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Abstract. The aim of this paper is to study the algebra AC), of absolutely continuous
functions f on [0,1] satisfying f(0) =0, f’ € L”[0, 1] and the multipliers of AC,,.
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1. Introduction

Let 7 = [0, 1] be the compact topological semigroup with max multiplication and usual
topology. C(I), LP(I),1 < p < oo are the associated Banach algebras. Larsen [5]
obtained multipliers for the Banach algebra L' (7). Baker, Pym and Vasudeva [1] obtain
characterizations of multipliers from L?(I) to L"(I),1 < r, p < oo. Bhatnagar and
Vasudeva [2] characterize Homc¢(7y(L" (1), L?(I)) and their pre-duals for 1 < r < p.
Bhatnagar [3] studied Homc () (L" (1), L? (1)) and their pre-duals for » > p. The study
of pre-duals of the multipliers in [2] and [3] involved a deep understanding of the inter-
polation theory and lengthy calculations. The multipliers can be obtained more attrac-
tively by abstract arguments. It turns out that results obtained via abstract arguments
compare with those obtained in [2] and [3]. Our results also include the results obtained
by Larsen [5]. LP([) is replaced by the Gelfand transform algebra AC,, p > 1 of abso-
lutely continuous functions f on [0,1] with f(0) = 0 and f/ € L”(I). With the norm
defined as ||| f||| = ||f’||p, f € ACp, AC), constitute subalgebras of C (/) and have an
approximate identity. The purpose of this note is to study the multipliers from AC, to
ACp,1 <1, p < 00.Forr = p, a complete description of multipliers is obtained. For
r < p, the multiplier algebra consists of {0} alone. In case of r > p we provide a set of
necessary and another set of sufficient conditions for a function in C(0, 1] to be a mul-
tiplier. An example of a function which satisfies the necessary conditions but does not
satisfy the sufficient conditions and fails to be a multiplier is also provided.

2. The Banach algebra AC),

Let I = [0, 1] with the usual interval topology be the compact metric space and C(I) be
the set of all continuous complex valued functions on /. For 1 < p < oo, let

AC, = {f € C(I): f is absolutely continuous on /, f(0) =0
and ' e LP(I)}.
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Define ||| fIll = I f'llp, f € ACp.For 1 < p < 00, let p’ denote the conjugate index

o1 1 _
top,thatls,p—i—p, =1.

The following inequality will be frequently used in the sequel. For g € AC,, 1 < p <

oo,
t t 1/p U
5/ 1g'(s)|ds < </ Ig/(S)IpdS) P < g,
0 0

forg € AC1,1g(®)] < lIg'll1, and for g € ACoo, I8()] < lI&'llc 1, (D

t
lg(@)] = ‘/ g'(s)ds
0

using Holder’s inequality.

Lemma 1. Let f be continuous on [0, 1], absolutely continuous on [, 1] for any o with
0<a<lwihf € L'[0, 1). Then f is absolutely continuous on [0, 1].

The proof is elementary.

Theorem 2. AC), is a Banach subalgebra of C(I). It has an approximate identity for
1 < p < o0. ACx has no approximate identity. The maximal ideal space AN(AC)) of
ACp, 1 < p < 00 is homeomorphic to (0,1]. Moreover, AC, € AC), forr > p.

Proof. Clearly AC), is a Banach space. For f, g € AC)p,
(fe) = f'g+ fg' € LP(I)
as f', g’ € LP(I) and f, g are bounded. Moreover,

£l = 11(f&)Ilp < lglooll fllp + 1 flloolig"llp-

Since g € AC), Ig()| < lIg'll, = llIglll, using (1), and so [[gllec < lIg]lI-

Similarly || flloo < [l f]ll. Consequently, [[|fglll = 2l[IfIII Illg]ll. Thus AC, is a
Banach algebra.

Define e, (t) = min{t/a, 1}, € I. Then €/, (t) = L x(0.0)(t). We show that {e,} forms
an approximate identity for ACp,1 < p <ocoasa — 0+.

Now
llleag — glll = Il(ea — Dg" +ezzllp
< liea = D)g'llp + lleggllp-
o p I/p
legglly = (/0 ;g(t) dt)
1 o t , 1/p
< - </ (/ |g’(s)|”ds) PP dt) , using (1).
@ \Jo 0
So

IA

’
leygllp

1 , o , l/p
—11g" X10,e1ll p (/ tP/p dl)
o 0

1, alP\ /P
a”g X[O,a]”p (?)

=p P lg x0.11l p-
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P 1/p
Ig/(t)lpdt>

t
——1
o

Also
——1

lea — D'l = <fo ;

< ”g/X[O,a]”p as

<1 for te[0,«a].

IA

Thus ||leag —glIl < (p~/P+1)lIg' x(0,a1llp — Oasa — 0+ because g’ € LP(I), 1
p < oo.

Next, if g € ACq and ||g’|lec = K then |g(¢)| = |f0t ¢/(s)ds| < Kt and [(tg)|
ltg’ +g| <2Ktforallt € I.So

llltg — Il = lltg" + 8 — oo = lim |1 —2K¢| = 1.

So ACx has no approximate identity. We now find the maximal ideal space A(AC))
of AC,.

Clearly, AC), separates strongly the points of [0,1] and is self-adjoint. If f € AC, and
a=inf]|1 — f(1)] > 0, take g = L. Then ¢’ = —(f{—'l)z, so that |/ < Ll e LP(D),
ie,g € ACpand gof = g+ f — gf = 0. Thus f is quasiregular in AC),. It follows
using Corollary 3.2.8 of Rickart [7] that the maximal ideal space A(AC,) of AC), is
homeomorphic to A(C([)) = I under the natural embedding. Since for f € AC), f 0) =
f(0) = 0 we get that A(AC)) of AC), is homeomorphic to (0,1].

Finally, for r > p, f € AC, we have f’ € L"(I) C LP(I), so that f € AC,. The
inclusion AC, C AC),, is indeed proper as L"(I) is a proper subset of L? (1) for r > p.
This completes the proof. |

Note that the approximate identity {e,} is bounded if p = 1 and is unbounded if
1 < p < oo. Also with our methods the case p = oo has been solved completely whereas
in [1] the maximal ideal space of L (I) could not be calculated.

3. The multiplier space

A mapping 7 on acommutative Banach algebra A to itself is called a multiplierif 7 (xy) =
xT(y) =T(x)y,x,y € A. If A is semisimple and 7: A — A is a multiplier then there
exists a unique bounded continuous function m on A(A) such that Tx =miforallx € A
and [|m|leo < IITIl (p. 19 of [4]). Since for g € AC,, §(t) = g(t),t € (0,11, AC), is
a semisimple Banach algebra, a multiplier T: AC,, — AC) is a map satisfying T'g =
mg, g € AC, for some continuous bounded function m on (0,1]. The following theorem
gives necessary and sufficient conditions for m € C(0, 1] to be a multiplier of AC),.

Theorem 3. A map T: AC,, — AC,,1 < p < oo is a multiplier iff there exists an
m € Cp(0, 1] such that for each € > 0, m is absolutely continuous on [e, 11, m’ € LP[e, 1]
and |m' xie 11l p = O VP (Treat e /7" =1 for p = 1.)

Proof. Suppose T is a multiplier of AC,. Then there exists m € Cp(0, 1] such that

Tg = mg. Let the norm of the multiplication operator be N. Then |||Tg||| = |||mg]|| <
Nllglll, g € ACp.
As mey, € AC), and ¢, = 1 on [a, 1], we get that m is absolutely continuous on

[o, 11,m’ € LP[a, 1] and |[Imell| < Nlllealll = Nleyll, = Na='/7'
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Also for 1 < p < o0,

[lmeg 1P = ||m'eq +mel, ||}

o 1
= f lm'eq + me,|P (1)dt —i—/ Im'eq + me,|P (1)dt
0 o

1
> / |m'|P(r)dt asey, =1ande, =0on [a,1].
o

So (fly Im'|P(1)d)!/? < Na=/7" or lm" - xpa,nll, = O(a~/7"). For p = oo,
imeg|ll = llm'eq + melloo
> ||(m'eq + me,) - Xje.11ll0o
= |lm" - xfe.11ll00
and
llmelll < Nllleglll = Nlleglloo = N/
so that

m" - Xie11lloo = O(1/a).
Conversely, suppose m € Cj(0, 1] satisfies, m is absolutely continuous on [¢, 1], m" €
LP[e, 11, [Im xgeajll, = O(e~"/7) fore > 0 and g € AC,. As g(0) = 0 we have
that mg has a continuous extension to [0, 1] by assigning mg(0) = 0. We first show that
(mg) € LP(I). Now (mg)' = mg’ + m’g. Since m € Cp(0, 1] and g’ € LP(I), we get
that mg’ € LP(I). It remains to prove that m’g € LP([).

For p = 1, p’ = oo and ||m'x[e,1;ll1 = O(1) implies that lim,_,o f: |m’(t)|dt exists,
som’ € L'(I). Also g € ACj is bounded so m’g € L'(I) and |m’g|l; < |Im'||1 Ilg'|I1,
using eq. (1).

Forl < p<ooand0 <o <1/4,

20 20 s 14
/ Im’(S)I”Ig(S)I”dSS/ Im' (s)1” (/0 Ig/(t)ldt) ds

200 p
< (/ Ig/(t)ldt) - A -a"P/P where A is a constant
0

p

2a
=A (/ |g/(t)|dt> calTP
0
2a L
=B (/ |g’(t)|dt) / s~ Pds,
0 2a

A(p—1)
21=p —41-p

4o s p
B/ sP (/ |g’(l)|dt> ds

20 0

4o 1 K )2
B/ (-/ |g’(t)|dz> ds.

20 s Jo

where B = is a constant,

IA
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Adding these inequalities for ¢ = 1/4, 1/8, 1/16, ..., we get

12 11 s p » p
[ Im’(s)|”|g(s)|Pds SB/ <—/ |g/(l)|dt> ds < B(—llg/llp) <00
0 o \sJo p—1

as 1 fos |g’(t)|dt € LP(0, 1] by Hardy’s inequality [8]. Also, fll/z |m'(s)|P|g(s)|Pds <

N

lig'lIlh-A-(1/2)=P/P" < oo, usingeq. (1) sothatm’g € LP(I)and ||m’g]|, < (B(%)va

o]
AP g
For p = 00, let g € ACs. Then |g(?)| = |f0t g'()ds| < t11g |l oo-
Now|m'gx(y 1 | = 4218 loogy = 2418 loen = 1.2,3.....
21 an—

Therefore ||m'glloc < 2A|g [l < 00 or m’g € L°(I). That mg is absolutely con-
tinuous follows from Lemma 1 as mg is absolutely continuous on [e, 1] for all € > 0,
continuous at 0 and (mg)’ € LP(I) C L! (). Thus m is a multiplier. It is easy to see that
the norm of the multiplier 7' given by m is

mlloo + llm’|l1, p=1
Imlloo + (B(527)"
ITI = sup [lm'g+mgl, < S Up :
lg'llp=1 +A1/2)7P/P) P 1 < p < o0
Imlle + 24, p =00
This completes the proof. |

Remark. For p = 1,m € Cp(0, 1] is a multiplier of ACy iff m is absolutely continuous
on [e, 1] foreach € > 0 and m’ € L1(1), i.e., iff m is absolutely continuous on /, using
Lemma 1 as m being bounded can be continuously extended to [0, 1]. Thus Theorem 3
includes the results of [5].

Multipliers from AC, to ACp,r # p are given by continuous functions m € C(0, 1]
which may not be bounded.

Theorem 4. IfT: AC, — AC, is a multiplier,r < p < oo, then T = 0.

Proof. LetT: AC, — AC, be amultiplier,” < p < oo. Then there exists a functionm €
C(0, 1] such that Tg = mg. If m # 0, then there exists so € (0, 1] such that m(sg) # O.
By continuity there is an € > 0 such that |[m(¢)| > k/2 fort € (so — €, 50 +€) = N, say.
Here k = |m(so)|.
Fort e N,
|(mg) ()| = |(m'g +mg')(1)]

> |m()g' ()] — Im'(t)g ()]
k
> Elg/(t)l — |m'(1)g®)]
or
k / !/ !/
518 O = [(mg) (D] + [m () g®)]. (%)

For g = ey,a < so —eandt € N, (mg)' (t) = m'(t)g(t) + m(t)g'(t) = m’'(¢). Thus
m’ € LP(N).

From (%), %lg’(t)l < |mg) ()| + |m'@®)| lgl € LP(N) forall g € AC,. A contra-
diction. Som = 0. O
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The multipliers from AC, to ACp,r > p are given by continuous functions on (0,1]
which are locally in AC),. The following theorem provides necessary growth conditions
on m’ for m to be a multiplier from AC, to ACp,r > p.

Theorem S. Let T: AC, — AC,,r > p be a multiplier given by Tg = mg, g € AC,.
Then for € > 0, m is absolutely continuous on [€, 1],m’ € LP[e, 1] and ||m’)([€,1]||,, =
01,

Proof. (Similar to the proof of Theorem 3.) Let the norm of the multiplication operator T
be N.Then |||Tg||| = ||lmgll| < N|||gll|, g € AC, where the norm on the left-hand side
isin AC), and the norm on the right-hand side is in AC,.

Sinceeq € AC, [|(meg)' ||, < N\, |l, gives (as in Theorem 3) [lm’ xje. 11l , < Na—/"’
so that [|m’ e, 11ll, = O(a~"/"). O

The following theorem gives sufficient conditions to be satisfied by m € C(0, 1] to be
a multiplier from AC, to ACp,r > p > 1.

1

7o

Theorem 6. If r > p > 1,m € L°(I) N C(0, 1], where 1 = %

continuous on [e, 1] for all ¢ > 0 and Zflozl(27”/r/||an/||p)P < 00, then Tg = mg
defines a multiplier from AC, to ACp,. Here Pym’ = m' - Xp-n y-nt13.

m is absolutely

Proof. For g € AC,,g(0) = 0. Since m € L'(I) N C(0,1],m(t) = O~ '/) in a
neighbourhood of 0 so that [mg(t)| < A|g'|l, t~/ TV = A|lg'|l,+"/7', using (1). As
p > 1,p < oo we getlim;_omg(t) = 0so mg can be continuously extended to [0, 1]
by assigning mg(0) = 0. Now (mg)’ = m'g + mg’. Since m € LV(I) and g’ € L"(I), it
follows that mg’ € LP(I). We show that m’g € L”(I). Replacing g(¢) by f(; g (s)ds we
getforn =1,2,3,...,

2—n+1 2—n+1

t )4
/ m'g|? (1)dr < / |m’(t>|"< / |g’(s>|ds> dr
2-n 2 0

p—n+l

< / ' 0Pl I¢Y7yPdr, using (1),

—n

1 p/r’ 27}1+1
< lg'll? (2,,_1) /2 @,

Adding forn =1,2,3, ..., we get

p—n+l

o0
szwl)p/r//
2*7!

n=1

1/p
Im'gll, < g’ ( Im/(t)|pdt> < 00,

since g’ € L'(I) and Y00, 2~"/" | Pym’|| )P < oo. Thus (mg)’ € LP(I) € L'(I).
That mg is absolutely continuous on [ follows from Lemma 1 so that mg € AC). This
completes the proof. a
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Remarks.

(1) For f & L'(1),t7 7" [ f(s)ds € LP(I) for r < p, see [6]. The generalized
Hardy’s inequality is not available in the case of » > p as in the case of r = p, so we
get a set of necessary conditions and another set of sufficient conditions for multipliers
in the case r > p.

(2) It is easy to see that the condition |m'xe11ll, = O™ ’/) is equivalent to
supn2_"/r/||an/||p < 00.

(3) The results of Theorems 3 and 4 compare with those in [2] in view of Remark 2. In
[3], we get that m is a multiplier from L" (1) to LP(I),r > p if m € L"(I) and
3 @7 Py )Y < oo, since L =1 1 < % , p <vand £ C £. Thus the
results obtained in Theorem 6 are containec{) in the results of [3] whereas the necessary
conditions in Theorem 5 compare with those in [3].

The following examples have bearing on the above said necessary and sufficient condi-
tions.

Example 1. If m(t) = t~/v+% 0 < § < 1/v then m(t) € L'(I) N C(0, 1], m is not
bounded and 23":1(2—"/ " || Pam’|| )P < oo. Thus the sufficiency conditions of Theorem 6
are satisfied so m defines a multiplier from AC;, to ACp, r > p > 1.

Example 2. T m(t) = t~'/% then m ¢ LV(I). Also Y02, 2~"/" || Pym’|| ,)? = o0. So
m does not satisfy the sufficiency conditions given by Theorem 6 but f: |m'(0)|Pdt =

O(e~P/") so that necessary condition given by Theorem 5 is satisfied. However, if we
take g(x) = [y t7/"(1 —Int)™2/"dt,x € I then g € AC, butmg ¢ AC, ifr < 2p
(one can check that (mg)’ ¢ LP(I).) So m does not define a multiplier from AC, to
ACp,p <r <2p.
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