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Abstract. Suppose that « > 1 is an algebraic number and £ > 0 is a real number. We
prove that the sequence of fractional parts {£a"}, n = 1, 2, 3, ..., has infinitely many
limit points except when « is a PV-number and § € Q(«). For § = 1 and « being a
rational non-integer number, this result was proved by Vijayaraghavan.
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1. Introduction

Leta > 1 and & > 0O be real numbers. The problem of distribution of the fractional parts
{€a"}, n =1,2,3,..., is a classical one. Some metrical results are well-known. Firstly,
for fixed «, the fractional parts {£x”}, n = 1, 2, 3, ..., are uniformly distributed in [0, 1)
for almost all £ [17]. Secondly, for fixed &, the fractional parts {£a”}, n = 1,2,3, ...,
are uniformly distributed in [0, 1) for almost all & (see [11] and also [10] for a weaker
result). However, for fixed pairs &, «, nearly nothing is known. Even the simple-looking
Mabhler’s question [12] about the fractional parts {£(3/2)"}, n = 1,2, 3, ..., is far from
being solved. (See, however, [9] and, for instance, see [1-3,7,8] for more recent work on
this problem.)

One of the first results in this direction is due to Vijayaraghavan, who proved that the set
of limit points of the sequence {(p/g)"}, n = 1,2,3,..., where p > ¢ > 1 are integers
satisfying gcd(p, ¢) = 1, is infinite. In his note [15] (see also [16]) he gave two proofs
of this fact: one due to himself and another due to A Weil. It was noticed later that the
questions of distribution of {£a"}, n = 1, 2, 3, ..., for algebraic « are closely related to
the size of conjugates of «. The algebraic integers « > 1 whose conjugates other than o
itself are all strictly inside the unit disc were named after Pisot and Vijayaraghavan and
called PV-numbers (see [4] and [14]).

The aim of this paper is to prove the following generalization of the above mentioned
result of Vijayaraghavan.

Theorem 1. Let o > 1 be an algebraic number and let & > 0 be a real number. Then the
set {£a}, n € N, has only finitely many limit points if and only if a is a PV-number and

& € Q).

This theorem was already proved by Pisotin [13]. We give a different proof by developing
the method of Vijayaraghavan [15]. In addition, we prove a stronger result for Salem
numbers (see Lemma 3 below).
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The ‘if” part of the theorem is well-known. Indeed, let « = o1 be a PV-number with
conjugates, say, oy, ..., «¢z. Assume that & € Q(x), that is, § = (eg + ejox + -+ +
edflad_l)/L with eg,...,e4—1 € Z and L € N. By considering the trace of L&a",
namely, the sum over its conjugates, we have

Tr(LEa™) = egTr(a@") + - - - + ed_lTr(a"er*l)

d d
= L[a"]+ L{&a"} + ¢ Za;' +teq Za;ﬁ-d—l'
j=2 j=2

Since Tr(Léa") — L[£«"] is an integer and, for each fixed k, the sum Z‘;:Z a;’+k tends
to zero as n — oo, we deduce that the set of limit points of {§a"}, n € N, is a subset of
{0,1/L,...,(L—-1)/L,1}.

So in the proof below we only need to prove the ‘only if” part, namely, that in all other
cases the set of limit points of {£a”}, n € N, is infinite.

We remark that the theorem does not apply to transcendental numbers « > 1. It is not
known, for instance, whether the sets {¢"}, n € N, and {7"}, n € N, have one or more
than one limit point.

In some cases the theorem cannot be strengthened. Suppose, for instance, that « is
a rational integer « = b > 2 (which is a PV-number) and § = Z,fio bh—H! (which is a
transcendental Liouville number, so § ¢ Q(b) = Q). Then the set of limit points of
the sequence {€b"}, n = 1,2,3,...,1is {0,b~1, b2, b73,...}. Evidently, this set is
countable.

2. Sketch of the proof and auxiliary results

From now on, let us assume that « = o1 > 1 is a fixed algebraic number with conjugates
a2, ..., g and with minimal polynomial adzd ~|—ad_1zd_1 +---4ag € Z[z]. Set L(x) =
lagl + lai| + - - - + |aq|. Suppose that £ > 0 is a real number satisfying £ ¢ Q(«) in case
o is a PV-number.

Recall that an algebraic integer « > 1 is called a Salem number if its conjugates are all
in the unit disc |z| < 1 with at least one conjugate lying on |z| = 1. The next lemma is part
of Theorem 1 in [8]. (Here and below, ||x|| := min({x}, 1 — {x}).)

Lemma 2. Let « > 1 be a real algebraic number and let & > 0 be a real number. If
lEa™|| < 1/L(x)foreveryn € N thena is a PV-number or a Salem number and & € Q(«).

Suppose that the set S of limit points of {£a"}, n € N, is finite, say, S =
{1, 2, ..., ug). With this assumption, we will show in §3 that, for any ¢ > 0, there
exist three positive integers m, r, L, where m > r, such that

ILE(@™ — a")a"|| < 2¢

for every n € N. Taking ¢ < 1/2L(«), by Lemma 2, we conclude that « is a PV-number
or a Salem number and L& (e — ") € Q(w), thatis, & € Q().

However, the case when « is a PV-number and & € Q(w) is already treated in the ‘if’
part of the theorem. So the only case that remains to be settled is when « is a Salem number
and & € Q(«). We will then prove even more than required.
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Lemma 3. Suppose that o is a Salem number and & > 0 belongs to Q(«). Then there is
an interval I = I1(§, @) C [0, 1] of positive length such that each point ¢ € I is a limit
point of the set {£a"}, n € N.

We will prove Lemma 3 in §4. Finally, recall that the sequence by, by, b3, ... is called
ultimately periodic if there is a t € N such that b,; = b, for every n >ng. If ng = 1,
then the sequence b1, by, b3, ... is called purely periodic. The next lemma was proved in
[6]. It will be used in the proof of Lemma 3.

Lemma 4. Letd,L € Nand Ag_1, ..., Ay € Z, where Ay # 0 and gcd(Ag, L) = 1.
Then the sequence of integers by, by, bz, . .. satisfying the linear recurrence sequence

biya + Ag—1bxya—1 + -+ Arbgy1 + Apbr =0,

where k = 1,2,3, ..., is purely periodic modulo L.

3. Differences of fractional parts are close to an integer

Suppose that the set S of limit points of {a"}, n € N, is finite, say, S = {u, ..., i4}. Let
D(S) be the set of all differences p; — 1, where u; >y belong to S. It is possible that
the set SUD(S) (which is a subset of [0, 1]) contains some rational numbers. For instance,
D(S) always contains 0. Let L be the least common multiple of the denominators of all
rational numbers that belong to S U D(S). (Of course, L := 1 if (SUD(S)) NQ = {0} or

{0, 1})
Consider the set Sy of limit points of {L£a"}, n € N.

Lemma 5. Sy is a subset of {0, {Lu1}, ..., {Lug}, 1}
Proof. Note that
L{ga"} — {L&a"} = [LEa"] — L[£a"]

is anon-negative integer. Therefore each element of Sy is of the form L u; —n; with integer
n; > 0. Evidently, S; — {0, 1} is a subset of the interval (0, 1). Consequently, n; = [Lu;]
for each w; satisfying Lu; ¢ Z. This proves the lemma. O

Lemma 6. The set (S;, U D(Sy)) NQ is either {0, 1} or {0}.

Proof. Of course, for any rational pu;, by the definition of L, we have {Lu;} = 0. By
Lemma 5, we deduce that S, C {0, ..., {Lu}, ..., 1}, where u runs over every irrational
element of §, so that S, N Q C {0, 1}. The difference {Lu;} — {Lu;} = L(p; — ;) —
[Lp;i]+ L], where i, i € S, is either irrational or, by the definition of L, an integer.
Hence, D(Sr) contains at most two rational elements, namely, O and 1. This proves the
lemma. O

Write
Xpn = [Lgan] and y, = {Lgan}-
Then, as agae” + a1t + - - - + aga"t = 0, we set

Sp :=aoYn + a1Yn+1 + -+ AqdYn+d = —A0Xn — A1 Xp+1 — * — AdXn+d-
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So s, belongs to a finite set of integers for each n € N. (We remark that a key result which
was proved in [7] is that the sequence s, 52, 53, . . . is not ultimately periodic, unless « is a
PV-number or a Salem number and £ € Q(«). Lemma 2 given in §2 is an easy consequence
of this result.)

Suppose that S;, contains g irrational elements. We denote S7 = S§; — {0, 1}. By
Lemma 6, the set S; contains at most two rational elements O and 1. Hence S;, contains at
most g + 2 elements. By Lemma 6 again, the numbers n — n’, where n,n’ € Sp, n > 7/,
are all irrational except (possibly) when (1, n') = (1, 0).

Set

T =min |lag(n — )|,

where the minimum is taken over every pair 7, n" € S7 U {0, 1}, where n > n’, except for
the pair (1, n’) = (1, 0). Since all these differences are irrational, we have 0 < t < 1/2.

Recall that s, = agy, + - - + agyn+q 1s an integer, where y, = {L&a"}. Fix ¢ in
the interval 0 < ¢ < 7/2L() < 1/4L(w). Then the intervals (n — &, n + &), where
n € S; U{0, 1}, are disjoint. Furthermore, there is an integer N so large that y, lies in an
e-neighbourhood of n = n, € Sy, for each n > N. We will write n,, for the element of S,
closest to y;.

Consider the vectors Zj := (Wn, Dh+1s - --» Nhtd) forh = N, N 4+ 1, ... . There are at
most (g 42)9*! different vectors in SZ'H . So there are two integers, say, m and r satisfying
m > r > N, such that Z,, = Z,. Subtracting s,, from s,,4, yields

Smtn = Sr+n = A0 Ym+n — Yr+n) +++ + dd—1 Om+d—14n — Yr+d—1+n)
+ ad (Ym+d+n — Yr+d+n)
forn =0, 1,.... Writing y, = ny + (y» — np) and using |y, — np| < &, we deduce that
laoMm+n — Nr4n) + -+ + @d—1Mm+d—14n — Nr+d—14n)
+ ad(Mm+d+n — Nr4a+n)ll < 2eL(a) < 7.

We next claim that the difference 1,,, 4+, — 17 +n belongs to the set {0, 1, —1} foreachn > 0.

Since Z,, = Z,, we have ny4+n = ny4, foreveryn =0, 1, ..., d. For the contradiction,
assume that / is the smallest positive integer for which 9, +4+1 — nr4a+1 € {0, 1, —1}. In
particular, this implies that 1,4 j1; — ny4j4 € Zfor j =0,1,...,d — 1. Hence

lad Mmsdari — Dr4a+0 |l
= llao(Mma1 — Mra1) + -+ +adMmsars — Mrrd+) |l < T

By the choice of 7, this is impossible, unless ny+4d+1 = Nr+d+1 OF {Nmtd+i> Nr+d+1} =
{0, 1}. However, in both cases, we have ny,+4+1 — nr+d+1 € {0, 1, —1}, a contradiction.

Note that, since 1, € [0, 1], we have 1,4+, — 7r4n € {0, 1, —1} if and only if either
Nm+n = Nr+n OF {Nm+ns Nr4a} = {0, 1}. Obviously, 04y = 1,4, implies that the dif-
ference between the fractional parts y,, 1, = {LEa™ "} and y, 4, = {LEa"™} is smaller
than 2¢. The alternative case, namely, {n+n, Nr+n} = {0, 1} occurs when one of the num-
bers {LEa™ ™}, {LEa" T} is smaller than ¢ and another is greater than 1 — . So, in both
cases, we have

|LEa™" — LEa™™™|| < 2e

forevery n > 0. Thus, we established the existence of three positive integers m, r, L, where
m > r, such that |L& (o™ — a")a" || < 2¢ for every n € N (as required in §2).
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4. Salem numbers

In this section, we will prove Lemma 3 and thus complete the proof of the theorem.

Suppose that « is a Salem number. Let us write the conjugates of « in the form o',

PVl e=0V=T  eduvV=T ¢=¢uv=T where d = 2m + 2 and where the arguments

@1, ..., Pn belong to the interval (0, 7). As above, we set £ = (eg + e + --- +
ed_lozd_l)/L with e, ..., eq—1 € Z and L € N. Now, by considering the trace of L{«",
we have

Tr(LEa") = eoTr(@") + - - + eq— Tr(@" ™)
= L[ga"] + L{ga"} + (o + - - +eg-ra T Dya™"
m
+2) (eocos(ng;) + e cos((n + 1)¢;)
j=1
+ - +eg_1cos((m+d—1)¢))).
Setting
U(i):=ey+ercosz+---+eg_1cos((d—1)z)
and
V() :=esinz+---+e4_1sin((d — 1)z),
we can write

Y (eocos(ng;) + e cos((n + 1)) + -+ eq—1 cos(n +d — Dp;))
j=1

= i(U(tﬁj)COS(ij) — V(¢;) sin(ne;)).
=
It follows that the sum
L{Ea"} + 2Zm:l(U(¢j) cos(ng;) — V(¢;) sin(ng;))
=
= Tr(LEa™) — L[Ea"] — (eg + - - + eq_1a 4T Ha™"

is close to an integer for each sufficiently large n. Moreover, the sequence of integers
b, :=Tr(LEa"), n =1,2,3, ..., satisfies the linear recurrence sequence

agbnya + ag—1bpra—1+---+aob, =0

forn =1, 2,3,.... The fact that « is a Salem number implies that a; = ag = 1, so we
can apply Lemma 4. It follows that the sequence b, = Tr(Léa"), n = 1,2, ..., is purely
periodic modulo L. Let g be the length of its period, so that the numbers by, by, b3y, . ..
are all equal modulo L. Then, there is an integer £ in the range 0 < ¢ < L — 1 such that

L{Ea?"} + 2R, — ¢

asn — oo. Here, R, := ZTZI(U(@)COS(qnqﬁj) — V(¢;) sin(gne;)).
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Note that

U(®) cos(gng) — V(¢) sin(gng)

= U(9)? + V(¢)*cos(gn¢ — arctan(V (¢)/ U (¢)))

for each real number ¢. The numbers ¢y, ..., ¢,, and 7 are linearly independent over
Q (see, for example, p. 32 of [14]). Hence, by Kronecker’s theorem, for arbitrary m
numbers 01, ..., 6, € [—1, 1] thereis ann € N such that the value of U (¢;) cos(gn¢;) —

V(¢;) sin(gng;) lies close to QJ'\/U(qu)2 + V(qu)2 forevery j =1,...,m.
It follows that the sequence R,, n = 1, 2, ..., is dense in the interval [— H, H], where
H = Z;'n=1 \/U(¢j)2 + V(¢;)?. Clearly, H > 0, because H = 0 yields ep + eja’ +

cteg 10" = U(g) + V=1V (1) = 0, where o’ = e#1V =T is conjugate to c. This
is impossible, because the degree of o’ over Q equals d.

Now, since {éx?"} + 2R,,/L — ¢/L as n — oo and since the values of 2R, n € N,
are dense in [—2H, 0], we see that there exists an interval [¢/L, £/L + §], where § is a
positive number, such that every ¢ € [£/L, £/L + 8] is a limit point of the set {Ex?"},
n € N. This completes the proof of Lemma 3. O

See also [5,18,19] for other recent results concerning integer and fractional parts of
Salem numbers.
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