(b) of infinite divisibility. More-

over the limit (2.5) exists, and by virtue of ϕ�(b) → 1 as � ↓ {x} it coincides with the
Radon–Nikodým derivative lx(b) = d ln ϕ(b)/dx as the limit of the quotient λ�(b)/µ�

over a net of subsets � � x of the system of Vitali decompositions of the measurable space
X. S-homogeneity of ϕ�(b) is trivial. For any integrable � the function b �→ ϕ�(b) can be
shown to be positive in the sense of (2.1) by considering the conditioned complex function
b �→ κ◦

b defined as κ◦
u = κu −∑

b∈b κb, κ◦
b = κb for all b 
= u ∈ b for an arbitrary finitely

supported complex function b �→ κb. Hence
∑

b∈b κ◦
b = 0 so by conditional positivity

0 ≤
∑
a,c∈b

κ◦
aλ�(a � c)κ◦∗

c =
∑
a,c∈b

κa(λ�(a � c) − λ�(a) − λ�(c�))κ∗
c ,

where we have taken into account the fact that λ�(u) = 0. Since the exponential of any
positive-definite kernel is a positive definite kernel, we have for any �,∑

a,c∈b

κ∗
a exp{λ�(a � c)}κc

=
∑
a,c∈b

κa∗
� exp{λ�(a � c) − λ�(a) − λ�(c�)}κc

� ≥ 0,

where κb
� = κb exp{λ�(b)} and we have used λ�(b�) = λ�(b)∗.

(i) ⇒ (iv). Since ϕ� is an infinitely divisible state on b and ϕ�(b) → 1 for all b as
µ� → 0, the limit lx(b) is defined as the logarithmic derivative µ−1

dx ln ϕdx(b) of the
measure λ�(b) = ln ϕ�(b) in the Radon–Nikodym sense. Consequently, the function
x �→ lx(b) is integrable and almost everywhere satisfies the conditions lx(a�c)∗ = lx(c�a),
lx(u) = 0 and∑

b∈b

κb = 0 ⇒ (κ ′|κ)x :=
∑
a,c∈b

κalx(a � c)κ∗
c ≥ 0

for all κ such that |supp κ| < ∞, which can easily be verified directly for the dif-
ference derivative l�(b) = (ϕ�(b) − 1)/µ� passing to the limit � ↓ {x}. In addition∫
�

lx(b)dx = ln ϕ�(b) = λ�(b) by absolute continuity, and since (b�)s(x) = (bs�(x))s ,
S-homogeneity becomes ϕs�(b) = ϕ�(bs) for � ⊂ sX, giving lsx(b) = lx(b

s) for x ∈ sX

in the limit.
We consider the space B of complex functions κ = (κb)b∈b on b with finite supports

{b ∈ b: κb 
= 0} as a unital �-algebra with respect to the product κ ′ · κ defined as κ ′ � κ�

by the Hermitian convolution
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(κ ′ � κ)b =
∑

a�c=b

κ ′
aκ

∗
c , δu � κ = κ�, κ � δu = κ

with right identity δu. Here δa = (δa,b)b∈b is the Kronecker delta and it defines a
�-representation a �→ δa of the monoid b in B,

δa � δc = δa�c, δu � δb = δb, δb � δu = δb�,

with respect to the involution κ� = (κ∗
b�)b∈b. The linear subspace A ⊂ B of distributions

κ such that the sum κ− := ∑
b∈b κb equals zero, is a �-ideal since∑

b∈b

(κ ′ � κ)b =
∑
b∈b

∑
a�c=b

κ ′
aκ

∗
c =

∑
a∈b

κ ′
a

∑
c∈b

κ∗
c = 0.

Let us equip B for every x ∈ X with the Hermitian form (κ ′|κ)x of the kernel lx(a � c)

which is positive on A and can be written in terms of the kernel 〈δa, δ
�
c 〉◦x = lx(a � c) −

lx(a) − lx(c
�) as

(κ ′|κ)x = κ ′
−κ∗

+ + 〈κ ′, κ�〉◦x + κ ′
+κ∗

−,

where κx+ := ∑
b κblx(b). We notice that the Hermitian form

〈κ ′�|κ�〉◦x :=
∑
a.c∈b

κ ′
a〈δa, δc〉◦xκ�

c ≡ 〈κ ′, κ�〉◦x

is non-negative if κ− = 0 or κ ′− = 0 as 〈κ, κ�〉◦x = ∑
κa〈δa, δ

�
c 〉◦xκ∗

c ≥ 0, coinciding
with (κ ′|κ)x . Since (κ ′|κ)x = ∑

b(κ
′ � κ)blx(b), the form (κ ′|κ)x has right associativity

property

(κ ′ · κ|κ)x = (κ ′|κ � κ)x = (κ ′|κ · κ�)x,

for all κ, κ ′ ∈ B, and therefore its kernel Rx = {κ: (κ ′|κ)x = 0, ∀κ ′} is the right ideal

Rx = {κ ′ ∈ B: (κ ′ · κ|κ)x = 0, ∀κ ∈ B}
belonging to A. We factorise B by this right ideal putting κ ≈ 0 if κ ∈ R�

x := {κ�: κ ∈ Rx}
and denoting the equivalence classes of the left factor-space Kx = B/R�

x as the ket-
vectors |κ) = {κ ′: κ ′ − κ� ∈ R�

x}. The condition κ ∈ Rx means in particular that
κ−
x := (δu|κ)x = 0, and therefore

(κ|κ)x =
∑
a,c∈b

κa〈δa, δ
�
c 〉◦xκ∗

c = 〈κ◦|κ◦〉x = 0,

where κ◦ = (κ◦
b )b∈b denotes an element of A obtained as κ◦

b = κ�
b for all b 
= u and κ◦

u =
κ�
u −∑

b∈b κ�
b such that 〈κ◦|κ◦〉x = 〈κ, κ�〉◦x . Therefore it follows also that κ+ := ∑

κ�
b

is also zero for any κ ∈ Rx since

0 = (κ ′|κ)x = κ ′
−κx∗

+ + 〈κ ′, κ�〉◦x + κ ′x
+ κ∗

− = κ∗
− = κ+

for any κ ′ ∈ B with κ ′x+ = 1 by virtue of κx∗+ = κ− = 0 and also due to the Schwartz
inequality (κ ′|κ)x = 〈κ ′, κ�〉◦x = 0. This allows us to represent the left equivalence classes
|κ)x by the columns k = [kµ] with k∓ = κ∓ and k◦ = |κ◦〉x in the Euclidean component
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Kx ⊂ Kx as the subspace of the left equivalence classes |κ◦〉x = |κ◦)x of the elements
κ◦ = (κb − δu,bκ−)b∈b ∈ A such that κ�◦ = κ◦. These columns are pseudo-adjoint to
the rows kkk = (k−, k◦, k+) as the right equivalence classes x(κ := |κ)

†
x ∈ B/Rx with

k± = κ± and k◦ = x(κ◦ defining the indefinite product in terms of the canonical pairing

k·k· = k−k− + 〈k◦, k◦〉x + k+k+ = (kkk|kkk†)x,

where k◦ = k∗◦ ∈ Kx , k± = k∗∓ ∈ C with respect to the Euclidean scalar product
〈k◦, k◦〉x = 〈k∗◦ |k◦〉x of the Euclidean space Kx = {k◦ = |κ◦〉x : κ◦ ∈ A}, and

κx∗
+ =

∑
b∈b

lx(b
�)κb = κ−

x , κ∗
− =

∑
b∈b

κ∗
b = κ+.

We notice that the representation δ·: b � b �→ δb is Hermitian:

(κ · δb|κ)x =
∑
b∈b

l(b)(κ · δb � κ)b = (κ|κ · δb�)x,

and that it is well defined as right representation on B/Rx (or left representation on B/R�
x)

since κ · δb ∈ Rx if κ ∈ Rx :

(κ|κ)x = 0, ∀κ ∈ B ⇒ (κ · δb|κ)x = (κ|κ � δb)x = 0, ∀κ ∈ B.

This allows us to define for each b ∈ b an operator x(κjx(b) = x(κ · δb such that
jx(b�) = jx(b)† with the componentwise action

(κ · δb)− = κ−, (κ · δb)◦ = κ−(δb − δu) + κ◦ · δb,

(κ · δb)
x
+ = κ−lx(b) + (κ◦|δb� − δu)x + κx

+,

given as the right multiplications kkk �→ kkkL, kkk �→ kkkL† of the triangular matrices L ≡ jx(b),
L† ≡ jx(b�),

L =




1 j−◦ (x, b) j−
+ (x, b)

0 j◦◦ (x, b) j◦+(x, b)

0 0 1


 , L† =




1 j◦+(x, b)∗ j−
+ (x, b)∗

0 j◦◦ (x, b)∗ j−◦ (x, b)∗

0 0 1




by the rows kkk = (k−, k◦, k+) ∈ K
†
x (or as the left multiplications Lk, L†k by columns

k ∈ Kx). Here

j−
+ (x, b) = lx(b), x(κ◦j◦

◦ (x, b) = x(κ◦ · δb = x(κ◦jx(b),

j◦
+(x, b�) = δ�

b〉x = kx(b
�) = k�

x(b)∗ = x〈δ�
b|∗ = j−

◦ (x, b)∗,

where δ�
b〉x = |δb−δu)x and L

�µ
−ν = Lν∗−µ is pseudo-Euclidean conjugation of the triangular

matrix L = [Lµ
ν ] corresponding to the map kkk �→ kkk† into the adjoint columns k = [kµ]

with the components kµ = k∗−µ given by the pseudo-metric tensor gµν = δ
µ
−ν = gµν :


b−
− b−◦ b−

+
0 b◦◦ b◦+
0 0 b+

+




�

=




0 0 1

0 I 0

1 0 0






b−
− b−◦ b−

+
0 b◦◦ b◦+
0 0 b+

+




∗


0 0 1

0 I 0

1 0 0




=




b+∗
+ b◦∗+ b−∗

+
0 b◦∗◦ b−∗◦
0 0 b−∗◦


 .
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Constructing the direct integral space K = ∫ ⊕
X

Kxdx allows the definition of j�(b) as

the block-wise direct integral
∫ ⊕
�

jx(b)dx. Thus we can write the constructed canonical
†-representations j�(b) = [jµ

ν (�, b)] of the monoid b in the pseudo-Euclidean space K

of columns k = [kµ] in terms of the usual matrix multiplication


1 k�
�(a) λ�(a)

0 j�(a) k�(a)

0 0 1






1 k�
�(b) λ�(b)

0 j�(b) k�(b)

0 0 1




=




1 k�
�(b) + k�

�(a)j�(b) λ�(b) + k�
�(a)k�(b) + λ�(a)

0 j�(a)j�(b) j�(a)k�(b) + k�(a)

0 0 1


 .

Clearly this realises the conditionally positive function λ�(b) as the value of the vector
form

e†j�(b)e = eµjµ
ν (�, b)eν = j−

+ (�, b) = λ�(b)

with the column e = [δµ
+] = e† the adjoint to the row e = (1, 0, 0) of zero pseudonorm

e†e = eµeµ = 0 for each x. A representation Vs of the symmetry semigroup S is defined
on B as

(Vsκ)b =
∑
a∈b

κaδas ,b =
{

κbs , if b ∈ bs

0, if b /∈ bs

.

This map is (x, sx)-isometric on B in the sense that

(Vsκ
′|Vsκ)sx =

∑
a,b∈b

κ ′
alsx(as � bs)κ

∗
b =

∑
a,b∈b

κ ′
alx(a � b)κ∗

b = (κ ′|κ)x.

The pseudo-adjoint V �
s is well defined as a surjection from Bs = Cbs onto B so that every

κ ′ ∈ B can be written as V �
s κ ′′ for some κ ′′ ∈ Bs . Hence Vs maps the ideals Rx and R�

x

to Rsx and R�
sx respectively since (κ ′|Vsκ)sx = (κ ′′|κ)x = 0 for κ ∈ Rx or R�

x . This
gives for each x a well defined linear isometry Vs : B/R�

x �→ B/R�
sx , denoted by Vs , and

acting on columns k given by the components

(Vsk)−x = (Vsκ)−x = (δu|Vsκ)sx =
∑

b

lsx(b
�
s )κ

∗
b = κ−

x ,

(Vsk)◦ = (Vsκ)◦ = Vsκ
◦,

(Vsk)+ = (Vsκ)+ =
∑
b∈bs

κbs = κ+.

Hence we may write the action of the semigroup S on Kx as

Vs =




1 0 0

0 Vs 0

0 0 1


 ,
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and extend it to K� as the direct integral. Clearly it leaves e invariant. Finally, we have for
any κ ∈ B,

(δbs |Vsκ)sx = (δb|κ)x, Vsδb� = δb�
s
, Vs(δb · κ) = δbs · Vsκ

where the first equality follows from the covariance of lx , the second simply from the
definition of Vs , and the third from the surjectivity of b �→ bs . This shows that Vsjx(b) =
jsx(bs)Vs and hence the required relation for integrable subsets �.
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