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Abstract. The aim of this paper is to study the algebra ACp of absolutely continuous
functions f on [0,1] satisfying f (0) = 0, f ′ ∈ Lp[0, 1] and the multipliers of ACp .
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1. Introduction

Let I = [0, 1] be the compact topological semigroup with max multiplication and usual
topology. C(I), Lp(I ), 1 ≤ p ≤ ∞ are the associated Banach algebras. Larsen [5]
obtained multipliers for the Banach algebra L1(I ). Baker, Pym and Vasudeva [1] obtain
characterizations of multipliers from Lp(I) to Lr(I ), 1 ≤ r, p ≤ ∞. Bhatnagar and
Vasudeva [2] characterize HomC(I)(L

r(I ), Lp(I )) and their pre-duals for 1 ≤ r ≤ p.

Bhatnagar [3] studied HomC(I)(L
r(I ), Lp(I )) and their pre-duals for r > p. The study

of pre-duals of the multipliers in [2] and [3] involved a deep understanding of the inter-
polation theory and lengthy calculations. The multipliers can be obtained more attrac-
tively by abstract arguments. It turns out that results obtained via abstract arguments
compare with those obtained in [2] and [3]. Our results also include the results obtained
by Larsen [5]. Lp(I) is replaced by the Gelfand transform algebra ACp, p ≥ 1 of abso-
lutely continuous functions f on [0,1] with f (0) = 0 and f ′ ∈ Lp(I). With the norm
defined as |||f ||| = ‖f ′‖p, f ∈ ACp, ACp constitute subalgebras of C(I) and have an
approximate identity. The purpose of this note is to study the multipliers from ACr to
ACp, 1 ≤ r, p ≤ ∞. For r = p, a complete description of multipliers is obtained. For
r < p, the multiplier algebra consists of {0} alone. In case of r > p we provide a set of
necessary and another set of sufficient conditions for a function in C(0, 1] to be a mul-
tiplier. An example of a function which satisfies the necessary conditions but does not
satisfy the sufficient conditions and fails to be a multiplier is also provided.

2. The Banach algebra ACpACpACp

Let I = [0, 1] with the usual interval topology be the compact metric space and C(I) be
the set of all continuous complex valued functions on I . For 1 ≤ p ≤ ∞, let

ACp = {f ∈ C(I): f is absolutely continuous on I, f (0) = 0

and f ′ ∈ Lp(I)}.
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Define |||f ||| = ‖f ′‖p, f ∈ ACp. For 1 ≤ p ≤ ∞, let p′ denote the conjugate index
to p, that is, 1

p
+ 1

p′ = 1.
The following inequality will be frequently used in the sequel. For g ∈ ACp, 1 < p <

∞,

|g(t)| =
∣∣∣∣
∫ t

0
g′(s)ds

∣∣∣∣ ≤
∫ t

0
|g′(s)|ds ≤

(∫ t

0
|g′(s)|pds

)1/p

t1/p′ ≤ ‖g′‖p,

for g ∈ AC1, |g(t)| ≤ ‖g′‖1, and for g ∈ AC∞, |g(t)| ≤ ‖g′‖∞.t, (1)

using Holder’s inequality.

Lemma 1. Let f be continuous on [0, 1], absolutely continuous on [α, 1] for any α with
0 < α ≤ 1 with f ′ ∈ L1[0, 1]. Then f is absolutely continuous on [0, 1].

The proof is elementary.

Theorem 2. ACp is a Banach subalgebra of C(I). It has an approximate identity for
1 ≤ p < ∞. AC∞ has no approximate identity. The maximal ideal space �(ACp) of
ACp, 1 ≤ p ≤ ∞ is homeomorphic to (0,1]. Moreover, ACr ⊆ ACp for r > p.

Proof. Clearly ACp is a Banach space. For f, g ∈ ACp,

(fg)′ = f ′g + fg′ ∈ Lp(I)

as f ′, g′ ∈ Lp(I) and f, g are bounded. Moreover,

|||fg||| = ‖(fg)′‖p ≤ ‖g‖∞‖f ′‖p + ‖f ‖∞‖g′‖p.

Since g ∈ ACp, |g(t)| ≤ ‖g′‖p = |||g|||, using (1), and so ‖g‖∞ ≤ |||g|||.
Similarly ‖f ‖∞ ≤ |||f |||. Consequently, |||fg||| ≤ 2|||f ||| |||g|||. Thus ACp is a

Banach algebra.
Define eα(t) = min{t/α, 1}, t ∈ I. Then e′

α(t) = 1
α
χ[0,α)(t). We show that {eα} forms

an approximate identity for ACp, 1 ≤ p < ∞ as α → 0 + .

Now

|||eαg − g||| = ‖(eα − 1)g′ + e′
αg‖p

≤ ‖(eα − 1)g′‖p + ‖e′
αg‖p.

‖e′
αg‖p =

(∫ α

0

∣∣∣∣ 1

α
g(t)

∣∣∣∣
p

dt

)1/p

≤ 1

α

(∫ α

0

(∫ t

0
|g′(s)|pds

)
tp/p′

dt

)1/p

, using (1).

So

‖e′
αg‖p ≤ 1

α
‖g′χ[0,α]‖p

(∫ α

0
tp/p′

dt

)1/p

= 1

α
‖g′χ[0,α]‖p

(
αp

p

)1/p

= p−1/p‖g′χ[0,α]‖p.
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Also

‖(eα − 1)g′‖p =
(∫ α

0

∣∣∣∣ tα − 1

∣∣∣∣
p

|g′(t)|pdt

)1/p

≤ ‖g′χ[0,α]‖p as

∣∣∣∣ tα − 1

∣∣∣∣ ≤ 1 for t ∈ [0, α].

Thus |||eαg−g||| ≤ (p−1/p +1)‖g′χ[0,α]‖p → 0 as α → 0+ because g′ ∈ Lp(I), 1 ≤
p < ∞.

Next, if g ∈ AC∞ and ‖g′‖∞ = K then |g(t)| = | ∫ t

0 g′(s)ds| ≤ Kt and |(tg)′| =
|tg′ + g| ≤ 2Kt for all t ∈ I . So

|||tg − t ||| = ‖tg′ + g − 1‖∞ ≥ lim
t→0

|1 − 2Kt | = 1.

So AC∞ has no approximate identity. We now find the maximal ideal space �(ACp)

of ACp.
Clearly, ACp separates strongly the points of [0,1] and is self-adjoint. If f ∈ ACp and

a = inft |1 − f (t)| > 0, take g = f
f −1 . Then g′ = − f ′

(f −1)2 , so that |g′| ≤ |f ′|
a2 ∈ Lp(I),

i.e., g ∈ ACp and g◦f = g + f − gf = 0. Thus f is quasiregular in ACp. It follows
using Corollary 3.2.8 of Rickart [7] that the maximal ideal space �(ACp) of ACp is
homeomorphic to �(C(I)) = I under the natural embedding. Since for f ∈ ACp, f̂ (0) =
f (0) = 0 we get that �(ACp) of ACp is homeomorphic to (0,1].

Finally, for r > p, f ∈ ACr we have f ′ ∈ Lr(I ) ⊂ Lp(I), so that f ∈ ACp. The
inclusion ACr ⊂ ACp is indeed proper as Lr(I ) is a proper subset of Lp(I) for r > p.
This completes the proof. �

Note that the approximate identity {eα} is bounded if p = 1 and is unbounded if
1 < p < ∞. Also with our methods the case p = ∞ has been solved completely whereas
in [1] the maximal ideal space of L∞(I ) could not be calculated.

3. The multiplier space

A mapping T on a commutative Banach algebra A to itself is called a multiplier if T (xy) =
xT (y) = T (x)y, x, y ∈ A. If A is semisimple and T : A → A is a multiplier then there
exists a unique bounded continuous function m on �(A) such that T̂ x = mx̂ for all x ∈ A

and ‖m‖∞ ≤ ‖T ‖ (p. 19 of [4]). Since for g ∈ ACp, ĝ(t) = g(t), t ∈ (0, 1], ACp is
a semisimple Banach algebra, a multiplier T : ACp → ACp is a map satisfying T g =
mg, g ∈ ACp for some continuous bounded function m on (0,1]. The following theorem
gives necessary and sufficient conditions for m ∈ Cb(0, 1] to be a multiplier of ACp.

Theorem 3. A map T : ACp → ACp, 1 ≤ p ≤ ∞ is a multiplier iff there exists an
m ∈ Cb(0, 1] such that for each ε > 0, m is absolutely continuous on [ε, 1], m′ ∈ Lp[ε, 1]
and ‖m′χ[ε,1]‖p = O(ε−1/p′

). (Treat ε−1/p′ = 1 for p = 1.)

Proof. Suppose T is a multiplier of ACp. Then there exists m ∈ Cb(0, 1] such that
T g = mg. Let the norm of the multiplication operator be N . Then |||T g||| = |||mg||| ≤
N |||g|||, g ∈ ACp.

As meα ∈ ACp and eα = 1 on [α, 1], we get that m is absolutely continuous on
[α, 1], m′ ∈ Lp[α, 1] and |||meα||| ≤ N |||eα||| = N‖e′

α‖p = Nα−1/p′
.
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Also for 1 ≤ p < ∞,

|||meα|||p = ‖m′eα + me′
α‖p

p

=
∫ α

0
|m′eα + me′

α|p(t)dt +
∫ 1

α

|m′eα + me′
α|p(t)dt

≥
∫ 1

α

|m′|p(t)dt as eα = 1 and e′
α = 0 on [α, 1].

So (
∫ 1
α

|m′|p(t)dt)1/p ≤ Nα−1/p′
or ‖m′ · χ[α,1]‖p = O(α−1/p′

). For p = ∞,

|||meα||| = ‖m′eα + me′
α‖∞

≥ ‖(m′eα + me′
α) · χ[α,1]‖∞

= ‖m′ · χ[α,1]‖∞
and

|||meα||| ≤ N |||eα||| = N‖e′
α‖∞ = N/α

so that

‖m′ · χ[α,1]‖∞ = O(1/α).

Conversely, suppose m ∈ Cb(0, 1] satisfies, m is absolutely continuous on [ε, 1], m′ ∈
Lp[ε, 1], ‖m′χ[ε,1]‖p = O(ε−1/p′

) for ε > 0 and g ∈ ACp. As g(0) = 0 we have
that mg has a continuous extension to [0, 1] by assigning mg(0) = 0. We first show that
(mg)′ ∈ Lp(I). Now (mg)′ = mg′ + m′g. Since m ∈ Cb(0, 1] and g′ ∈ Lp(I), we get
that mg′ ∈ Lp(I). It remains to prove that m′g ∈ Lp(I).

For p = 1, p′ = ∞ and ‖m′χ[ε,1]‖1 = O(1) implies that limε→0
∫ 1
ε

|m′(t)|dt exists,
so m′ ∈ L1(I ). Also g ∈ AC1 is bounded so m′g ∈ L1(I ) and ‖m′g‖1 ≤ ‖m′‖1 ‖g′‖1,
using eq. (1).

For 1 < p < ∞ and 0 < α ≤ 1/4,∫ 2α

α

|m′(s)|p|g(s)|pds ≤
∫ 2α

α

|m′(s)|p
(∫ s

0
|g′(t)|dt

)p

ds

≤
(∫ 2α

0
|g′(t)|dt

)p

· A · α−p/p′
, where A is a constant

= A

(∫ 2α

0
|g′(t)|dt

)p

· α1−p

= B

(∫ 2α

0
|g′(t)|dt

)p ∫ 4α

2α

s−pds,

where B = A(p − 1)

21−p − 41−p
is a constant,

≤ B

∫ 4α

2α

s−p

(∫ s

0
|g′(t)|dt

)p

ds

= B

∫ 4α

2α

(
1

s

∫ s

0
|g′(t)|dt

)p

ds.
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Adding these inequalities for α = 1/4, 1/8, 1/16, . . . , we get∫ 1/2

0
|m′(s)|p|g(s)|pds ≤B

∫ 1

0

(
1

s

∫ s

0
|g′(t)|dt

)p

ds ≤ B

(
p

p − 1
‖g′‖p

)p

<∞

as 1
s

∫ s

0 |g′(t)|dt ∈ Lp(0, 1] by Hardy’s inequality [8]. Also,
∫ 1

1/2 |m′(s)|p|g(s)|pds ≤
‖g′‖p

p ·A·(1/2)−p/p′
< ∞, using eq. (1) so that m′g ∈ Lp(I) and ‖m′g‖p ≤ (

B
( p

p−1

)p +
A (1/2)−p/p′)1/p‖g′‖p.

For p = ∞, let g ∈ AC∞. Then |g(t)| = | ∫ t

0 g′(s)ds| ≤ t‖g′‖∞.

Now
∣∣∣m′gχ( 1

2n , 1
2n−1

]∣∣∣ ≤ A2n‖g′‖∞ 1
2n−1 = 2A‖g′‖∞, n = 1, 2, 3, . . . .

Therefore ‖m′g‖∞ ≤ 2A‖g′‖∞ < ∞ or m′g ∈ L∞(I ). That mg is absolutely con-
tinuous follows from Lemma 1 as mg is absolutely continuous on [ε, 1] for all ε > 0,
continuous at 0 and (mg)′ ∈ Lp(I) ⊆ L1(I ). Thus m is a multiplier. It is easy to see that
the norm of the multiplier T given by m is

‖T ‖ = sup
‖g′‖p=1

‖m′g + mg′‖p ≤




‖m‖∞ + ‖m′‖1, p = 1

‖m‖∞ + (
B
( p

p−1

)p
+A(1/2)−p/p′)1/p

, 1 < p < ∞
‖m‖∞ + 2A, p = ∞

.

This completes the proof. �

Remark. For p = 1, m ∈ Cb(0, 1] is a multiplier of AC1 iff m is absolutely continuous
on [ε, 1] for each ε > 0 and m′ ∈ L1(I ), i.e., iff m is absolutely continuous on I , using
Lemma 1 as m being bounded can be continuously extended to [0, 1]. Thus Theorem 3
includes the results of [5].

Multipliers from ACr to ACp, r �= p are given by continuous functions m ∈ C(0, 1]
which may not be bounded.

Theorem 4. If T : ACr → ACp is a multiplier, r < p ≤ ∞, then T = 0.

Proof. Let T : ACr → ACp be a multiplier, r < p ≤ ∞. Then there exists a function m ∈
C(0, 1] such that T g = mg. If m �= 0, then there exists s0 ∈ (0, 1] such that m(s0) �= 0.
By continuity there is an ε > 0 such that |m(t)| > k/2 for t ∈ (s0 − ε, s0 + ε) = N , say.
Here k = |m(s0)|.

For t ∈ N ,

|(mg)′(t)| = |(m′g + mg′)(t)|
≥ |m(t)g′(t)| − |m′(t)g(t)|

≥ k

2
|g′(t)| − |m′(t)g(t)|

or
k

2
|g′(t)| ≤ |(mg)′(t)| + |m′(t)g(t)|. (∗)

For g = eα, α < s0 − ε and t ∈ N , (mg)′(t) = m′(t)g(t) + m(t)g′(t) = m′(t). Thus
m′ ∈ Lp(N).

From (∗), k
2 |g′(t)| ≤ |(mg)′(t)| + |m′(t)| ‖g‖r ∈ Lp(N) for all g ∈ ACr. A contra-

diction. So m = 0. �
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The multipliers from ACr to ACp, r > p are given by continuous functions on (0,1]
which are locally in ACp. The following theorem provides necessary growth conditions
on m′ for m to be a multiplier from ACr to ACp, r > p.

Theorem 5. Let T : ACr → ACp, r > p be a multiplier given by T g = mg, g ∈ ACr .
Then for ε > 0, m is absolutely continuous on [ε, 1], m′ ∈ Lp[ε, 1] and ‖m′χ[ε,1]‖p =
O(ε−1/r ′

).

Proof. (Similar to the proof of Theorem 3.) Let the norm of the multiplication operator T

be N . Then |||T g||| = |||mg||| ≤ N |||g|||, g ∈ ACr where the norm on the left-hand side
is in ACp and the norm on the right-hand side is in ACr .

Since eα ∈ ACr , ‖(meα)′‖p ≤ N‖e′
α‖r gives (as in Theorem 3) ‖m′χ[α,1]‖p ≤ Nα−1/r ′

so that ‖m′χ[α,1]‖p = O(α−1/r ′
). �

The following theorem gives sufficient conditions to be satisfied by m ∈ C(0, 1] to be
a multiplier from ACr to ACp, r > p > 1.

Theorem 6. If r > p > 1, m ∈ Lv(I) ∩ C(0, 1], where 1
v

= 1
p

− 1
r
, m is absolutely

continuous on [ε, 1] for all ε > 0 and
∑∞

n=1(2
−n/r ′ ‖Pnm

′‖p)p < ∞, then T g = mg

defines a multiplier from ACr to ACp. Here Pnm
′ = m′ · χ(2−n,2−n+1].

Proof. For g ∈ ACr, g(0) = 0. Since m ∈ Lv(I) ∩ C(0, 1], m(t) = O(t−1/v) in a
neighbourhood of 0 so that |mg(t)| ≤ A‖g′‖r t−1/v+1/r ′ = A‖g′‖r t

1/p′
, using (1). As

p > 1, p′ < ∞ we get limt→0 mg(t) = 0 so mg can be continuously extended to [0, 1]
by assigning mg(0) = 0. Now (mg)′ = m′g + mg′. Since m ∈ Lv(I) and g′ ∈ Lr(I ), it
follows that mg′ ∈ Lp(I). We show that m′g ∈ Lp(I). Replacing g(t) by

∫ t

0 g′(s)ds we
get for n = 1, 2, 3, . . . ,

∫ 2−n+1

2−n

|m′g|p(t)dt ≤
∫ 2−n+1

2−n

|m′(t)|p
(∫ t

0
|g′(s)|ds

)p

dt

≤
∫ 2−n+1

2−n

|m′(t)|p(‖g′‖r t
1/r ′

)pdt, using (1),

≤ ‖g′‖p
r

(
1

2n−1

)p/r ′ ∫ 2−n+1

2−n

|m′(t)|pdt.

Adding for n = 1, 2, 3, . . . , we get

‖m′g‖p ≤ ‖g′‖r

( ∞∑
n=1

2−(n−1)p/r ′
∫ 2−n+1

2−n

|m′(t)|pdt

)1/p

< ∞,

since g′ ∈ Lr(I ) and
∑∞

n=1(2
−n/r ′ ‖Pnm

′‖p)p < ∞. Thus (mg)′ ∈ Lp(I) ⊆ L1(I ).
That mg is absolutely continuous on I follows from Lemma 1 so that mg ∈ ACp. This
completes the proof. �
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Remarks.

(1) For f ∈ Lr(I ), t
1
r
− 1

p
−1 ∫ t

0 f (s)ds ∈ Lp(I) for r ≤ p, see [6]. The generalized
Hardy’s inequality is not available in the case of r > p as in the case of r = p, so we
get a set of necessary conditions and another set of sufficient conditions for multipliers
in the case r > p.

(2) It is easy to see that the condition ‖m′χ[ε,1]‖p = O(ε−1/r ′
) is equivalent to

supn2−n/r ′ ‖Pnm
′‖p < ∞.

(3) The results of Theorems 3 and 4 compare with those in [2] in view of Remark 2. In
[3], we get that m is a multiplier from Lr(I ) to Lp(I), r > p if m ∈ Lv(I) and∑∞

n=1(2
−n/r ′ ‖Pnm

′‖p)v < ∞, since 1
v

= 1
p

− 1
r

< 1
p

, p < v and �p ⊂ �v . Thus the
results obtained in Theorem 6 are contained in the results of [3] whereas the necessary
conditions in Theorem 5 compare with those in [3].

The following examples have bearing on the above said necessary and sufficient condi-
tions.

Example 1. If m(t) = t−1/v+δ, 0 < δ < 1/v then m(t) ∈ Lv(I) ∩ C(0, 1], m is not
bounded and

∑∞
n=1(2

−n/r ′ ‖Pnm
′‖p)p < ∞. Thus the sufficiency conditions of Theorem 6

are satisfied so m defines a multiplier from ACr to ACp, r > p > 1.

Example 2. If m(t) = t−1/v then m /∈ Lv(I). Also
∑∞

n=1(2
−n/r ′ ‖Pnm

′‖p)p = ∞. So

m does not satisfy the sufficiency conditions given by Theorem 6 but
∫ 1
ε

|m′(t)|pdt =
O(ε−p/r ′

) so that necessary condition given by Theorem 5 is satisfied. However, if we
take g(x) = ∫ x

0 t−1/r (1 − ln t)−2/rdt, x ∈ I then g ∈ ACr but mg /∈ ACp if r ≤ 2p

(one can check that (mg)′ /∈ Lp(I).) So m does not define a multiplier from ACr to
ACp, p < r ≤ 2p.
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