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Abstract. In this paper we investigate the series Y .-, (3,:‘) k~"x*. Obtaining some

integral representations of them, we evaluated the sum of them explicitly forn = 0, 1, 2.

Keywords. Inverse binomial series; hypergeometric series; polylogarithms; integral
representations.

1. Introduction

After Apéry [2] proved the irrationality of ¢(2) and ¢(3), where ¢ is the Riemann-zeta
function defined by

o0

c(s) = Zkis Res > 1,

k=1
by employing the series representations
o0 1 5 o0 (_ 1)}171
(2)=3Y —— and (B)=>) —F—,
n=1 nZ(:) 2n=1 n3(nn)

many authors have considered the series involving inverse binomial coefficients and they
obtained many interesting results. We have a similar series representation for ¢ (4):

see [8]. Some other related interesting results involving binomial coefficients can be found
in Chapter 9 of [4], [3], [5-9] and [11, 12].
Motivated by such results we shall consider here the following family of sums:

P
Sn,m; x) = _
=)

A good way to approach these series is to try and find their integral representations. In this
way we can evaluate many of them explicitly.
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In this paper, we will use, as usual, the following definitions and identities for the Euler’s
gamma function I', beta function 8, polylogarithms Li, (z) and generalized hypergeometric
series , Fy(ay, az, ..., ap; b1, b2, ..., by X),

Lo _ ')
_ s—1 t—1 _
B(s, t) = /0 w  (1l—w)'' du = —F(s D for s > 0,1 > 0, (1.1)

(see Theorem 7.69 of [4]),

©  _k -1 n—1 1 1 n—1 d
Lif@)i= ) o = ((n_)l)' /0 : O1g_z§; ? forlel<1, (12
k=1 :
Lin (™) = m"! ZLin(a)kz), (1.3)

k=1

where m is a positive integer and w = e**/”. The mth primitive root of unity is called
factorization formula for polylogarithm series and

o0

(aDk(@)k - . . (ap)rx*
F,(ay,ar,...,a,;b1,by,...,b,: x) = ,
pratil G Opr T T2 ,; Bk - - - by

where

_Tla+k
(@ = W'

For further properties of polylogarithms and hypergeometric series and related functions,
see [10] and Chapter 2 of [1], respectively. Almost all results given here were obtained
using identities (1.1) and (1.2) extensively.

2. Main results
The main results of this paper are the following two theorems.

Theorem 2.1. For |x| <27/4andn =2,3,... we have

00 xk (_l)nfl o (x) . 1 (1 _ eu)3
Z 3k) = (n—2)![0 ulog 2[;7}&4

=1 k" (%
4(—1)"2 /ﬁ@ n_2[[1+2cos[(2u+2n)/3]]3]
R A v log dv,
3n—2)! Jo 2x[14cos[(2u+2m)/3]]
2.1)
where
3

a(x) = log [[24_——:}3} , B(x) =3arctan |:2¢:/_§ 1:|

and

27 — 2x +3[81 — 12x]1/2:|1/3

¢(x) = [ o
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Proof. We start with identity (1.1).

&\ xk >\ xk (k1) (2k)!

;; W) & Reh!

x*0(k + D2k + 1)
k"I (3k + 1)

X*TET 2k + 1)
k=T (3k + 1)

xk

n—1
7 k

Bk, 2k + 1)

k

1
al / *=1(1 = n*ds.
kn—l 0

[ T0e EF”ﬁ8 e

»
I

1

Inverting the order of summation and integration, we get
i xk /1 i [xt(1 — )21 dr
3ky —1 s
k() oo K !

2/ Liy—i[xt(1 —1) ]dt (2.2)
0 t

-1 n—2 1 1 l‘l—tzl n—2 dr
:Lf / X =D log” Tz, 1dr 2.3)
n-=2)!'"Jo 0 1—xt(1—t)2z t
where in the last step we employ identity (1.2). Inverting the order of integration here and
leaving the justification of it at the end of the proof, we obtain

X xk (="t gz | ! 2—2t+1
) ARy~ (1 —2)! B3 _224; —ydr|dz.
=) =2 Jo z 0o 17 —2t"+1—[xz]

Making the change of variable ¢+ = u 4 2/3 here, we find after some manipulations that

i k(=2 /llog“z f” 2u —2/3 duld
= u .
e " 3e-2te Tz [Japwd—wsr ot - "

k=1

Now making the change of variable
27y
x4 D)2

in the first integral, we obtain

i ! f"’mlo n_z[y y? }
@ T w-athy [ oD

k=1

173 2u—2/3 q 1y3— 1d
N s —u 3= +9/C |y a1
23 y y Yy
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Here
27 — 2x + 381 — 12x]1/27"?
d(x) = > . (2.4)
X
If we make the change of variable r = 3y/(y* + 1) in this integral, we find that
i xk 3(_])n71 /-A(x)l e [27 l3 j|
= (0] _—
S LN R TR e
1/3 2u—2/3 1+3
x / u=2 du + dr, 2.5)
o3 ud—u/3 — (3 —12)/33 t(t —3)2t +3)
where
3¢ (x)
A = ——
= et

with ¢ (x) defined by (2.4). First, we compute the inner integral. By Cardano’s method,
the roots of the cubic equation u® — u/3 — (3 — 12)/313 = 0 are

a=1/t, B=[-3—iV27—12:21/61 and y =—3+iV27—12:2)/6t.

Thus, we can factorize the integrand in the inner integral as

2u —2/3 2t 1 t 2u+1/t
ud—u/3—3—12/3t3  t+3u—1/t t+3ul4u/t+1/t2-1/3
2t 43 1

t+3 ul4u/t+1/t2-1/3

Integrating both sides of this equation from —2/3 to 1/3 and then simplifying it, we find
that

1/3 2u —2/3
3 3 73,3 du
—2/3 U —u/3—0B—1t%)/3t
3t 3—¢ 2t43 6t 3t 9—6¢
= log — arctan |[——,/ ——|.
t+3 34 2¢ t+3 [27—12¢2]1/2 5t—6V 3+2¢

Replacing this in (2.5), we obtain after some simplification

>
=S5+ 5, (2.6)
=)

where

9(—1)"~1 /W o [27 3 } [ 3—t¢ } dr
Sp = ——— log" 2| — log
n—2)! Jo x (2t +3)(t — 3)2 2t+3] (t —3)(2t +3)
2.7
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18(=r=2 (@ [27 3 ]
S = —/ log" —_———
n—-2)! Jo x (2t 43)(r — 3)?

. 3t /9 — 6t dr 2.8)
X arctan . .
5t —6V 342t | (r —3)[27 — 12¢2]1/2

Now we simplify these two integrals. If we make in (2.7) the change of variable

31
u=log| 53]

and

we find that
(_l)n—l a(x) L, 1 (1 _ eu)3
S = log" ———— | du, 2.9
! (n—z)!/o S . 29)
where
3—Ax)
=1 — .
o(x) Og[3+2x(x)]

In (2.8), making the change of variable

. 9 — 61
Y=V3x

we arrive at the following:

4(—1 n—2 A1 (x) 3 _ 2\3 3 t _
5, = =D / logh—2 | G =Y | Barctany =1) 5 1)
n=-2)! J &3 4x(y2+ 1)2 y2+ 1
since
3
-3
arctan Y Il = 3arctany —m, for y >0
3y2 -1
where

N ]9 —=6A(x)
1) =\ 3

We need to induce one more change of variable to bring (2.10) in a simple form. Setting
v = 3arctan y — 7 here, we get

P 4(=1n2 /ﬂm | n2[[1+2cos[(2u+2n)/3]]3
2
0

-3 } dv,  (2.11)
(n—2)! 2x[1 + cos[(2v + 27)/3]]
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9 —6A 3 -
IB(-X)=38.I‘Ctan —m—nzsarctanm_n
3+2)\(x) ¢(x)+1
V3
1-2¢(x) |
Substituting the values of S; and S, from (2.9) and (2.11) in (2.6), we get

00 xk (_l)nfl ao(x) hn 1 (1 _ eu)3
T ICREL AR
k

k=1

where

= 3arctan [

4(—1)r2 /ﬁ(x) n—2 [[1 + 2cos[(2v + 277)/3]]3]
= 7 vlo dv,
0

3(n —2)! 2x[1 + cos[(2v 4 27) /3]]
where
_ P’ +1 _ V3
O{(X) = IOg |:(¢(x)——|—l)3i| and ,B(x) = 3arctan [Tgﬁ(_x‘)} .

To complete the proof of Theorem 2.1 we need to justify the inversion made in (2.3). In
the inner integral in (2.3), we induce the change of variable z = 1/u to get

1 L (1 =21 n—2 1 © (1 =21 n—2
/ / a(d - n7log” 7z dt=/ / x(dm o log” w1y
0 o 1—xt(1 =12z 0 1 u?2—xt(1 —=0)u

Since forevery 0 <t <1,-27/4 <x <27/4andu > 1,

(1 —1)2log" 2 u - log" 2 u
w2 —xt(l—=02%u ~ u?—u

and the improper integral

o | n—2
/ og u du
1

u? —u
is convergent, and

/00 x(1—1)%log" % u
1

u? —xt(1 —1)2u

is uniformly convergent. This justifies the inversion of the order of the integrals in (2.3)
and hence the proof of Theorem 2.1 is complete. O

The next theorem gives a generalization of Theorem 2.1.

Theorem 2.2. Form =1,2,3,...,n=1,2,3,... and |x| < (27/4)™, we have

m

S(n, m: x) =m"_1ZS(n, 1: wlxl/my, (2.12)

j=1

2wi/m

where w = e is a primitive root of unity.
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Proof.

2 xkTmkT 2mk + 1
S(n,m:x)=mzx (n:) (Zmk + 1)
—  k"ITGmk +1)

(ee] xk
m 1; 7 BOnk, 2mk +1)

YA 2mk
mK— m
m Z = / "KL — )Pk gy,
k=1 0
Inverting the order of summation and integration, we find that

1 o _ N2, 1/ mymik
Stz = [ S0
0 k=1

k=1 t

_ m/1 Lin_il(t (1= nc/mm]
0 t

— i/l Lip—_1(w/t(1 — z)le/m)dt
j=1 0 1

m 1 00 1 j.or1 _ \2.1/mik
n_1 [w/t(1 —)“x* /™M) dt

= E 1 E —.
m j:1 /(; = knfl t

Inverting the order of summation and integration, we get

o] [a)jkxl/m]k

m 1
St,m:x)y=m" Y Y e /O 11— ) ar

j=1k=1
m_ oo 1/m1k
- [@/x/™]
w133
3k
j=1k=1 kn(k)
m .
=m"! Z S, 1: w/x'/™),
j=l1
completing the proof of Theorem 2.2. O
COROLLARY 2.3

Form=1,2,3,... and |x| < (27/4)™ we have
Z ol =m Z 6 arctan? L
k2(3mk) 2¢)(a)kx1/m) -1

1., [1 + [¢(wkx1/m)]3“
—5 log ,

2 [1 4 ¢(akxl/m)]3 @13)

where w = e*™1/™ is a primitive root of unity.

Proof. Setting n = 2 in (2.12) we get the desired result. a
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3. Applications

Putting some particuler values for n and x in Theorems 2.1 and 2.2, we can make many
explicit evaluations.

Let |x| < 27/4.If we set n = 2 in (2.1) we find by the help of Gauss multiplication
formula for Euler’s gamma function:

2 xk X 3 45  4x
S2,1:x) = E — o = 7483 (1,1,1,—;—,—,22 —>
Pt kz(k) 3 233

3
= 6arctan’ |:£j| — llog2 |: ¢ +1 ] . 3.1
29 -1 2 (¢ +1)3

Differentiating (3.1) with respect to x and then multiplying by x we get for |x| < 27/4:

S(ll)iXk xF<113454x)
, 1o X) = L — {312 IR B Sl s
kG o3 2°3°37 27

1 . V3 18¢
——27—4x arctan 2¢_1 1_¢+¢2

[¢>3+1 }3¢§¢>(1—¢>)}
—log .

(¢ +1)3 14 ¢3 G2

Differentiating both sides of (3.2) with respect to x and then multiplying by x we get for
|x| < 27/4:

ixk_F 13,45 &
B\t

i=t (&)
_ 36¢x 18v3(1 — ¢")o
@41 g+ (1-¢+¢22QT )
=1
X arctan
2¢ — 1

9 (1 —2¢ —2¢° + ¢*) _ 6v3(1 — ¢p)px
(1+¢32Q7 —4x) (27— 4x)32(1 + ¢3)

[ 1+ ¢3 ] 108¢°
x log

1+ Q7 —4x0)(1 4¢3 (3.3)

where

27 — 2x +3[81 — 12x]1/27'73
¢=¢(x>=[ Rl ]

as defined by (2.4).



On the series Y o (3k) k=" xk
Putting x = 27/4 and n = 2 in (2.1) yields
X, (27/4)% 22
B

Letn =2 and x = 6in (2.1). Then

—2log?2.

6k

gk

=~
—

k
Setx =1/2in (3.1) to get

s 1 I , 1. 5
Z —— = —7n° — —log”2.
P k2(3kk)2k 24 2

Setx = 11in (3.1) to get

>0 1 3
Z = 6arctan® |: V3

1 —[100 + 124/69]1/3

_ S DA B SRV
2(3k)—6arctan |:24/3_]i| 2log 2 1).

|

2

Setx = —1/41in (3.1) to get

L 129 + V69)
[2 + (100 + 124/69)1/373 |

0 k
Z( 1/4) =6arccot2(2x/§+ﬁ)—%log22.

Putx = 1/2in(3.2) to get

Setx = 61n (3.2) to get

»
Il
=~

)

2131 =23 10g2!' 2 — 1).

Letx = 1/2 and n = 0in (3.3) to get

i L2 6 eny 1L
£ (P T 25T 125 O8ST 550

o g . V3
_ /3 1/3
E —— =4/32 (1 +2/7)arctan 251

Here, observe that ¢ (1/2) =2 + V3. Letx = —1/41n (3.3) to get

i 1)’< s 310 st 39
= 32 % 1124/7

arc cot(2\/§ + ﬁ).

379
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(3.9)

(3.10)

(3.11)

(3.12)
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Note that ¢ (—1/4) = —(5 + +/21)/2. Set x = 6 in (3.3) to get

00 gk 1 12 V3
/3 2/3 V2
2_1: - 2 (240 +96.213 4752 ) aretan | S

~

+ 21/3(4.21/3 —5) 10g(21/3 —1)+38. (3.13)

Setting x = 1 in (3.3) we obtain
> ] 36+/231 18v/3(1 — tH)t V3
Z _k = N 7z | arctan

k 529(1 —t+1%) 23(1 —1t+19) 2t — 1

k=1
. [9r(1 “2r =203 4174 6469(1 — r)r:|

23(1 4 13)2 ©529(1 + 13)
1+173 10873
1 , 3.14
x 0g|:(1+r)3i| 23(1 + 13)2 (3-14)
where
1/
B (25 + 3«/69)
B 2

Substituting m = 2 and m = 3 in (2.13) we get

0 3k
3 3
Z al = 12 arctan? [L} + 12 arctan?® [L]

2¢(—x) — 1 2¢(x) — 1

_b£[¢ewf+1'_bg[¢uf+l]
[¢(—x) + 11 ] [p(x) + 113

and

Z o = 18 arctan? i + 18 arctan® L
k2(9k) 2¢(x) — 1_ 2¢ (ax) — 1

V3 3 d(x)3+1
20 VO 22l e Tt
+ 18 arctan |:2¢(a2x) — 1:| > log [[q)(x) n 1]3:|

3 2[¢wm3+1} 3 2[¢w%f+1}
—=log"| —F=|—zlo P Sara—
2 [p(ax) + 113 2 [p(a2x) + 113

where a = (i+/3 — 1)/2.

Of these results, eqs (3.6), (3.9), (3.11) and (3.12) have been evaluated by Borwein and
Girgensohn [7] experimentally by the method called integer relation algorithm which does
not constitute a mathematical proof. So their results are just conjectural. Our results verify
Borwein and Girgensohn’s experimental evaluations. All the results we obtained seem to
be new.
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