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Abstract. The aim here is to continue the investigation in [1] of Jacobians of a Klein
surface and also to correct an error in [1].
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1. Introduction

This note is a continuation of the study of the Jacobian of nonorientable, compact Klein
surfaces that we started in [1]. To explain our results we need to recall the set-up in [1].
Let Y be a nonorientable, connected compact Klein surface (the changes of coordinates
in Y are either holomorphic or anti-holomorphic), and let X be the canonical double
cover of Y given by local orientations. It is well-known that X is a Riemann surface. The
nontrivial deck transformation, which we will denote by σ , for covering X → Y is an
anti-holomorphic involution on X with Y as the quotient.

The Jacobian of X was considered in [1] from three different points of view: (1) as the
dual of the space of holomorphic 1-forms, (2) as the divisor class group, and (3) as the
group of isomorphism classes of degree zero line bundles. In each case, the involution σ

induces an involution in the corresponding description of the Jacobian. In Theorem 4.2
of [1] it was stated that the Jacobian of Y can be identified with the set of line bundles
L such that σ ∗L is holomorphically isomorphic to L. However, the proof of that result is
not correct. It was asserted in the proof that the isomorphism of L given by σ ∗α ◦ α can
be so chosen that it is an involution of the total space of L. In this note we show that the
isomorphism can be chosen to be of order four, and there may not be any isomorphism of
order two.

Let G denote the group of line bundles L over X such that σ ∗L is holomorphically
isomorphic to L. Let G0 ⊂ G be the subgroup defined by all L such that the isomorphism
of L with σ ∗L can be chosen to be an involution of the total space of L.

The correct version of Theorem 4.2 of [1] is as follows:

Theorem 2.5. The image of the homomorphism ρ in p. 147, eq. (3) of [1] coincides with
J 0(X) ∩ G0. If the genus of X is even, then the image of the homomorphism ρ (p. 147,
eq. (3) of [1]) coincides with J 0(X) ∩ G. If the genus of X is odd, then the image of ρ is a
subgroup of J 0(X) ∩ G of index two.

This theorem is proved in § 1. In §§ 2 and 3 we considered two other approaches to the
Jacobian mentioned above (dual space to the space of holomorphic forms and divisors)
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and proved this result in those settings. Thus we get three different (but clearly equivalent)
proofs of the theorem, which shows that one can consider any of these three ways of
describing the Jacobian of X to study the Jacobian of Y .

2. Real points of the Jacobian and real algebraic line bundles

Let X be a compact connected Riemann surface equipped with a fixed-point free anti-
holomorphic involution σ . So σ : X → X is a diffeomorphism with the property that
if J (X) ∈ C∞(X, End(T RX)) is the almost complex structure on X, then σ ∗J (X) =
−J (X). Note that this implies that σ is orientation reversing.

Let L be a holomorphic line bundle over X such that σ ∗L is holomorphically isomorphic
to L. We note that σ ∗L is a holomorphic line bundle (see § 4 of [1] for the details).

Take an isomorphism

α: L → σ ∗L . (1)

Therefore,

(σ ∗α) ◦ α: L → L (2)

is an automorphism of the holomorphic line bundle L. Indeed, we have

σ ∗α: σ ∗L → σ ∗σ ∗L = L .

We note that the holomorphic line bundle σ ∗σ ∗L is canonically identified with L.
Let c ∈ C \ {0} be the nonzero complex number such that

(σ ∗α) ◦ α = c · IdL , (3)

where (σ ∗α) ◦ α is the automorphism in (2).
We will show that c is actually a real number.
Let

M := L ⊗ σ ∗L

be the holomorphic line bundle over X. We note that

σ ∗M = σ ∗L ⊗ σ ∗σ ∗L = σ ∗L ⊗ L = M .

Let

τ : M → σ ∗M (4)

be the above isomorphism. It is easy to see that (σ ∗τ) ◦ τ is the identity automorphism of
the line bundle M .

Next we observe that the tensor product of two homomorphisms α⊗σ ∗α is an automor-
phism of the holomorphic line bundle M . Indeed, α sends the line bundle L to σ ∗L and

σ ∗α sends σ ∗L to σ ∗σ ∗L = L. Therefore, α ⊗σ ∗α sends the line bundle L⊗σ ∗L =: M

to itself.
Consequently,

α ⊗ σ ∗α = d · IdM , (5)

where d is a nonzero complex number.
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Let

δ := τ ◦ (α ⊗ σ ∗α): M → σ ∗M (6)

be the isomorphism, where τ is the isomorphism in (4) and α ⊗ σ ∗α is the automorphism
of M in (5).

We consider the automorphism

(σ ∗δ) ◦ δ: M → M ,

where δ is defined in (6). From (5) it follows immediately that

(σ ∗δ) ◦ δ = |d|2 · IdM .

On the other hand, from (3) it follows that

(σ ∗δ) ◦ δ = c2 · IdM .

Since c2 · IdM = (σ ∗δ) ◦ δ = |d|2 · IdM , we have c2 = |d|2. Consequently, c ∈ R,
where c is the scalar in (3).

As c ∈ R \ {0}, the isomorphism

α0 := α√|c| : L → σ ∗L

has the property that

(σ ∗α0) ◦ α0 = ±IdL ,

where α is the isomorphism in (1).
Therefore, we have proved the following lemma.

Lemma 2.1. Let L be a holomorphic line bundle over X such that the holomorphic line
bundle σ ∗L is isomorphic to L. Then there is an isomorphism

α: L → σ ∗L

such that σ ∗α ◦ α is either IdL or −IdL.

In the proof of Theorem 4.2 of [1] it was erroneously asserted that for any L as in
Lemma 2.1, there is always an isomorphism

α: L → σ ∗L .

such that σ ∗α ◦ α is IdL. In Lemma 2.3 we will see that this is not the case.

Remark 2.2. The pair (X , σ ) corresponds to a geometrically connected smooth projective
curve defined over R without any real points. A holomorphic line bundle L over X of
degree d with σ ∗L holomorphically isomorphic to L corresponds to a real point of the
Jacobian J d(X) of line bundles of degree d . If there is an isomorphism α: L → σ ∗L such
that σ ∗α ◦ α = IdL, then L corresponds to an algebraic line bundle defined over the real
algebraic curve.
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Let G denote the group of all holomorphic line bundles L over X such that σ ∗L is
holomorphically isomorphic to L. The group operation is given by tensor product. Let

G0 ⊂ G

be the subgroup consisting of all L ∈ G admitting an isomorphism

α: L → σ ∗L

such that (σ ∗α) ◦ α = IdL.
Using Lemma 2.1 we have a character

λ: G → Z/2Z (7)

defined by the following condition: any L ∈ G admits an isomorphism

α: L → σ ∗L

such that (σ ∗α) ◦ α = λ(L) · IdL after identifying Z/2Z with ±1. Note that for any
nonzero complex number z and any isomorphism α as above, we have (σ ∗zα) ◦ (zα) =
|z|2 · (σ ∗α) ◦ α. Using this it follows immediately that the above map λ is well-defined.

The kernel of the homomorphism λ in (7) coincides with the subgroup G0.

Lemma 2.3. The homomorphism λ defined in (7) is surjective.

Proof. Since the anti-holomorphic involution σ of X does not have any fixed points, there
exists a meromorphic function f on X such that

f · f ◦ σ = −1 (8)

(see [5] for the construction of f ). We note that f ◦ σ is also a holomorphic function over
X.

From (8) it follows that f is a nonconstant function. Let D0 (respectively, D1) be the
effective divisor on X defined by the zeros (respectively, poles) of f . From (8) it follows
that

σ(D0) = D1 . (9)

Let L = OX(D0) be the holomorphic line bundle over X defined by the divisor D0.
Similarly, let L′ = OX(D1) be the holomorphic line bundle defined by D1. From (9) it
follows that σ ∗L = L′.

The meromorphic function f defines an isomorphism of OX(D0) with OX(D1). Let α

be the isomorphism of L with σ ∗L = L′ given by f . From (8) it follows that (9σ ∗α)◦α =
−IdL. Therefore, the character λ in (7) is nontrivial. This completes the proof of the
lemma. �

The following lemma gives the parity of the degree of any line bundle L ∈ G over X

with λ(L) = −1.

Lemma 2.4. Let L ∈ G be a holomorphic line bundle over X such that L /∈ G0, i.e.,
λ(L) = −1. Then degree(L) ≡ genus(X) + 1 mod 2.
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Proof. Replacing L by the tensor product of L with the holomorphic line bundle OX(D),
where D is an effective divisor on X such that σ(D) = D and degree(D) is sufficiently
large, we may assume that H 1(X, L) = 0. Note that since σ is fixed-point free, the degree
of D is even.

Fix an isomorphism α: L → σ ∗L such that σ ∗α ◦ α = −IdL. This isomorphism α

induces a conjugate linear automorphism α̂ of the complex vector space H 0(X, L) such
that α̂2 = −Id. From this it follows immediately that the complex dimension of H 0(X, L)

is even.
The Riemann–Roch theorem says

dim H 0(X, L) − dim H 1(X, L) = degree(L) − genus(X) + 1 .

Since dim H 0(X, L) is even and H 1(X, L) = 0, the lemma follows from the Riemann–
Roch theorem. �

Remark 2.5. Take any line bundle L ∈ G\G0. From Lemma 2.4 it follows that
degree(L) = 2d0 if the genus of X is odd, and degree(L) = 2d0 + 1 if the genus is even.
Take a divisor D0 = ∑d0

i=1 xiX of degree d0 such that σ(D0) = D0 and {x1, . . . , xd0}
are distinct points. Consider the line bundle L′ := L ⊗ OX(−D0) over X. Note that
L′ ∈ G \ G0, and degree (L′) is zero or one depending on the parity of genus (X).

Consider the intersection J 0(X) ∩ G0. The homomorphism ρ in p. 147, eq. (3) of [1]
maps to it. Combining Lemmas 2.3 and 2.4 we have the following corrected version of
Theorem 4.2 of [1].

Theorem 2.6. The image of the homomorphism ρ in p. 147, eq. (3) of [1] coincides with
J 0(X) ∩ G0. If the genus of X is even, then the image of the homomorphism ρ in p. 147,
eq. (3) of [1] coincides with J 0(X) ∩ G. If the genus of X is odd, then the image of ρ is a
subgroup of J 0(X) ∩ G of index two.

3. The Jacobian as dual space of holomorphic forms

Following the setting and notation of [1], let J1(X) denote the Jacobian of X obtained
as the quotient of H 0(X, �)∗ (the dual of the space of holomorphic forms on X) by the
action of H1(X, Z). In Proposition 3.1 of [1] we showed that if {γ1, . . . , γg, δ1, . . . , δg} is
a canonical (symplectic) basis of H1(X, Z) satisfying

σ#(γj ) = γj , (10)

then the associated basis of holomorphic form, {ω1, . . . , ωg} (
∫
γj

ωk = δjk) is invariant,

that is, σ ∗(ωj ) = ωj . Here σ# and σ ∗ denote the maps induced by σ in homology and
1-forms respectively.

Let π : C
g → J1(X) ∼= C

g/Z
g be the natural projection, and let σ1 denote the involution

induced by σ on J1(X). In [1] we showed that the lift of σ1 to C
g , with the above basis,

is given by conjugation. The fixed points of σ1 are therefore given by the solutions of the
equation

z = z + n + Pm, (11)
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where P is the period matrix and n and m are points in Z
g . We obtain the solutions to this

equation in two different ways, depending on whether the genus of X is even or odd.
Let us first fix some notation. Let In denote the n × n identity matrix, and Kn the n × n

matrix with entries equal to 1 in the anti-diagonal and 0 in all other entries.
Assume first that X has even genus. The fundamental group of the Klein surface Y has

one relation given by c2(a1b1a
−1
1 b−1

1 ) · · · (ag−1bg−1a
−1
g−1b

−1
g−1) = e, from which we get,

by a simple topological argument (see [2]), a symplectic basis of X, say B. It is easy to see
that the action of σ# on H1(X, Z) with respect to B is given by the matrix K2g . We make
a change of basis using the 2g × 2g matrix

C =
(

−Ig (I + K)g

−Kg Kg

)
;

let B1 = BC = {γ1, . . . , γg, δ1, . . . , δg} be the new basis. Since C satisfies CtJC = J ,

where J =
(

0 −Ig

Ig 0

)
is the standard intersection matrix, we have that B1 is symplectic.

The action of σ# with respect to B1 is given by

C−1σ#C =
(

Ig (−2I − K)g

0 −Ig

)
,

so B1 satisfies condition (10).
Let P denote the period matrix with respect to this new basis of H1(X, Z) and the

associated basis of holomorphic forms; denote by pjk its entries. Let A be the g×g matrix
given by A = −2Ig − Kg and denote by ajk the entries of A. Then we have

pkj =
∫

δj

ωk =
∫

δj

ωk =
∫

δj

σ ∗(ωk) =
∫

σ#(δj )

ωk = ajk − pjk.

So the real part of P is equal to Re P = −I − 1
2K .

Since the imaginary part of P is invertible (see for example Proposition III.2.8 of [3]),
we have that any point z of C

g can be written as z = x+Py, where x and y are points in R
g .

Considering the real and imaginary parts of (11) we obtain the following two equations:{
0 = n + (Re P)m,

−(Im P)y = (Im P)y + (Im P)m.

From the first equation, using the expression of Re P obtained above and the fact that
all entries of n are integers we get that the entries of m are even integers. Since Im P is
invertible, the second equation gives y = − 1

2m, which implies that y has integer entries.
The set of fixed points of σ1 is therefore given by the projection of

T = {x + Py; x ∈ R
g, y ∈ Z

g} ⊂ C
g

to J1(X).
The odd genus case is handled in a similar way (although the computations are a little

more complicated): using topological arguments we get a symplectic basis B of H1(X, Z);
the action of σ# with respect to this basis is given by

1 0 0 0
0 0 0 Kg−1
0 0 −1 0
0 Kg−1 0 0

 .
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We change basis in H1(X, Z) to B1 = BC, where

C =


1 0 0 0
0 −Ig−1 0 (I + K)g−1
0 0 1 0
0 −Kg−1 0 Kg−1

 .

One can easily show that B1 is symplectic and satisfies condition (10). The period matrix

satisfies the identity P = A − P , where A is the matrix A =
(

0 0
0 (−2I−K)g−1

)
. Splitting

(11) in its real and imaginary parts as above we obtain the following pairs of equations
(we used again the fact that Im P is invertible):{

n = −(Re P)m,

y = − 1
2m.

From the first equation we get that if mt = (m1, . . . , mg) ∈ Z
g then m2, . . . , mg are even

integers. So the set of fixed points of σ1 has two components, given by the projections of
the following two sets to J1(X):

T1 = {x + Py; x ∈ R
g, y ∈ Z

g} ⊂ C
g,

T2 = T1 + P

(
1

2
, 0, . . . , 0

)t

= T1 + 1

2
p1 ⊂ C

g.

Here p1 is the first period. We refer the reader to [4] where similar results are stated,
although with different computations. The Jacobian of Y can then be identified with the
subgroup π(T1) of J1(X).

4. Divisors

Let J0(X) be the Jacobian of X given as the divisor class group, that is degree zero divisors
quotiented by the principal divisors. We have a natural involution in J0(X) defined by
σ0([D]) = [σ ∗(D)], where square brackets denote equivalence classes and σ ∗ the natural
extension of σ to divisors. It was shown in [1] that the involution σ0 is equivalent to σ1 by the
Abel–Jacobi map. A divisor class [D] is fixed by σ0 if D is linearly equivalent to σ ∗(D);
that is, there exists a holomorphic function f : X → Ĉ such that D − σ ∗(D) = div(f ).
This implies that div(f ◦ σ) = −div(f ), so there exists a constant c such that f ·f ◦ σ = c

(here · denotes multiplication of complex numbers). But then f ◦ σ · f = c = c, so c is a
real number. Multiplying f by a number we can assume that c = ±1.

If c = 1, let h be the function h = f + 1. Then h ◦ σ = h/f so that f = h/(h ◦ σ),
which implies div(f ) = div(h) − div(h ◦ σ) = div(h) − σ ∗(div(h)). Let E be the divisor
E = D − div(h). Then we have that E is linearly equivalent to D and

σ ∗(E) = σ ∗(D) − σ ∗(div(h)) = (D − div(f )) − (div(h) − div(f )) = E.

Therefore D is linearly equivalent to a divisor (E) that comes from the surface Y .
If f · f ◦ σ = −1 it can be easily seen that D is not linearly equivalent to any divisor

that comes from Y . So we get that the set of fixed points on σ0 consists of the following
disjoint sets:
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T1 = {[D]; deg(D) = 0, σ ∗(D) = D} and

T2 = {[D]; deg(D) = 0, D − σ ∗(D) = div(f ), f · f ◦ σ = 1}.

Clearly T1 is not empty.
If X has even degree, then by Lemma 2.3 we have that T2 is empty. In the case of odd

degree, let f be as in (8) and let D0 and D1 denote the divisors defined by the zeroes
and poles of f , respectively. Equation (8) gives σ ∗(D1) = D0. Again by Lemma 2.3
we have that D0 has even degree. Let E be a divisor with degree(E) = degree(D0) and
E = σ ∗(E) (observe that this last condition, since σ does not have fixed points, forces the
degree of E to be even). Define X = E − D0. Then X is a degree zero divisor satisfying
X − σ ∗(X ) = div(f ), so [X ] ∈ T2. This shows that T2 is not empty in the case of X

having odd degree. It is easy to see that [D] ∈ T1 if and only if [D + X ] ∈ T2, so T2 is the
translation of T1 by X .

We can identify T1 with the Jacobian of Y (and with the component T1 obtained in the
previous version, via the Abel–Jacobi mapping).
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