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Abstract. Suppose that α > 1 is an algebraic number and ξ > 0 is a real number. We
prove that the sequence of fractional parts {ξαn}, n = 1, 2, 3, . . . , has infinitely many
limit points except when α is a PV-number and ξ ∈ Q(α). For ξ = 1 and α being a
rational non-integer number, this result was proved by Vijayaraghavan.
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1. Introduction

Let α > 1 and ξ > 0 be real numbers. The problem of distribution of the fractional parts
{ξαn}, n = 1, 2, 3, . . . , is a classical one. Some metrical results are well-known. Firstly,
for fixed α, the fractional parts {ξαn}, n = 1, 2, 3, . . . , are uniformly distributed in [0, 1)

for almost all ξ [17]. Secondly, for fixed ξ, the fractional parts {ξαn}, n = 1, 2, 3, . . . ,

are uniformly distributed in [0, 1) for almost all α (see [11] and also [10] for a weaker
result). However, for fixed pairs ξ, α, nearly nothing is known. Even the simple-looking
Mahler’s question [12] about the fractional parts {ξ(3/2)n}, n = 1, 2, 3, . . . , is far from
being solved. (See, however, [9] and, for instance, see [1–3,7,8] for more recent work on
this problem.)

One of the first results in this direction is due to Vijayaraghavan, who proved that the set
of limit points of the sequence {(p/q)n}, n = 1, 2, 3, . . . , where p > q > 1 are integers
satisfying gcd(p, q) = 1, is infinite. In his note [15] (see also [16]) he gave two proofs
of this fact: one due to himself and another due to A Weil. It was noticed later that the
questions of distribution of {ξαn}, n = 1, 2, 3, . . . , for algebraic α are closely related to
the size of conjugates of α. The algebraic integers α > 1 whose conjugates other than α

itself are all strictly inside the unit disc were named after Pisot and Vijayaraghavan and
called PV-numbers (see [4] and [14]).

The aim of this paper is to prove the following generalization of the above mentioned
result of Vijayaraghavan.

Theorem 1. Let α > 1 be an algebraic number and let ξ > 0 be a real number. Then the
set {ξαn}, n ∈ N, has only finitely many limit points if and only if α is a PV-number and
ξ ∈ Q(α).

This theorem was already proved by Pisot in [13]. We give a different proof by developing
the method of Vijayaraghavan [15]. In addition, we prove a stronger result for Salem
numbers (see Lemma 3 below).
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The ‘if’ part of the theorem is well-known. Indeed, let α = α1 be a PV-number with
conjugates, say, α2, . . . , αd . Assume that ξ ∈ Q(α), that is, ξ = (e0 + e1α + · · · +
ed−1α

d−1)/L with e0, . . . , ed−1 ∈ Z and L ∈ N. By considering the trace of Lξαn,

namely, the sum over its conjugates, we have

Tr(Lξαn) = e0Tr(αn) + · · · + ed−1Tr(αn+d−1)

= L[ξαn] + L{ξαn} + e0

d∑
j=2

αn
j + · · · + ed−1

d∑
j=2

αn+d−1
j .

Since Tr(Lξαn) − L[ξαn] is an integer and, for each fixed k, the sum
∑d

j=2 αn+k
j tends

to zero as n → ∞, we deduce that the set of limit points of {ξαn}, n ∈ N, is a subset of
{0, 1/L, . . . , (L − 1)/L, 1}.

So in the proof below we only need to prove the ‘only if’ part, namely, that in all other
cases the set of limit points of {ξαn}, n ∈ N, is infinite.

We remark that the theorem does not apply to transcendental numbers α > 1. It is not
known, for instance, whether the sets {en}, n ∈ N, and {πn}, n ∈ N, have one or more
than one limit point.

In some cases the theorem cannot be strengthened. Suppose, for instance, that α is
a rational integer α = b ≥ 2 (which is a PV-number) and ξ = ∑∞

k=0 b−k! (which is a
transcendental Liouville number, so ξ /∈ Q(b) = Q). Then the set of limit points of
the sequence {ξbn}, n = 1, 2, 3, . . . , is {0, b−1, b−2, b−3, . . . }. Evidently, this set is
countable.

2. Sketch of the proof and auxiliary results

From now on, let us assume that α = α1 > 1 is a fixed algebraic number with conjugates
α2, . . . , αd and with minimal polynomial adzd +ad−1z

d−1 +· · ·+a0 ∈ Z[z]. Set L(α) =
|a0| + |a1| + · · · + |ad |. Suppose that ξ > 0 is a real number satisfying ξ /∈ Q(α) in case
α is a PV-number.

Recall that an algebraic integer α > 1 is called a Salem number if its conjugates are all
in the unit disc |z| ≤ 1 with at least one conjugate lying on |z| = 1. The next lemma is part
of Theorem 1 in [8]. (Here and below, ‖x‖ := min({x}, 1 − {x}).)

Lemma 2. Let α > 1 be a real algebraic number and let ξ > 0 be a real number. If
‖ξαn‖ < 1/L(α) for every n ∈ N then α is a PV-number or a Salem number and ξ ∈ Q(α).

Suppose that the set S of limit points of {ξαn}, n ∈ N, is finite, say, S =
{µ1, µ2, . . . , µq}. With this assumption, we will show in §3 that, for any ε > 0, there
exist three positive integers m, r, L, where m > r, such that

‖Lξ(αm − αr)αn‖ < 2ε

for every n ∈ N. Taking ε < 1/2L(α), by Lemma 2, we conclude that α is a PV-number
or a Salem number and Lξ(αm − αr) ∈ Q(α), that is, ξ ∈ Q(α).

However, the case when α is a PV-number and ξ ∈ Q(α) is already treated in the ‘if’
part of the theorem. So the only case that remains to be settled is when α is a Salem number
and ξ ∈ Q(α). We will then prove even more than required.
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Lemma 3. Suppose that α is a Salem number and ξ > 0 belongs to Q(α). Then there is
an interval I = I (ξ, α) ⊂ [0, 1] of positive length such that each point ζ ∈ I is a limit
point of the set {ξαn}, n ∈ N.

We will prove Lemma 3 in §4. Finally, recall that the sequence b1, b2, b3, . . . is called
ultimately periodic if there is a t ∈ N such that bn+t = bn for every n ≥ n0. If n0 = 1,

then the sequence b1, b2, b3, . . . is called purely periodic. The next lemma was proved in
[6]. It will be used in the proof of Lemma 3.

Lemma 4. Let d, L ∈ N and Ad−1, . . . , A0 ∈ Z, where A0 �= 0 and gcd(A0, L) = 1.

Then the sequence of integers b1, b2, b3, . . . satisfying the linear recurrence sequence

bk+d + Ad−1bk+d−1 + · · · + A1bk+1 + A0bk = 0,

where k = 1, 2, 3, . . . , is purely periodic modulo L.

3. Differences of fractional parts are close to an integer

Suppose that the set S of limit points of {ξαn}, n ∈ N, is finite, say, S = {µ1, . . . , µq}. Let
D(S) be the set of all differences µi − µj , where µi ≥ µj belong to S. It is possible that
the set S ∪D(S) (which is a subset of [0, 1]) contains some rational numbers. For instance,
D(S) always contains 0. Let L be the least common multiple of the denominators of all
rational numbers that belong to S ∪ D(S). (Of course, L := 1 if (S ∪ D(S)) ∩ Q = {0} or
{0, 1}.)

Consider the set SL of limit points of {Lξαn}, n ∈ N.

Lemma 5. SL is a subset of {0, {Lµ1}, . . . , {Lµq}, 1}.
Proof. Note that

L{ξαn} − {Lξαn} = [Lξαn] − L[ξαn]

is a non-negative integer. Therefore each element of SL is of the form Lµi −ni with integer
ni ≥ 0. Evidently, SL − {0, 1} is a subset of the interval (0, 1). Consequently, ni = [Lµi]
for each µi satisfying Lµi /∈ Z. This proves the lemma. �

Lemma 6. The set (SL ∪ D(SL)) ∩ Q is either {0, 1} or {0}.
Proof. Of course, for any rational µi, by the definition of L, we have {Lµi} = 0. By
Lemma 5, we deduce that SL ⊂ {0, . . . , {Lµ}, . . . , 1}, where µ runs over every irrational
element of S, so that SL ∩ Q ⊂ {0, 1}. The difference {Lµi} − {Lµj } = L(µi − µj ) −
[Lµi]+ [Lµj ], where µi, µj ∈ S, is either irrational or, by the definition of L, an integer.
Hence, D(SL) contains at most two rational elements, namely, 0 and 1. This proves the
lemma. �

Write

xn = [Lξαn] and yn = {Lξαn}.
Then, as a0α

n + a1α
n+1 + · · · + adαn+d = 0, we set

sn := a0yn + a1yn+1 + · · · + adyn+d = −a0xn − a1xn+1 − · · · − adxn+d .
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So sn belongs to a finite set of integers for each n ∈ N. (We remark that a key result which
was proved in [7] is that the sequence s1, s2, s3, . . . is not ultimately periodic, unless α is a
PV-number or a Salem number and ξ ∈ Q(α). Lemma 2 given in §2 is an easy consequence
of this result.)

Suppose that SL contains g irrational elements. We denote S∗
L = SL − {0, 1}. By

Lemma 6, the set SL contains at most two rational elements 0 and 1. Hence SL contains at
most g + 2 elements. By Lemma 6 again, the numbers η − η′, where η, η′ ∈ SL, η > η′,
are all irrational except (possibly) when (η, η′) = (1, 0).

Set

τ = min ‖ad(η − η′)‖,
where the minimum is taken over every pair η, η′ ∈ S∗

L ∪ {0, 1}, where η > η′, except for
the pair (η, η′) = (1, 0). Since all these differences are irrational, we have 0 < τ < 1/2.

Recall that sn = a0yn + · · · + adyn+d is an integer, where yn = {Lξαn}. Fix ε in
the interval 0 < ε < τ/2L(α) < 1/4L(α). Then the intervals (η − ε, η + ε), where
η ∈ S∗

L ∪ {0, 1}, are disjoint. Furthermore, there is an integer N so large that yn lies in an
ε-neighbourhood of η = ηn ∈ SL for each n ≥ N. We will write ηn for the element of SL

closest to yn.

Consider the vectors Zh := (ηh, ηh+1, . . . , ηh+d) for h = N, N + 1, . . . . There are at
most (g+2)d+1 different vectors in Sd+1

L . So there are two integers, say, m and r satisfying
m > r ≥ N, such that Zm = Zr. Subtracting sr+n from sm+n yields

sm+n − sr+n = a0(ym+n − yr+n) + · · · + ad−1(ym+d−1+n − yr+d−1+n)

+ ad(ym+d+n − yr+d+n)

for n = 0, 1, . . . . Writing yh = ηh + (yh − ηh) and using |yh − ηh| < ε, we deduce that

‖a0(ηm+n − ηr+n) + · · · + ad−1(ηm+d−1+n − ηr+d−1+n)

+ ad(ηm+d+n − ηr+d+n)‖ < 2εL(α) < τ.

We next claim that the differenceηm+n−ηr+n belongs to the set {0, 1, −1} for eachn ≥ 0.

Since Zm = Zr, we have ηm+n = ηr+n for every n = 0, 1, . . . , d. For the contradiction,
assume that l is the smallest positive integer for which ηm+d+l − ηr+d+l /∈ {0, 1, −1}. In
particular, this implies that ηm+j+l − ηr+j+l ∈ Z for j = 0, 1, . . . , d − 1. Hence

‖ad(ηm+d+l − ηr+d+l )‖
= ‖a0(ηm+l − ηr+l ) + · · · + ad(ηm+d+l − ηr+d+l )‖ < τ.

By the choice of τ, this is impossible, unless ηm+d+l = ηr+d+l or {ηm+d+l , ηr+d+l} =
{0, 1}. However, in both cases, we have ηm+d+l − ηr+d+l ∈ {0, 1, −1}, a contradiction.

Note that, since ηh ∈ [0, 1], we have ηm+n − ηr+n ∈ {0, 1, −1} if and only if either
ηm+n = ηr+n or {ηm+n, ηr+n} = {0, 1}. Obviously, ηm+n = ηr+n implies that the dif-
ference between the fractional parts ym+n = {Lξαm+n} and yr+n = {Lξαr+n} is smaller
than 2ε. The alternative case, namely, {ηm+n, ηr+n} = {0, 1} occurs when one of the num-
bers {Lξαm+n}, {Lξαr+n} is smaller than ε and another is greater than 1 − ε. So, in both
cases, we have

‖Lξαm+n − Lξαr+n‖ < 2ε

for every n ≥ 0. Thus, we established the existence of three positive integers m, r, L, where
m > r, such that ‖Lξ(αm − αr)αn‖ < 2ε for every n ∈ N (as required in §2).
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4. Salem numbers

In this section, we will prove Lemma 3 and thus complete the proof of the theorem.
Suppose that α is a Salem number. Let us write the conjugates of α in the form α−1,

eφ1
√−1, e−φ1

√−1, . . . , eφm

√−1, e−φm

√−1, where d = 2m + 2 and where the arguments
φ1, . . . , φm belong to the interval (0, π). As above, we set ξ = (e0 + e1α + · · · +
ed−1α

d−1)/L with e0, . . . , ed−1 ∈ Z and L ∈ N. Now, by considering the trace of Lξαn,

we have

Tr(Lξαn) = e0Tr(αn) + · · · + ed−1Tr(αn+d−1)

= L[ξαn] + L{ξαn} + (e0 + · · · + ed−1α
−d+1)α−n

+ 2
m∑

j=1

(e0 cos(nφj ) + e1 cos((n + 1)φj )

+ · · · + ed−1 cos((n + d − 1)φj )).

Setting

U(z) := e0 + e1 cos z + · · · + ed−1 cos((d − 1)z)

and

V (z) := e1 sin z + · · · + ed−1 sin((d − 1)z),

we can write
m∑

j=1

(e0 cos(nφj ) + e1 cos((n + 1)φj ) + · · · + ed−1 cos((n + d − 1)φj ))

=
m∑

j=1

(U(φj ) cos(nφj ) − V (φj ) sin(nφj )).

It follows that the sum

L{ξαn} + 2
m∑

j=1

(U(φj ) cos(nφj ) − V (φj ) sin(nφj ))

= Tr(Lξαn) − L[ξαn] − (e0 + · · · + ed−1α
−d+1)α−n

is close to an integer for each sufficiently large n. Moreover, the sequence of integers
bn := Tr(Lξαn), n = 1, 2, 3, . . . , satisfies the linear recurrence sequence

adbn+d + ad−1bn+d−1 + · · · + a0bn = 0

for n = 1, 2, 3, . . . . The fact that α is a Salem number implies that ad = a0 = 1, so we
can apply Lemma 4. It follows that the sequence bn = Tr(Lξαn), n = 1, 2, . . . , is purely
periodic modulo L. Let q be the length of its period, so that the numbers bq, b2q, b3q, . . .

are all equal modulo L. Then, there is an integer 	 in the range 0 ≤ 	 ≤ L − 1 such that

L{ξαqn} + 2Rn → 	

as n → ∞. Here, Rn := ∑m
j=1(U(φj ) cos(qnφj ) − V (φj ) sin(qnφj )).
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Note that

U(φ) cos(qnφ) − V (φ) sin(qnφ)

=
√

U(φ)2 + V (φ)2 cos(qnφ − arctan(V (φ)/U(φ)))

for each real number φ. The numbers φ1, . . . , φm and π are linearly independent over
Q (see, for example, p. 32 of [14]). Hence, by Kronecker’s theorem, for arbitrary m

numbers θ1, . . . , θm ∈ [−1, 1] there is an n ∈ N such that the value of U(φj ) cos(qnφj )−
V (φj ) sin(qnφj ) lies close to θj

√
U(φj )2 + V (φj )2 for every j = 1, . . . , m.

It follows that the sequence Rn, n = 1, 2, . . . , is dense in the interval [−H, H ], where

H = ∑m
j=1

√
U(φj )2 + V (φj )2. Clearly, H > 0, because H = 0 yields e0 + e1α

′ +
· · · + ed−1α

′d−1 = U(φ1) + √−1V (φ1) = 0, where α′ = eφ1
√−1 is conjugate to α. This

is impossible, because the degree of α′ over Q equals d.

Now, since {ξαqn} + 2Rn/L → 	/L as n → ∞ and since the values of 2Rn, n ∈ N,

are dense in [−2H, 0], we see that there exists an interval [	/L, 	/L + δ], where δ is a
positive number, such that every ζ ∈ [	/L, 	/L + δ] is a limit point of the set {ξαqn},
n ∈ N. This completes the proof of Lemma 3. �

See also [5,18,19] for other recent results concerning integer and fractional parts of
Salem numbers.
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