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Abstract.  In this paper, we characterize the symbol in Hormander symbol class
S5 (m € R, p,§ > 0) by its wavelet coefficients. Consequently, we analyse the kernel-
distribution property for the symbol in the symbol class S7'; (m € R, p > 0,8 > 0)
which is more general than known results; for non-regular symbol operators, we establish
sharp L2-continuity which is better than Calderén and Vaillancourt’s result, and establish
L? (1 < p < oo) continuity which is new and sharp. Our new idea is to analyse
the symbol operators in phase space with relative wavelets, and to establish the kernel
distribution property and the operator’s continuity on the basis of the wavelets coefficients
in phase space.
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1. Introduction

Asymbolo (x, &) € §'(R" x R") can define a symbol operator o (x, D): S(R") — S'(R")
by the following formula:

o(x,D)f(x) = /e"*éa(x,@f@) de, (1.1)

where f (&) is the Fourier transformation of function f (x). When Hérmander studied pseu-
dodifferential operators, he introduced Hérmander’s symbol class Spm, smeR, p,§>0).
One writes o (x, &) € SZI,«S’ if

02000 (x. £)] < Cap(1 + [E)"FIPIHI vor, p e N, (1.2)

But we did not know what are the elements in Hormander class S”f smeR, p,8>0)
before. Professor Meyer [12] proposed me to study such a kind of pseudodifferential
operators with wavelets.

All of us know that wavelet theory has made a great success in the study of func-
tion spaces, and symbols were introduced as a representation of operators. In this sense,
operators could be viewed as matrix under the usual wavelet bases for function spaces,
and one hopes that the above class of operators could be characterized by the operators
whose matrices under the respective wavelet basis are privileged on the diagonal. But
this is not true except for the case where the operators themselves and their conjugate
operator all belong to OpSI’fl (see [12]). In refs [6,17,18] one used the Beylkin—Coifman—
Meyer—Rokhlin algorithm and its generalization to characterize the kernel-distribution of
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operators by their wavelet coefficients. In analysing Calderén—Zygmund operators, Yang
treated their kernel-distributions as usual distribution in 2n dimensions. In analysing sym-
bol operators in OpS;’fs (0 < 8 < 1), he treated their kernel-distribution like distributions
in 2n dimensions where different coordinates play different roles. Further, one developed
pseudo-annular decomposition to study operator’s continuity on the basis of wavelet char-
acterization (see [4,11]). But there exists difficulties to find unconditional bases for gen-
eral symbol operators in OpS7} s by considering their kernel-distributions. Here, we treat
directly the symbols as distributions in phase space and our first aim is to characterize all
these symbol classes with wavelet coefficients.

Besov spaces Ba,™ is a little bigger than Holder spaces C;'. But the latter has no
unconditional basis, and wavelets cannot characterize it; the former has unconditional basis,
and wavelets can characterize it. Hence we replace S /’ﬁ s by S Z’) 5-Onewriteso (x,§) € S Z’ 5
if

10f 0 (x, &)l g < Cap(l+[EN" PP Vo e N peN”.  (13)
We have the following theorem.

Theorem 1. Given m € R, p, 5 > 0, there exists an index set A, s, a group of wavelet
basis {®,(x, &) }ien, s where @, (x, &) € S(R" x R") and a group of number array spaces
Ngfa such that

G) Ifo(x, &) € S'Z’s, then there exists a unique sequence {a,}en,; € N;)"S such that

o, &)= Y @®(x,8).

AEAp s

(ii) Conversely, if {a;}ien, s € NZfa, then there exists a unique symbol o (x, &) such that

the following formula is true in the sense of symbol

o(x,€) = Z a,®,(x,8) € MZl,s'

AEA, s

Remark 1. Givenm € R, p,§ > 0, by (1.2) and (1.3), it is easy to see that S/’)'”E C S’Zfa

. . m C om C ¢om
where their elements are almost the same, more precisely, S 05~ S 05~ S 64T VT > 0.

Further, by the proof in Theorem 5 below, we know ngo = S(’)'fo.

Note that, if there exist a set S and a group of functions {®; (x, §)},es satisfying that
D, (x,€) € S(R" x R") and {®y(x, &)}ses is an orthonormal basis in L>(R" x R"),
then for each distribution o (x, £) € S'(R" x R™) and for each A € §, we can define a
unique number a; = (o (x, &), P, (x, &)). Thatis to say, there is an one-to-one relationship
between the symbols in S'(R" x R") and the number sequences {a; }res. Thus {a;}ies
becomes a new representation for symbol — a wavelet representation. The difficulties to
analyse operators with wavelets are to find the appropriate wavelet basis. The proof of
Theorem 1 will be given in two sections: in Theorem 5 of §3, we find unconditional bases
for ng 5 (6 > 0); in §5, we characterize SZL, s (o > 0) with wavelet coefficients.

The second generation of Calderén—Zygmund operators studied kernel-distribution
k(x, z) where

k(x,z) = (Zn)_"/a(x, £)el® dg
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and
Tf(x) = o(x, D) f(x) = / ke, 2) f(x — 2) dz.

Meyer [12] and Stein [15] have established some relations for symbol and kernel-
distribution for some special symbol class SI’f s+ The second aim of this paper is to get a
more general result by using Theorem 1 or more precisely, by using Theorem 6 in §4.

Theorem 2. Givenm € R,p > 0,6 >0.Ifo(x,§) € S;’ia, then Vo, B € N", we have
(i) Iflz| = 3, then, Vo, B € N", we have
1829k (x, 2)| < Capn (1 + 12DV, ¥N > 0.
) Iflz] < %, then,Va € N, 8 € N", we have
192k(x, 2)ll pose < Capovlzl ™, VN =0
and

n+m+ da + max(1, p)|B| < Np.

The proof of Theorem 2 will be given in §5.

The reason why we pay attention to the wavelet structure of operators is to analyse
precisely operator’s continuity. For example, 7'1 theorem and compensated compactness
are well-known (see [2,4,9,11,16]). There are some problems which are hard to solve
without wavelets. In[5,7,19], one uses wavelets and relative pseudo-annular decomposition
to study the 7'l theorem and the compensated theory and gets some good results. The
third aim of this paper is to study the L?-continuity and the LP-continuity of non-regular
symbol operators. On the basis of symbol’s wavelet coefficients in phase space, we can
apply a precise Huygens’ principal (or a precise micro-analysis method) to study operator’s
continuity (see also [10]).

In [15], Stein studied the L?-continuity of operators defined by the symbol in 58,0 =
Cgo (R?"). In [3] and [8], one studied pseudodifferential operators in phase space. In
[1], Calderén and Vaillancourt studied L>-continuity of symbol operators where symbol
o (x, &) belong to the Holder space Ci"“ (R?") and in some sense, which is the special

Besov space Bg£'+l’°°(R2”) = ngH’oo. Here we reduce an index n for the order of

smoothness and establish L2—continuity also; in fact, for s < n < s’, we know that

B3> C BY%' ¢ BS™. Further, we can construct a special operator to show that our result
is sharp. That is our Theorem 3.

Theorem 3.
G) Ifo(x,§) e ngl , then we have

o (x, D) defines an operator which is continuous from L2(R") to L2(R").
(1.4)
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(i) Conversely, for 0 < s < n, there exists a symbol o (x, £) € B> but
o (x, D) is not continuous from L*>(R") to L*(R"). (1.5)
In addition, if we strengthen a little the above assumption, we can consider L?-continuity.
LetQ ={x= (xl,'... ,x,,),O <x; < .1, 1 <i < n} be aunit cube in R". For j > 0 and
ke Z" denote 277k +277Q = {x: 2/x — k € Q}. Let I, be the set which is composed

by n elements in R” which are the unit vectors in the direction of the axes. For arbitrary
distribution f(x) and fore € I,,, h € R,m € N, let

The f(x) = f(x +he) — f(x) and T} = (The)".
Forj>1,X=(x,%) ¢ R e ¢ I, denote

0je(X) = ‘52", 0 (X).

J

Denote

w(0)=SUP/ / lo(x, §)[ dx d§,
kezZ" Jk+QJ R"

and for j > 1, denote

o(j)= sup [ _/lUj,e(x,E)ldXdE-
kez" echy, J2-ik+2-iQJR"

We say that o (x, §) € BY, if

> 20 () < oo.
j

By (2.7) and (7.1) below, we know that B” ; ng)l. Now we establish L?-continuity.
Theorem 4.
() If o(x, &) satisfies the condition
o(x,&) e B, (1.6)
then for 1 < p < 00, we have
o (x, D) is continuous from LP (R") to L? (R"). 1.7)
(i1) Conversely, for 0 < s < n, there exists o (x, &) satisfies the condition
o(x,§) e B, (1.8)
but for 1 < p < oo, we have

o (x, D) is not continuous from L (R™) to L? (R"). (1.9)
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The difficulty to study operator’s continuity is to find an appropriate operator’s decom-
position such that the relative operators have some pseudo-orthogonality. Our new idea is
to establish the operator’s continuity in Theorems 3 and 4 on the basis of wavelet charac-
terization in phase space, and the proof will be given in the last two sections of this paper.

Remark 2. Meyer wrote in his famous book [12] that, for a long time, the study of operators
stayed in two isolated classes—Calderén—Zygmund operators and symbol operators. On
one hand, one has found wavelet characterization for Calderén—Zygmund operators and
established such operator’s continuity and also commutator operator’s continuity (see
[5,7,13,17,19]). On the other hand, one has given a wavelet representation for symbol
operators and developed relative methods to study operator’s continuity in this paper and
in other papers (see [18]). That is to say, we can study both Calder6n—Zygmund operators
and symbol operators under their wavelet representation.

2. Preliminaries

At the begin of this section, we introduce some notations for wavelets and prove some
wavelet properties.

In this paper, we use a wavelet basis which is a tensor product of the wavelets in dimen-
sion 1. When we characterize S/’i 5 in §§3 and 4 and when we analyse kernel-distribution
in §5, we always use Meyer’s wavelets; but in other cases, when we prove operator’s
continuity, we need Meyer’s wavelets; when we construct special operators to prove that
our results are sharp, we need sufficiently regular Daubechies’ wavelets. In dimension 1,
denote the father wavelet by ®Y(x) and the mother wavelet by ®!(x). In high dimension,
fore = (e1, ..., €,) € {0, 1}, denote

n
D€ (x) = ]_[ i (x;) and D°(x) = @O0 (x). 2.1
i=1
Forj € Z,k € Z", denote
Fie@) =272 f20x — k). (2.2)

Let {V;} ez be an orthogonal multi-resolution analysis in L?(R") and V11 = V; & W;.
Then {CD?’k(x)}kezn is an orthonormal wavelet basis in V; and {(D;,k(.x)}ee{o’1})1\{0}’kezn is
an orthonormal wavelet basis in W; and L*(R") = Vy é i>0 W;. Let P; be the projector

operator from L% (R") to V; and let O ; be the projector operator from L%(R") to W;. Itis
easy to see that Py + > j=0 @ is the unit operator /. Let

Ay ={r= (E,j,k),é e {0, 1}”,j >0,keZ"
and if j > 0, then € # 0}. 2.3)

Then {CDj.’k(x)}(e,j,k)E/\n is an orthonormal wavelet basis in LZ(R"). Ve € {0, 1}", there
exists {g; Jxezn such that

€ (x) = Y gfd’(2x — k). (2.4)
k
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Ve = (e1,...,€,) # 0, let . denote the smallest number i such that ¢; # 0 and let
e = e, denote the vector where the 7. coordinate is 1 and the rest are 0. For any sequence
{ak}kez,. let 7% = 5 be the unit operator satisfying t%; = % = ay; fore; € I, where
its ith element is 1 and the rest are 0; and for s € N, let

—14-k;
Tho @k = Gpre; — @k AN Se@x = — Y Ay, ki ki ks (225)

[=—00

and let Tie,- = (T4¢;)" and S‘ef‘, = (8¢, )*. Further, for « € N", let

n n
T = l_[ t$, and SY = l_[ Sel. (2.6)
i=1 i=1
For e¢; € I, such that the ith element of ¢; is 1 and for s € N, let Sg,f(x) = f(x)
and S, f(x) = — Z,;]_oo f(x — lej), and let S‘efi = (S,,;)%; further, for ¢ € N", let
5 =TTi= Se/-
Lemma 1.

(i) Fore € {0,1Y"\O and s € N, ®(x) = Zk(SjégZ)CDO(Zx — k) satisfies € (x) =
ri%& &5 (x); and further, if € (x) are Meyer's wavelets, then ®*(x) € S(R"); if
D€ (x) are Daubechies’ wavelets and s is less than the index of divergence moment of

wavelets, then ®€* (x) have compact support.
(ii) For Meyer's wavelet,NB € N", SP (38 ®%)(x) € S(R™M).

Proof.

(i) Fore € {0,1}"\Oand s € N, by the scale equation ®(x) = } ', g; ®%(2x —k) and by
the construction of ®¢*(x), we have ®¢(x) = t* I, &% (x). Further, by divergence
—Le.

moment properties of wavelets, we have:

(1) If ®¢(x) are Meyer’s wavelets, then |Sg€g,§| < Csn(1 + lk)~N,¥VN > 0 and
hence &5 (x) € S(R™).

(2) If &€ (x) are Daubechies’ wavelets and s is less than the index of divergence moment
of wavelets, then there exists Cy such that, for |k| > Ci, Sj6 g,i = 0, and hence

®*(x) have compact support.

(ii) For Meyer’s wavelet, V8 € N", ), KPdO(x — k) are polynomials Pg(x) where
the degree of x; is f;; hence we have SE@P DY) (x) € S(R™). Or we can prove
(ii) by the fact that the Fourier transformation of SB@P DY) (x) is equal to fg(§) =

CpéP 1—1?=1(1 — e/8)=Fi d0(£); since suppd(£) C [—47", 47”]”, so fg(§) € S(R™).

Besov spaces B)?, which were introduced systematically by Peetre [14] can
be characterized with their wavelet coefficients (see [12] and [19]). For f(x) =
2 i—(e.jkyen, G Pr(x), we have the following.
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Lemma 2.

Q=

f@) € BYI(RY = | Y 2740+ (Z WP) <oo. (27

Jj=0 €.k

Secondly, we introduce a useful and simple inequality which would be used often in
this paper.

Lemma 3. Ya > 1,m € R, x,y € R", we have

(L4 [xD™ < A+ [y)™ (1 +alx =y, (2.8)
Proof. Itis evident form > 0. If m < 0, then we have

I+ D™ < A+ 1yD" A+ Jx = yD"™ < (1 + [yD™ (1 + alx — y™.

At the end of this section, a variation of the result in [15] (which discusses the operator’s
continuity) will be introduced. For j > 0 and m = (k,[) € Z*", let T*,, be the relative
conjugate operators of operators 7 . Then we have the following lemma

Lemma 4. Suppose that T} ,, satisfies the following three conditions:

N Tjmllp2—p2 <C, (2.9)

I Tjbey 1y T gy iy 2 r2 < CL+ 477 [k — ko) 201+ |1 — B )72,
(2.10)

0Ty 0 Tiko ol 2o r2 < CA A+ [k — ko) 72N0(1 + 47711y — ) >N,
(2.11)

Then for No > n, T; = Zme 720 T defines an operator which is continuous from L?to
L? and | T}l 22 < C4I".

Proof. First, we consider a finite sum S; = S; v = Z|m\§N T; . Since S;‘Sj is a self-
adjoint operator, we have ||S;[|> = 153851 = ||(S;Sj)M I/M for all integer M. But we

have
SRS DD

kil k2,12 kap—1.lam-1

* *
x Z Tjsklall Tjsoity - Tj»kZM—lJZM—l Tjtom lom - (2.12)

ko .lom

We maximize ||(S"ij)M|| by

*
Z Z Z Z IT kl I Tjkody - TjakZM—lql2M—lTj*k2M’12M I

kil ko, lp kop—1.om—1 ko om
(2.13)
First, we re-group all the operators two by two, and apply the continuity of || T]*m G|l
We get
” T J.ki,0 Tj’kz,lz T T]fk2M71,12M71 Tj’kZM,le ”
< CM(1 4 ki — k)TN A 47T |1 — )20
X (14 lkap—1 — ko D201+ 47 Loyt — )72,
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Then we maximize || T; kily [l and || T'j kyyy.15y, || Y the constant C, then re-group the remain-
ing operators two by two. Applying the continuity of |7} ,, Tj?fm, I, we get

T

k
||Tj,kl:ll Tk T Gikant Lo |

*
Jokam—1,om—1
< CMP2(1+47 kg — k3]) 72N (1 + |1y — 13]) 720

x o (L4 47 kapr—2 — ka1 D720 + |lapg—2 — bag—1 1) 2.
Combining the above two cases, we have

* L3 DRI *
| Tj,k1 I TJJQJZ Tj,kZM—l Jam-

Tj koo | < CMH A+ Ty = ko)™

x (1+ 47 ko = k37N - (1 [kopg—1 — kapg )N

x (1+47|l = L™ + |l =~

x oox (1+47 |by—y — L))~
Summing in orderky, ... , kop—1 andly, ... , lop—1, one gets CM+14/7CM =1 then sum-
ming kyps and loys, one gets

ISIPM < CN?CMHAIRM=D or 5] < (CNCM+14ImCM=D) 357,
(2.14)

Letting M — oo, we get || S|| < C4/".
Further, we adopt Journé’s methods to pass to the general case. According to the above
result, V f(x) € L?, we have

Z AnTn f)|  =CIfX)l2, YN €N, |An| < 1. (2.15)

lm|<N

L2

Let €(N) = supg. y | ZNslm\SN Am T f ()| 2. To prove that ), T, f(x) converges
to a function in L2, it is sufficient to prove that limy_, -, €(N) = 0. It is evident that,
VN < N’,wehave e(N) > e(N’).If e(N) does not approach zero, then there exists § > 0

and N > 0 such that e(N’) > §, VN’ > N. Then we can choose m}v < m%, <. <

2%k 2k+1 _
my <my " <--- such that for Z; = Zm%‘glm\gm%‘“ T f (x), we have

1 Zkll 2 = 6. (2.16)

For0 = (61,...,6;) € {—1, l}k, let Z(0,k) = Z{'(:I 0; Z;. According to (2.15), we
have | Z(0. k)| < Cllf()l2. Since Y_ i 1Zi12, < 275 gy 120 0|12, we
have Zf-;] |Zill;2 < C|lf|l12, which contradicts (2.16)!

3. Unconditional bases for ~(')',ls =0

In this section, we use the usual 2n dimension wavelet basis in phase space to characterize
So'0 = So.o and use wavelet basis which comes from tensor product of wavelet basis in n

dimension to characterize 3'6” s (@6 >0).
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Let Ap,o = Apy and VA = (e, €/, j, k, 1) € Ao, let Dy (x, &) = k(x)cb l(é;-') Then

{®1(x, E)}ren, is an orthonormal basis in L2(R" x R"). Fora, = (a(x, &), Dy(x, &),
the following equality is true in the sense of distribution:

o(x, &) = Y @ ®ux,E). 3.1

AEN(,0

Hence, we know that {ay}en,, becomes a new representation for symbol o (x, &). We
say that {a; }rengo € Ny if

lay| < Ch27/N A+ 2771)™, VN >0, € Agyp. (3.2)

For§ > 0,let Ags = Ay X Ap; and for & = (e, j, k, €, j/, k') € Aos, let Dy(x,&) =
CID;’k(x)CDj./,’k, (£). Then {®; (x, £)}5.ea, s is an orthonormal wavelet basis in L2(R" x R™).
For a), = (0 (x, &), @y (x, §)), itis clear that {as}ren, , becomes a new representation for
symbol. For § > 0, we write {ax}rcrg s € N(’)',ls’ if

lay| < Cq p2~GHOI2=GHRI (1 4 27 Ky +e Vo, B > 0. (3.3)
On basis of the above notation, for § > 0, we have the following.
Theorem 5. The following two conditions are equivalent:
o(x, &) €8s, (3.4)
{@i}renes € No's- (3.3)

Proof. First step. We consider the case where 6 = 0 and we prove that o (x,§) € S‘gfo
implies that {a; }ien,, € Ngfo. We consider three cases: (i) € # 0, (ii) ¢/ = 0, € # 0 and
(iii)e = ¢/ = 0.Forarbitrary ¢ € {0, 1}"\{0}and N > 0, let IéNf(x) be the Nthintegration
of f(x) for the t.-coordinate. For Case (i) and for sufficiently large N’ > 2N +n + |m|,
we have

ja| = (o (x, £), @5, (), (&))]
=270y o (x.8), € (2x — k) (IY @) 27 — )|
s2-"<"—N>/|<ag,o(x,s>,q>€(2-"x—k>>||(15d>)6/<2fé —)ldg
< —JN/ - __ Aty

+ 127 —IpN’
Then applying Lemma 3 to (1 + |£])™, we have

lanl = C27/N (L + 127" /(1 +[27g — 1=V dg

<27 /N A 27
For Case (ii), by Lemma 2, we have

d+1Ep™

(1+|2j$—lI)N’dE'

= [ o). 5 ol @) lds < €277



356 0 X Yang
Then applying Lemma 3 to (1 + |£])™, we have
] < €27 (4 27 1™ f(l + 1278 — 1N ag
< C27 N (1 4 =i

For Case (iii), by Lemmas 2 and 3, we have

1 m
= [ N, 0, 0~ opllo®e —ids =< [ CEl e

+1& — 1N’
< C(4+pm /(1 +lE—IpM=Nde < ca+p™.

Second step. We consider the case where § = 0 and we prove that {a)},c Aoo € N(l)q,lo
implies that o (x, §) € S',. For arbitrary o, B € N", we choose N > n + |a| + || and
N’ > n 4+ |m|. We have

009! Y adi(x.)

reAoo

< Zz./(n+\06|+\/3\—1\/) Z |(a;lq)€)(2./x —h)|

Jj=0 k

x ;a + 271y ef o) 27 — 1)

< 3 itrHal+B-N) § (L+ 277" )
= A+ e — i)V

Then applying Lemma 3 to (1 + [27/1])™, we have

009! Y @ ®u(x.8)

A€o0

< Cap(l4 (g™ Y 2/ rHldHIAI=N)
j=0

< Cop(1 +1ED™.

Third step. We consider the case where § > 0 and we prove that (3.4) implies (3.5). We
distinguish four cases.

(1) If e = ¢ = 0, then a;:Z:j,,k, = agpox = (0. £), @x — PO — K')). Since

(o (x, &), ®O(x — k))| < C(1 + |&])™, we apply Lemma 3, and get
lagp ol < C(L+ K™,
(2) Ife =0, € #0, then
a5 e = A = (O E), OO = P, (©))
=271 o (x, £), @0 (c — )L 0%) 1 0 (6)).
Since |(8£€0(x, £), ®0(x —k))| < C(1 + |&|)™, we apply Lemma 3, and get

lay] < Cx27 N (1 + 277 K.



Wavelet characterization of Hormander symbol class S”' s 357
(3) Ife #£0,€ =0, then
aS = a5 o = (006, 8), @ (1) 'E — k).
Hence by Lemmas 2 and 3, we get
a5k ol = C27EF (A4 Ky
(4) If |e||€’| # 0, then
aS g = (0 (0, 6), ®F (1) PS4 (©))
=271 1UOf o (x,8), 5, ()ULO) jo e ().
Hence by Lemmas 2 and 3, we get

lay| < Ca’ﬂz—(%'i‘a)jQ—(%HﬂDj’(1 + |2—j’k’|)m+5a.

Final step. We consider the case where § > 0 and we prove that (3.5) implies (3.4). Let
o(x,§&) = ZAerg a, P, (x, &), then we have

o, 6)=Y 2/la 0 ()@ o)1 (®).
)\.eAO,a

By Lemma 2, we have

10f o2(x. &)l gooe = sup 203 Z 2/ Pla 8f ') ;1 (6))

€, ] k / NG
< Sup Z 2] |ﬂ||a0 k. j' k/||(as CDG )]/,k/(g)l
e, j K
+ sup 2( Fa)j Z 2j “3' ] k j, k/”(a q)é )j/ k’($)|
€#0,j,k J k!

C(L+[ED™ + C(1+ D" < C(1 + €)™,

IA

Hence we geto (x, &) € 5'6”8.

4. Wavelet characterization for S‘,’: s(p>0)

We use the wavelet basis which comes from the tensor product of wavelet basis in n-
dimension. Let A, 5 = A, X Ay. For A = (¢, j, k, €', j', k') € Ay, let Dy (x, &) =
ij’k (x)CDj./,’k, (). Then {®@; (x, £)}5en,, 5 is an orthogonal normal wavelet basis in L2(R" x
R").Foray, = (o (x,§), ®a(x, §)),itisclear that {ax}ren , ; becomes a new representation
for symbol. For A = (¢, j, k, €/, j/, k'),if ¢’ = 0,then j' = 0 and we write A = (e, j, k, k')
and a; = a€ 2 Let 7 = rf be the operator acting on k’. We say that {a;L}AEA 5 € N

if ay, satisfies the following properties:
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(i) The absolute value of a,, satisfies:

Ca2™ B+ (1 4 K"+, Var > 0, if e =0.
“4.1)

|a] ica,ﬁz('5“‘”2<'5+ﬂ>f/<1+|2f’k’|)m+5apﬂ,\m,ﬁzo, if €' # 0;
al =

(i1) In addition, for €’ = 0, a;, also satisfies

7846 ) il < Cap2” BT (14 KPPl ve > 0, € N, if e =0.  (42)

Then we have the following theorem.

Theorem 6. The following two conditions are equivalent:

o(x,8) €8s, (4.3)
{aitren,; € Np's. 4.4)

Proof. From symbol to number array. To prove (4.1), we consider first the case where
€’ # 0. For arbitrary o and B € N", for sufficiently large N’ > n + |m| + 8|a| — p|B], we
have

lax] = o (x, §), ¢§-,k(x)q’j~l/,k/(§)>|
= 2%/ G185 o (x,£), QI x — kUL E —K)). (4.5)
By Lemma 2, we get

(Lt g eell
(1412 — kPN

las| < C2—iGHlaDy ' (5—18D

Then applying Lemma 3 to (1 + |£])"T3¢—,Il we have

lay] < Czj(%—|a|)2j'(%—l,3|)(1 + |2—j’k/|)m+5o,_p|/3|

* / (14127 — Kimoarlfl=N gg
< €27/ Gl I GHIBD (] 4 1p=J" ! [ymtde—plBl,

For €’ = 0, for arbitrary « and for sufficiently large N’ > n + |m| + §|a|, by Lemma 2,
we have

laz] = [{o (x, &), D, () DY 1, (5))]

(1 + Jgymroerlf
(+ g =KDV

< Cc2—iGGFlab dt.
Then applying Lemma 3 to (1 + [£[)"" ™%, we have
lay| < C27G 1D 4 |g/|)lm+3el /(1 + g — K| Hel=N g
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To prove (4.2), Vo € N", let t§ f (x) =[]}, ri’;if(x). Hence we have

T'Ba;,k,k/ = (o(x, &), d>§-‘k(x)t’5(bo(§ — k')

= (tPo(x, ), @5, ()" — k).

For& € R", p € N", there exists a &’ € B(¢, 1 + ||) such that 7o (x, &) = 8l o (x, &),
Hence we have

oPa g = (0o (. £, @5 (0 @0(E — k).

Then applying the same argument as above, we get the desired conclusion (4.2).

From wavelet representation to symbol representation. We consider three cases:
(1) |e]le’| #0;(2) e =0, €’ #0; (3) € = 0. We calculate the derivation of the following
three symbols:

o1(x, &)= Y a®(x,8),

AEA, s
lelle’] #0
&= Y adi(x8),

AEAp s
e=0,/ £0

o3(x, &) = Y @ Pu(x,§).
AEA, s

=0

We prove that o1(x, £),02(x, &) € S;'fa and o3(x,&) € SZI,S' As for o1(x, &), for
arbitrary «, 8 € N", we choose s > |a|,t > |B],8(s —a) < p(t — B) and N' >
n+ |m + sé — tp|. Then we have

|8§3§01 (x, &) < Z 2Jlal=5)5j'(1B1=1) Z |(a;lq)€)(2jx — k)|
j,j/ZO G,k

X Z(] + |2_J'/k/|)m+s8—tp|(8£<D€/)(2j’%. _ k/)|
X
— i’ +58—
< Y 2fl=p)p-n 32 (A + 277 Koo
- (1+ 27 — &'V

J+j'=0 K

Applying Lemma 3 to (1 4 |2_-//k’|)m+55_’p, we have

1820001 (x, €)1 = Copp(1+ g1y +lel=rIBl 3™ pihal=s)7 (10
jri'Z0

< Cq.p(1 + |g])mTolel=PIAl,
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As for oo (x, §), for arbitrary a, B € N", we choose t > || and N’ > n + |m — tp|.
Then we have

020f oa(x, )] < > 27 B0 S 3200 (x — k)|
k

J'z0

x> (4 7K 0f 0 (278 — k)

6/,](/

- Z 2/ (1B1=1) Z 1+ |2_j’k/|)m+s6—t,0
= o (L+ 12—k

Applying Lemma 3 to (1 + |27/ k'|)"~** we have

1959E 0205, §)| = Co (1 + [y P11 Y™ 2 Il 01D
J'z0

< Cop(1+ [ PIFL

As for o3(x, &), for arbitrary 8 € N, we have

os(x, &) = Y a5, 0@ 0O OO)(E — k)
€,j.k,k’

= Y tPas, @5 (0)SP L @0 (E - k).
€,j.k,k

Forall @ € N, we choose N > n + |m 4 da — p|B||. Applying Lemmas 1 and 2, we have

18f 03 (x, )l gee < Cap

VBTN Bae L SPOf @0 (E — k)
J.k.k &
k/

[e.e]

<C

Do K el g — kTN
k/

< Cap(1+ g HolI=PIAL

That is to say, 03(x, &) € 51’)"’5.

5. Kernel-distribution

In this section, we consider the kernel-distribution property of symbols and prove The-
orem 2. By Theorem 7, the kernel-distribution of the symbol operator o (x, D) can be
written as

’ . A 1 .7 cn—il 1
k(x.z) = 27)™" a®c D2 x — k) (277 7) K,
J.k.j'k
(€,),k;€,j' k) eAn

where

nog: . !
U =0 € m
22 aj)k‘j/’k/ S prs.
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We decompose k(x, z) into three parts:

) =0 Y aby @ QIx —ldf 7T e,
AEAp s
lelle’170

ko(x,2) = Qm)™" Y aOkJ P00 — kD (27 ) 2 s
AEA, s
€=0,e’#0

ka(x,2) = @)™ Y aS, p eF T2 — )0 (2).
A€, s
€'=0

Hence, by Meyer’s wavelet property, we know that: (i) if |z] < %, then ki(x,z) =

ko (x,z) = 0; and (i) if |z| > 4%, then k3(x, z) = 0. Now we prove that
10998k (x, 2)| + 18020 ka(x, 2)| < Capn(1+ 127N, YN >0
and
182k3(x, )|l g < Capovlzl™, YN =0
and
n+m+ da + max(1l, p)B < Np.
First, we consider k1 (x, z). For o, 8 € N", Vs1 and t;, we have

— |8§‘8£k(x,z)| <C Z g (el=s1)jp—(n+1)j’
J,J'z0

x Z(l + (270 K ymAsid=np+ipl
k/

x Yl ix—k Y eyl
€#0,k €'#0,ly =18l
By choosing t1p > m + 516 + |B| + n, we have

Z(l + |2—j/k/|)m+315—11p+\/3\ < co’
k/

Note that )", ; [0% € (2/x — k)| < C; hence we have

Il S C Z 2(‘0l|_sl)j2—llj/ Z |qA)E/(2—j/Z)|.

J,j’=0 €'#0

Since ®€(x) (eA # 0) are Meyer’s wavelets, there exists 0 < M’ < M suchthatVo € N",
we have suppd? ®€(z) C B(0, oM N\B(, 2M’) Hence, there exists at most a finite number

Jj’ such that ZE,#) |®€' (277 7)] # 0 and 27/ ~cC+z) L By choosing 51 > |«| and

m+s13+|B|+n
)

t; > max{ , N}, we get

I < Copn(+1zD7V



362 0 X Yang

Secondly, we consider k3 (x, z). For «, 8 € N", 55 and 1,, we have

= 10¢0Pk(x, )| < C Y 27 Z(1+|2 Al
/>0

DI TR DI Ay T
k €'#0,lyI<IBl

We choose f, > max{%

, N} and applying the same proof as above, we get

L <Copn(+]zh)N

Finally, we consider k3(x, z). We know that

Zal e ]_[(1 )Y (a0 @
k/
and

-1/ -1/
8y Z(tﬁa;k’k,) efi =, Zk”’(tﬂa;’k,k,) ke,
g g

Hence,

3 k3(x,2)=C Z 2/ x —k) Z C})//ly)/z

(€.J.k)€An yi+yatys=y
n
X (82/1 l_[(l _ eiZi)ﬂi) <Z k'v2 (Tﬁaj,k,k’) eik/z) 8;/3 (,I\)O(Z).
i=1 k'

By Lemma 2 and by the estimation of t#a¢ ke We choose a convenient 8 € N such that
m + Sa — p|B| + |y2] +n < 0 and get the desired conclusion.

6. L2-continuity for symbol operator

First, we prove a useful lemma. Fori = 1, 2, let ! (x) be real-valued functions which
belong to S(R"). For j > 0 and m = (k, ) € Zy,, let

Tjmf(x) = / el L (D)D) f(y) dy = / Kjm@x, y)f() dy, (6.1)
where

Kjm(x,y) =™ @] ()07 ,(0). (6.2)

The kernel-distribution of the conjugate operator T/.*m is

(x,y) = e VDT (D] (). (6.3)

/ m

Then we have the following lemma.
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Lemma 5. Ym = (k,1),m’ = (k',l') € Zy,, there exists a sufficiently large Ny > n such
that T, satisfies the following two conditions:
NTjaaTFp 22 < CA+47T k=K D2No + 1 =12, (6.4)

0T} Tjwrllos g < CA+ 1k =KD + 471 = 1'p72N. (6.5)

Proof. The kernel-distribution of T]?’j kLK is

y B
K, (3,2 = @107 (y — 2)®5 ()P (2),

where
Dy i(z) = / dl(x —k)d'(x — k') e dx.
Since

D140 (y =Dl <CA+k—kDVA+27 |y —z)7V,

we get the desired conclusion for the norm of Tj?k e Lik e
Further, the kernel-distribution of Tj,k,lTj*k/ ;18

2 »
K, (3,2) = @027 (y = 2)®) (NP 1,(2),

where

Dy10(2) = / O (x — P> (x — ') % dx.
Since

D200 Q7 (y =D < CA+=IDVA+27 ]y -2V,
we get the desired conclusion for the norm of 77, ,T; v 1.

Proof of Theorem 3. Let

RSO0 y) =e™ ) aSp @5, (0)05(y)
k,l

be the kernel-distribution of 7";*5/. By Lemmas 4 and 5, we have

~€!€/ . E,G/
1T, ll2sr2 = c4" S]:l}) la; -

Let

~ . 6,6, ’
K()C, y) =Y Z ajyk’lcbj"k(x)q).ej,l(y)
€€, ]kl

be the kernel-distribution of T; then we have

~ . 6,6,
1Tl 22 <C Y 4" sup laSy |-
F e, ekl
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Let Ff(x) be the Fourier transform of f(x); then we have o (x, D) f(x) = TFf(x),
i.e. o (x, D) is continuous from L?to L2,

Now we prove part (ii) of Theorem 3. Let ®!(x) be a regular mother wavelet, and
supp®! (x) C B(0,2M) where M is an integer. Let ®(x) be the Fourier transform of the
function (CDI(x))z; then there exists Cy such that for |x| < 2C;, we have &D(x) > C;. For
J = 0, let 7; be the set of / satisfying 2~M=2] ¢ 77 and | < Cr47 where C, satisfies
| e, e/ IX| > C4J" for |x| < Cy. Further, for j > 0,2 M2k and 2= M~2] € 7", let
aj g = e_"‘rjkl; otherwise, ajr; = 0. For j > 0,1 € 7j,leta;; = 2=/ otherwise,
ajj = 0.

To show that the result in Theorem 3 is sharp, we construct a special function and a
special operator. Let f;(x) =) ;a NCIJ}.’ ;(x) and let

Kj(x,y) =e™ Zaj,k,sz}’k(x)q)},l(ﬂ
k.l
be the kernel-distribution of the operator Tj. We have || fj]l ;2 ~ C and
L =T ;)32
-y ’ [ X ainiaa@ 02 ¢ ay
k I
According to the definition of <i>(x) and aj x , we have
k I
k I

By changing variables 2/x — k — x and by the definition of a j.1» we have

Ij — 47jnZ/ Z ei4’jlx
k

lETj

2
(@], (x))* dx.

S x) (@] 4 (1) dx

S x)P(@} (1) dx.

2
O x +477k))?| (x)|* dx.

For k| < C147 and |x| < Cj, we have |®(4~/x + 477k)|?> > C,. Hence, we have

I = C/ 3 et

IE‘L’/'
Let K (x, &) be the symbol of the operator o (x, D); then we have

2
&' (x)|? dx > Cc42/",

loj(x, D)l 2 = CA™ and  [|Kj(x, £)| oo =275,

That is to say, for 0 < s < n, there exists a symbol o (x, ) € By but o(x, D) is not
continuous from L? to L2.
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7. LP-continuity

We begin with a lemma about the characterization of symbol.

Lemma 6. If o (x, §) satisfies condition (1.6), then

S 2supy |a;’,§’l| < 0. (7.1)
k i H

j.€,€

In addition, for 0 < s < n, the following two conditions are equivalent:

> 21 (j) < oo, (7.2)
j
Zzw SupZ|ajkl| < 0. (7.3)

J.€.€

Proof. From wavelet representation to symbol. That is to say, we prove that (7.3) implies
(7.2). For j > 1, e € Ip,, we have

€€ €€
0je(x,§) = Z Z aj/’k,ltgfjeq)j/’kyl(x’é)

J'zj (€. kD)

e,e’
Z a5 /kl T e j/,k,l(x’é)'

Jj'<j (e,€ kD)
Hence, we have

Zz/(”+s) sup / d.x/ |Uj,e(-x’ S)ldg
2-im+2-i Q RN

j>1 meZ"

<Cy 2t sup/ >y |aj;f,;,||c1>f(2f’x—k)|dx

j>1 mezZ" J2=im+2- JQJ>/(€€](1)

S i) Sup/ (= iin
Z 2=im+2-i Q ]Z:

j>1 meZ"

x Y |aj;fk’1||c1>€(2f’x—k)|dx

(e.€',k,D)

§CZZ 2J5 sup sup2|a,kl|

jZl j,Z,/ kezZ" €€

+ CZ Z 2U'=inp s sup supZ |la’ /k1|

j=1j'<j keZ" €€’

If0 < s < n, then

W<Cz2ﬂsup Z|a,kl

€€’k
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And further, we have

- sup/ dx/ o (2. §)] d&
meZ" Jm+Q n

<C sup/ >N |ajkl||d>€(2jx—k)|dx
m

meZn +0 j>0 (e, €k l)

<CZ sup Z'%k!'

j>0keZm.e.€

<CZZ” sup Z|ajkl|

€€’k
From symbol to wavelet representation. For (¢, €', j, k,1) € Ayy,, we have
a5l = o (6, £), 55, (x, )]
If |e| + |€'| = 0, then j = 0 and we have

|a8:/(<),l| = |<G(x1 ‘5), (I)O’O(_x — k’ %‘ _ l))|

/ f|o<x £)] d de.
K+0 JR"

If |e] + |€/| # 0, according to Lemma 1, we have

lk—k'|<2M

el = 2" o (. 6). ", @9 @x — k278 — D))

Yee.er)

= 27"(014j (e (6, §), B @2 x —k, 278 — D).

Hence we get

laSel=C o Y 2 / - / 1014 (eery (x, §)] dx dE.
2-ik'+2-iQ JR"

k—k'|<2M
So we get the desired conclusion.

Proof of Theorem 4. Let

KS€(xy) = Zal £ 2x — )T 27 (x — y)) &2 I
be the kernel-distribution of the operator Tje’e/. We have
K§SC @l = Cy Y a5 109 27x — bl @7 (x = ).
K1
That is,

/ K5 (x, )] dx < €277 sup ) _ 5
1
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and

/ K§€ (x, y)| dy < €27 sng a5k
l

!
Hence, for 1 < p < oo, TI.“ is continuous from L? to L?.
Let ‘

I'={(¢€,j),Vk,leZ" (,€, ) k1) e Ay}

Hence o (x, D) = Z(e ¢, j)el T¢€ is continuous from L? to L? for 1 < p < 0.

J
Then we prove part (i) of Theorem 4. Let M be a sufficiently big integer, let ®!(x)
be a regular Daubechies’” wavelet with supp &' (x) ¢ B(0,2M) and let d>(x) be Meyer’s

wavelet. Moreover, let

oj(x.£)= Y @'QIx—ko*2/E)

IMA2 ) czn

and let

o, E)= Y j270;(x,6).

2+M)jeN

Then o (x, &) satisfies conditions (1.8) and (1.9).
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