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Abstract. In this paper, we characterize the symbol in Hörmander symbol class
Sm

ρ,δ (m ∈ R, ρ, δ ≥ 0) by its wavelet coefficients. Consequently, we analyse the kernel-
distribution property for the symbol in the symbol class Sm

ρ,δ (m ∈ R, ρ > 0, δ ≥ 0)
which is more general than known results; for non-regular symbol operators, we establish
sharp L2-continuity which is better than Calderón and Vaillancourt’s result, and establish
Lp (1 ≤ p ≤ ∞) continuity which is new and sharp. Our new idea is to analyse
the symbol operators in phase space with relative wavelets, and to establish the kernel
distribution property and the operator’s continuity on the basis of the wavelets coefficients
in phase space.
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1. Introduction

A symbol σ(x, ξ) ∈ S′(Rn×Rn) can define a symbol operator σ(x, D): S(Rn) → S′(Rn)

by the following formula:

σ(x, D)f (x) =
∫

eixξ σ (x, ξ)f̂ (ξ) dξ, (1.1)

where f̂ (ξ) is the Fourier transformation of function f (x). When Hörmander studied pseu-
dodifferential operators, he introduced Hörmander’s symbol class Sm

ρ,δ (m ∈ R, ρ, δ ≥ 0).
One writes σ(x, ξ) ∈ Sm

ρ,δ , if

|∂α
x ∂

β
ξ σ (x, ξ)| ≤ Cα,β(1 + |ξ |)m−ρ|β|+δ|α|, ∀α, β ∈ Nn. (1.2)

But we did not know what are the elements in Hörmander class Sm
ρ,δ (m ∈ R, ρ, δ ≥ 0)

before. Professor Meyer [12] proposed me to study such a kind of pseudodifferential
operators with wavelets.

All of us know that wavelet theory has made a great success in the study of func-
tion spaces, and symbols were introduced as a representation of operators. In this sense,
operators could be viewed as matrix under the usual wavelet bases for function spaces,
and one hopes that the above class of operators could be characterized by the operators
whose matrices under the respective wavelet basis are privileged on the diagonal. But
this is not true except for the case where the operators themselves and their conjugate
operator all belong to OpSm

1,1 (see [12]). In refs [6,17,18] one used the Beylkin–Coifman–
Meyer–Rokhlin algorithm and its generalization to characterize the kernel-distribution of
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operators by their wavelet coefficients. In analysing Calderón–Zygmund operators, Yang
treated their kernel-distributions as usual distribution in 2n dimensions. In analysing sym-
bol operators in OpSm

1,δ (0 ≤ δ ≤ 1), he treated their kernel-distribution like distributions
in 2n dimensions where different coordinates play different roles. Further, one developed
pseudo-annular decomposition to study operator’s continuity on the basis of wavelet char-
acterization (see [4,11]). But there exists difficulties to find unconditional bases for gen-
eral symbol operators in OpSm

ρ,δ by considering their kernel-distributions. Here, we treat
directly the symbols as distributions in phase space and our first aim is to characterize all
these symbol classes with wavelet coefficients.

Besov spaces B
m,∞∞ is a little bigger than Hölder spaces Cm

b . But the latter has no
unconditional basis, and wavelets cannot characterize it; the former has unconditional basis,
and wavelets can characterize it. Hence we replace Sm

ρ,δ by S̃m
ρ,δ . One writes σ(x, ξ) ∈ S̃m

ρ,δ ,
if

‖∂β
ξ σ (x, ξ)‖B

α,∞∞ ≤ Cα,β(1 + |ξ |)m−ρ|β|+δα, ∀α ∈ N, β ∈ Nn. (1.3)

We have the following theorem.

Theorem 1. Given m ∈ R, ρ, δ ≥ 0, there exists an index set �ρ,δ , a group of wavelet
basis {	λ(x, ξ)}λ∈�ρ,δ where 	λ(x, ξ) ∈ S(Rn×Rn) and a group of number array spaces
Nm

ρ,δ such that

(i) If σ(x, ξ) ∈ S̃m
ρ,δ , then there exists a unique sequence {aλ}λ∈�ρ,δ ∈ Nm

ρ,δ such that

σ(x, ξ) =
∑

λ∈�ρ,δ

aλ	λ(x, ξ).

(ii) Conversely, if {aλ}λ∈�ρ,δ ∈ Nm
ρ,δ , then there exists a unique symbol σ(x, ξ) such that

the following formula is true in the sense of symbol

σ(x, ξ) =
∑

λ∈�ρ,δ

aλ	λ(x, ξ) ∈ S̃m
ρ,δ.

Remark 1. Given m ∈ R, ρ, δ ≥ 0, by (1.2) and (1.3), it is easy to see that Sm
ρ,δ ⊂ S̃m

ρ,δ

where their elements are almost the same, more precisely, Sm
ρ,δ

⊂

= S̃m

ρ,δ
⊂

= Sm

ρ,δ+τ , ∀τ > 0.

Further, by the proof in Theorem 5 below, we know Sm
0,0 = S̃m

0,0.

Note that, if there exist a set S and a group of functions {	λ(x, ξ)}λ∈S satisfying that
	λ(x, ξ) ∈ S(Rn × Rn) and {	λ(x, ξ)}λ∈S is an orthonormal basis in L2(Rn × Rn),
then for each distribution σ(x, ξ) ∈ S′(Rn × Rn) and for each λ ∈ S, we can define a
unique number aλ = 〈σ(x, ξ), 	λ(x, ξ)〉. That is to say, there is an one-to-one relationship
between the symbols in S′(Rn × Rn) and the number sequences {aλ}λ∈S . Thus {aλ}λ∈S

becomes a new representation for symbol — a wavelet representation. The difficulties to
analyse operators with wavelets are to find the appropriate wavelet basis. The proof of
Theorem 1 will be given in two sections: in Theorem 5 of §3, we find unconditional bases
for S̃m

0,δ (δ ≥ 0); in §5, we characterize S̃m
ρ,δ (ρ > 0) with wavelet coefficients.

The second generation of Calderón–Zygmund operators studied kernel-distribution
k(x, z) where

k(x, z) = (2π)−n

∫
σ(x, ξ) eizξ dξ
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and

Tf (x) = σ(x, D)f (x) =
∫

k(x, z)f (x − z) dz.

Meyer [12] and Stein [15] have established some relations for symbol and kernel-
distribution for some special symbol class Sm

1,δ . The second aim of this paper is to get a
more general result by using Theorem 1 or more precisely, by using Theorem 6 in §4.

Theorem 2. Given m ∈ R, ρ > 0, δ ≥ 0. If σ(x, ξ) ∈ Sm
ρ,δ , then ∀α, β ∈ Nn, we have

(i) If |z| ≥ 1
2 , then, ∀α, β ∈ Nn, we have

|∂α
x ∂β

z k(x, z)| ≤ Cα,β,N (1 + |z|)−N, ∀N > 0.

(ii) If |z| ≤ 1
2 , then, ∀α ∈ N, β ∈ Nn, we have

‖∂β
z k(x, z)‖B

α,∞∞ ≤ Cα,β,N |z|−N, ∀N ≥ 0

and

n + m + δα + max(1, ρ)|β| < Nρ.

The proof of Theorem 2 will be given in §5.
The reason why we pay attention to the wavelet structure of operators is to analyse

precisely operator’s continuity. For example, T 1 theorem and compensated compactness
are well-known (see [2,4,9,11,16]). There are some problems which are hard to solve
without wavelets. In [5,7,19], one uses wavelets and relative pseudo-annular decomposition
to study the T 1 theorem and the compensated theory and gets some good results. The
third aim of this paper is to study the L2-continuity and the Lp-continuity of non-regular
symbol operators. On the basis of symbol’s wavelet coefficients in phase space, we can
apply a precise Huygens’ principal (or a precise micro-analysis method) to study operator’s
continuity (see also [10]).

In [15], Stein studied the L2-continuity of operators defined by the symbol in S0
0,0 =

C∞
b (R2n). In [3] and [8], one studied pseudodifferential operators in phase space. In

[1], Calderón and Vaillancourt studied L2-continuity of symbol operators where symbol
σ(x, ξ) belong to the Hölder space C2n+1

b (R2n) and in some sense, which is the special

Besov space B
2n+1,∞∞ (R2n) = B

2n+1,∞∞ . Here we reduce an index n for the order of
smoothness and establish L2-continuity also; in fact, for s ≤ n < s′, we know that
B

s′,∞∞ ⊂ B
n,1∞ ⊂ B

s,∞∞ . Further, we can construct a special operator to show that our result
is sharp. That is our Theorem 3.

Theorem 3.

(i) If σ(x, ξ) ∈ B
n,1∞ , then we have

σ(x, D) defines an operator which is continuous from L2(Rn) to L2(Rn).

(1.4)
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(ii) Conversely, for 0 < s < n, there exists a symbol σ(x, ξ) ∈ B
s,∞∞ but

σ(x, D) is not continuous from L2(Rn) to L2(Rn). (1.5)

In addition, if we strengthen a little the above assumption, we can considerLp-continuity.
Let Q = {x = (x1, . . . , xn), 0 ≤ xi ≤ 1, 1 ≤ i ≤ n} be a unit cube in Rn. For j ≥ 0 and
k ∈ Zn, denote 2−j k + 2−jQ = {x: 2j x − k ∈ Q}. Let In be the set which is composed
by n elements in Rn which are the unit vectors in the direction of the axes. For arbitrary
distribution f (x) and for e ∈ In, h ∈ R, m ∈ N , let

τhef (x) = f (x + he) − f (x) and τm
he = (τhe)

m.

For j ≥ 1, X = (x, ξ) ∈ R2n, e ∈ I2n, denote

σj,e(X) = τn
2−j e

σ (X).

Denote

ω(0) = sup
k∈Zn

∫
k+Q

∫
Rn

|σ(x, ξ)| dx dξ,

and for j ≥ 1, denote

ω(j) = sup
k∈Zn,e∈I2n

∫
2−j k+2−j Q

∫
Rn

|σj,e(x, ξ)| dx dξ.

We say that σ(x, ξ) ∈ Bs , if∑
j

2(n+s)jω(j) < ∞.

By (2.7) and (7.1) below, we know that Bn ⊂

= B

n,1∞ . Now we establish Lp-continuity.

Theorem 4.

(i) If σ(x, ξ) satisfies the condition

σ(x, ξ) ∈ Bn, (1.6)

then for 1 ≤ p ≤ ∞, we have

σ(x, D) is continuous from Lp(Rn) to Lp(Rn). (1.7)

(ii) Conversely, for 0 < s < n, there exists σ(x, ξ) satisfies the condition

σ(x, ξ) ∈ Bs, (1.8)

but for 1 ≤ p ≤ ∞, we have

σ(x, D) is not continuous from Lp(Rn) to Lp(Rn). (1.9)
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The difficulty to study operator’s continuity is to find an appropriate operator’s decom-
position such that the relative operators have some pseudo-orthogonality. Our new idea is
to establish the operator’s continuity in Theorems 3 and 4 on the basis of wavelet charac-
terization in phase space, and the proof will be given in the last two sections of this paper.

Remark 2. Meyer wrote in his famous book [12] that, for a long time, the study of operators
stayed in two isolated classes—Calderón–Zygmund operators and symbol operators. On
one hand, one has found wavelet characterization for Calderón–Zygmund operators and
established such operator’s continuity and also commutator operator’s continuity (see
[5,7,13,17,19]). On the other hand, one has given a wavelet representation for symbol
operators and developed relative methods to study operator’s continuity in this paper and
in other papers (see [18]). That is to say, we can study both Calderón–Zygmund operators
and symbol operators under their wavelet representation.

2. Preliminaries

At the begin of this section, we introduce some notations for wavelets and prove some
wavelet properties.

In this paper, we use a wavelet basis which is a tensor product of the wavelets in dimen-
sion 1. When we characterize Sm

ρ,δ in §§3 and 4 and when we analyse kernel-distribution
in §5, we always use Meyer’s wavelets; but in other cases, when we prove operator’s
continuity, we need Meyer’s wavelets; when we construct special operators to prove that
our results are sharp, we need sufficiently regular Daubechies’ wavelets. In dimension 1,
denote the father wavelet by 	0(x) and the mother wavelet by 	1(x). In high dimension,
for ε = (ε1, . . . , εn) ∈ {0, 1}n, denote

	ε(x) =
n∏

i=1

	εi (xi) and 	0(x) = 	(0,... ,0)(x). (2.1)

For j ∈ Z, k ∈ Zn, denote

fj,k(x) = 2nj/2f (2j x − k). (2.2)

Let {Vj }j∈Z be an orthogonal multi-resolution analysis in L2(Rn) and Vj+1 = Vj ⊕ Wj .
Then {	0

j,k(x)}k∈Zn is an orthonormal wavelet basis in Vj and {	ε
j,k(x)}ε∈{0,1}n\{0},k∈Zn is

an orthonormal wavelet basis in Wj and L2(Rn) = V0
⊕

j≥0 Wj . Let Pj be the projector

operator from L2(Rn) to Vj and let Qj be the projector operator from L2(Rn) to Wj . It is
easy to see that P0 +∑

j≥0 Qj is the unit operator I . Let

�n = {λ = (ε, j, k), ε ∈ {0, 1}n, j ≥ 0, k ∈ Zn;
and if j > 0, then ε 
= 0}. (2.3)

Then {	ε
j,k(x)}(ε,j,k)∈�n

is an orthonormal wavelet basis in L2(Rn). ∀ε ∈ {0, 1}n, there
exists {gε

k }k∈Zn such that

	ε(x) =
∑

k

gε
k	

0(2x − k). (2.4)
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∀ε = (ε1, . . . , εn) 
= 0, let τε denote the smallest number i such that εi 
= 0 and let
eε = eτε denote the vector where the τε coordinate is 1 and the rest are 0. For any sequence
{ak}k∈Zn , let τ 0 = S0 be the unit operator satisfying τ 0ak = S0ak = ak; for ei ∈ In where
its ith element is 1 and the rest are 0; and for s ∈ N , let

τ±ei
ak = ak±ei

− ak and Sei
ak = −

−1+ki∑
l=−∞

a(k1,... ,ki−1,l,ki+1,... ,kn), (2.5)

and let τ s±ei
= (τ±ei

)s and Ss
ei

= (Sei
)s . Further, for α ∈ Nn, let

τα
± =

n∏
i=1

τ
αi±ei

and Sα =
n∏

i=1

Sαi
ei

. (2.6)

For ei ∈ In such that the ith element of ei is 1 and for s ∈ N , let S0
ei
f (x) = f (x)

and Sei
f (x) = −∑−1

l=−∞ f (x − lei), and let Ss
ei

= (Sei
)s ; further, for α ∈ Nn, let

Sα = ∏n
i=1 S

αi
ei

.

Lemma 1.

(i) For ε ∈ {0, 1}n\0 and s ∈ N , 	̃ε,s(x) = ∑
k(S

s
eε

gε
k )	

0(2x − k) satisfies 	ε(x) =
τ s

− 1
2 eε

	̃ε,s(x); and further, if 	ε(x) are Meyer’s wavelets, then 	̃ε,s(x) ∈ S(Rn); if

	ε(x) are Daubechies’ wavelets and s is less than the index of divergence moment of
wavelets, then 	̃ε,s(x) have compact support.

(ii) For Meyer’s wavelet, ∀β ∈ Nn, Sβ(∂β	0)(x) ∈ S(Rn).

Proof.

(i) For ε ∈ {0, 1}n\0 and s ∈ N , by the scale equation 	ε(x) = ∑
k gε

k	
0(2x−k) and by

the construction of 	̃ε,s(x), we have 	ε(x) = τ s

− 1
2 eε

	̃ε,s(x). Further, by divergence

moment properties of wavelets, we have:

(1) If 	ε(x) are Meyer’s wavelets, then |Ss
eε

gε
k | ≤ Cs,N(1 + |k|)−N, ∀N > 0 and

hence 	̃ε,s(x) ∈ S(Rn).
(2) If 	ε(x) are Daubechies’ wavelets and s is less than the index of divergence moment

of wavelets, then there exists Cs such that, for |k| ≥ Cs , Ss
eε

gε
k = 0, and hence

	̃ε,s(x) have compact support.

(ii) For Meyer’s wavelet, ∀β ∈ Nn,
∑

k kβ	0(x − k) are polynomials Pβ(x) where
the degree of xi is βi ; hence we have Sβ(∂β	0)(x) ∈ S(Rn). Or we can prove
(ii) by the fact that the Fourier transformation of Sβ(∂β	0)(x) is equal to fβ(ξ) =
Cβξβ

∏n
j=1(1 − eiξj )−βj 	̂0(ξ); since supp	̂0(ξ) ⊂ [− 4π

3 , 4π
3 ]n, so fβ(ξ) ∈ S(Rn).

Besov spaces B
s,q
p , which were introduced systematically by Peetre [14] can

be characterized with their wavelet coefficients (see [12] and [19]). For f (x) =∑
λ=(ε,j,k)∈�n

aλ	λ(x), we have the following.
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Lemma 2.

f (x) ∈ B
s,q
p (Rn) ⇐⇒


∑

j≥0

2jq(s+ n
2 − n

p
)

(∑
ε,k

|aλ|p
) q

p




1
q

< ∞. (2.7)

Secondly, we introduce a useful and simple inequality which would be used often in
this paper.

Lemma 3. ∀α ≥ 1, m ∈ R, x, y ∈ Rn, we have

(1 + |x|)m ≤ (1 + |y|)m(1 + α|x − y|)|m|. (2.8)

Proof. It is evident for m ≥ 0. If m < 0, then we have

(1 + |x|)m ≤ (1 + |y|)m(1 + |x − y|)|m| ≤ (1 + |y|)m(1 + α|x − y|)|m|.

At the end of this section, a variation of the result in [15] (which discusses the operator’s
continuity) will be introduced. For j ≥ 0 and m = (k, l) ∈ Z2n, let T ∗

j,m be the relative
conjugate operators of operators Tj,m. Then we have the following lemma.

Lemma 4. Suppose that Tj,m satisfies the following three conditions:

‖Tj,m‖L2→L2 ≤ C, (2.9)

‖Tj,k1,l1T
∗
j,k2,l2

‖L2→L2 ≤ C(1 + 4−j |k1 − k2|)−2N0(1 + |l1 − l2|)−2N0 ,

(2.10)

‖T ∗
j,k1,l1

Tj,k2,l2‖L2→L2 ≤ C(1 + |k1 − k2|)−2N0(1 + 4−j |l1 − l2|)−2N0 .

(2.11)

Then for N0 > n, Tj = ∑
m∈Z2n Tj,m defines an operator which is continuous from L2 to

L2 and ‖Tj‖L2→L2 ≤ C4jn.

Proof. First, we consider a finite sum Sj = Sj,N = ∑
|m|≤N Tj,m. Since S∗

j Sj is a self-

adjoint operator, we have ‖Sj‖2 = ‖S∗
j Sj‖ = ‖(S∗

j Sj )
M‖1/M for all integer M . But we

have

(S∗
j Sj )

M =
∑
k1,l1

∑
k2,l2

· · ·
∑

k2M−1,l2M−1

×
∑

k2M,l2M

T ∗
j,k1,l1

Tj,k2,l2 · · · T ∗
j,k2M−1,l2M−1

Tj,k2M,l2M
. (2.12)

We maximize ‖(S∗
j Sj )

M‖ by∑
k1,l1

∑
k2,l2

· · ·
∑

k2M−1,l2M−1

∑
k2M,l2M

‖T ∗
j,k1,l1

Tj,k2,l2 · · · T ∗
j,k2M−1,l2M−1

Tj,k2M,l2M
‖.

(2.13)

First, we re-group all the operators two by two, and apply the continuity of ‖T ∗
j,mTj,m′ ‖.

We get

‖T ∗
j,k1,l1

Tj,k2,l2 · · · T ∗
j,k2M−1,l2M−1

Tj,k2M,l2M
‖

≤ CM(1 + |k1 − k2|)−2N0(1 + 4−j |l1 − l2|)−2N0

× · · · × (1 + |k2M−1 − k2M |)−2N0(1 + 4−j |l2M−1 − l2M |)−2N0 .
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Then we maximize ‖T ∗
j,k1,l1

‖ and ‖Tj,k2M,l2M
‖ by the constant C, then re-group the remain-

ing operators two by two. Applying the continuity of ‖Tj,mT ∗
j,m′ ‖, we get

‖T ∗
j,k1,l1

Tj,k2,l2 · · · T ∗
j,k2M−1,l2M−1

Tj,k2M,l2M
‖

≤ CM+2(1 + 4−j |k2 − k3|)−2N0(1 + |l2 − l3|)−2N0

× · · · × (1 + 4−j |k2M−2 − k2M−1|)−2N0(1 + |l2M−2 − l2M−1|)−2N0 .

Combining the above two cases, we have

‖T ∗
j,k1,l1

Tj,k2,l2 · · · T ∗
j,k2M−1,l2M−1

Tj,k2M,l2M
‖ ≤ CM+1(1 + |k1 − k2|)−N0

× (1 + 4−j |k2 − k3|)−N0 · · · (1 + |k2M−1 − k2M |)−N0

× (1 + 4−j |l1 − l2|)−N0(1 + |l2 − l3|)−N0

× · · · × (1 + 4−j |l2M−1 − l2M |)−N0 .

Summing in order k1, . . . , k2M−1 and l1, . . . , l2M−1, one gets CM+14jn(2M−1); then sum-
ming k2M and l2M , one gets

‖S‖2M ≤ CN2nCM+14jn(2M−1) or ‖S‖ ≤ (CN2nCM+14jn(2M−1))
1

2M .

(2.14)

Letting M → ∞, we get ‖S‖ ≤ C4jn.
Further, we adopt Journé’s methods to pass to the general case. According to the above

result, ∀f (x) ∈ L2, we have∥∥∥∥∥
∑

|m|≤N

λmTmf (x)

∥∥∥∥∥
L2

≤ C‖f (x)‖L2 , ∀N ∈ N, |λm| ≤ 1. (2.15)

Let ε(N) = sup
Ñ≥N

‖∑
N≤|m|≤Ñ

λmTmf (x)‖L2 . To prove that
∑

m Tmf (x) converges

to a function in L2, it is sufficient to prove that limN→∞ ε(N) = 0. It is evident that,
∀N ≤ N ′, we have ε(N) ≥ ε(N ′). If ε(N) does not approach zero, then there exists δ > 0
and N > 0 such that ε(N ′) ≥ δ, ∀N ′ ≥ N . Then we can choose m1

N < m2
N < · · · <

m2k
N < m2k+1

N < · · · such that for Zk = ∑
m2k

N ≤|m|≤m2k+1
N

Tmf (x), we have

‖Zk‖L2 ≥ δ. (2.16)

For θ = (θ1, . . . , θk) ∈ {−1, 1}k , let Z(θ, k) = ∑k
i=1 θiZi . According to (2.15), we

have ‖Z(θ, k)‖ ≤ C‖f (x)‖L2 . Since
∑k

i=1 ‖Zi‖2
L2 ≤ 2−k

∑
θ∈{−1,1}k ‖Z(θ, k)‖2, we

have
∑k

i=1 ‖Zi‖L2 ≤ C‖f ‖L2 , which contradicts (2.16)!

3. Unconditional bases for S̃m
0,δ (δ ≥ 0)S̃m
0,δ (δ ≥ 0)S̃m
0,δ (δ ≥ 0)

In this section, we use the usual 2n dimension wavelet basis in phase space to characterize
Sm

0,0 = S̃m
0,0 and use wavelet basis which comes from tensor product of wavelet basis in n

dimension to characterize S̃m
0,δ (δ > 0) .



Wavelet characterization of Hörmander symbol class Sm
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Let �0,0 = �2n and ∀λ = (ε, ε′, j, k, l) ∈ �0,0, let 	λ(x, ξ) = 	ε
j,k(x)	ε′

j,l(ξ). Then

{	λ(x, ξ)}λ∈�0,0 is an orthonormal basis in L2(Rn × Rn). For aλ = 〈σ(x, ξ), 	λ(x, ξ)〉,
the following equality is true in the sense of distribution:

σ(x, ξ) =
∑

λ∈�0,0

aλ	λ(x, ξ). (3.1)

Hence, we know that {aλ}λ∈�0,0 becomes a new representation for symbol σ(x, ξ). We
say that {aλ}λ∈�0,0 ∈ Nm

0,0, if

|aλ| ≤ CN 2−jN (1 + |2−j l|)m, ∀N > 0, λ ∈ �0,0. (3.2)

For δ > 0, let �0,δ = �n × �n; and for λ = (ε, j, k, ε′, j ′, k′) ∈ �0,δ , let 	λ(x, ξ) =
	ε

j,k(x)	ε′
j ′,k′(ξ). Then {	λ(x, ξ)}λ∈�0,δ

is an orthonormal wavelet basis in L2(Rn ×Rn).
For aλ = 〈σ(x, ξ), 	λ(x, ξ)〉, it is clear that {aλ}λ∈�0,δ

becomes a new representation for
symbol. For δ > 0, we write {aλ}λ∈�0,δ

∈ Nm
0,δ , if

|aλ| ≤ Cα,β2−( n
2 +α)j 2−( n

2 +β)j ′
(1 + |2−j ′

k′|)m+δα, ∀α, β ≥ 0. (3.3)

On basis of the above notation, for δ ≥ 0, we have the following.

Theorem 5. The following two conditions are equivalent:

σ(x, ξ) ∈ S̃m
0,δ, (3.4)

{aλ}λ∈�0,δ
∈ Nm

0,δ. (3.5)

Proof. First step. We consider the case where δ = 0 and we prove that σ(x, ξ) ∈ S̃m
0,0

implies that {aλ}λ∈�0,0 ∈ Nm
0,0. We consider three cases: (i) ε′ 
= 0, (ii) ε′ = 0, ε 
= 0 and

(iii) ε = ε′ = 0. For arbitrary ε ∈ {0, 1}n\{0} andN > 0, let IN
ε f (x)be theN th integration

of f (x) for the τε-coordinate. For Case (i) and for sufficiently large N ′ > 2N + n + |m|,
we have

|aλ| = |〈σ(x, ξ), 	ε
j,k(x)	ε′

j,l(ξ)〉|

= 2j (n−N)|〈∂N
ξτ

ε′
σ(x, ξ), 	ε(2j x − k)(IN

ε′ 	)ε
′
(2j ξ − l)〉|

≤ 2j (n−N)

∫
|〈∂N

ξτ
ε′
σ(x, ξ), 	ε(2j x − k)〉||(IN

ε′ 	)ε
′
(2j ξ − l)|dξ

≤ C2−jN

∫
(1 + |ξ |)m

(1 + |2j ξ − l|)N ′ dξ.

Then applying Lemma 3 to (1 + |ξ |)m, we have

|aλ| ≤ C2−jN (1 + |2−j l|)m
∫

(1 + |2j ξ − l|)|m|−N ′
dξ

≤ C2−j (n+N)(1 + |2−j l|)m.

For Case (ii), by Lemma 2, we have

|aλ| =
∫

|〈σ(x, ξ), 	ε
j,k(x)〉||	ε′

j,l(ξ)|dξ ≤ C2−jN

∫
(1 + |ξ |)m

(1 + |2j ξ − l|)N ′ dξ.
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Then applying Lemma 3 to (1 + |ξ |)m, we have

|aλ| ≤ C2−jN (1 + |2−j l|)m
∫

(1 + |2j ξ − l|)|m|−N ′
dξ

≤ C2−j (n+N)(1 + |2−j l|)m.

For Case (iii), by Lemmas 2 and 3, we have

|aλ| =
∫

|〈σ(x, ξ), 	0(x − k)〉||	0(ξ − l)|dξ ≤ C

∫
(1 + |ξ |)m

(1 + |ξ − l|)N ′ dξ

≤ C(1 + |l|)m
∫

(1 + |ξ − l|)|m|−N ′
dξ ≤ C(1 + |l|)m.

Second step. We consider the case where δ = 0 and we prove that {aλ}λ∈�0,0 ∈ Nm
0,0

implies that σ(x, ξ) ∈ Sm
0,0. For arbitrary α, β ∈ Nn, we choose N > n + |α| + |β| and

N ′ > n + |m|. We have∣∣∣∣∂α
x ∂

β
ξ

∑
λ∈�0,0

aλ	λ(x, ξ)

∣∣∣∣ ≤
∑
j≥0

2j (n+|α|+|β|−N)
∑

k

|(∂α
x 	ε)(2j x − k)|

×
∑

l

(1 + |2−j l|)m|(∂β
ξ 	ε′

)(2j ξ − l)|

≤
∑
j≥0

2j (n+|α|+|β|−N)
∑

l

(1 + |2−j l|)m
(1 + |2j ξ − l|)−N ′ .

Then applying Lemma 3 to (1 + |2−j l|)m, we have∣∣∣∣∂α
x ∂

β
ξ

∑
λ∈�0,0

aλ	λ(x, ξ)

∣∣∣∣ ≤ Cα,β(1 + |ξ |)m
∑
j≥0

2j (n+|α|+|β|−N)

≤ Cα,β(1 + |ξ |)m.

Third step. We consider the case where δ > 0 and we prove that (3.4) implies (3.5). We
distinguish four cases.

(1) If ε = ε′ = 0, then a
ε,ε′
j,k,j ′,k′ = a

0,0
0,k,0,k′ = 〈σ(x, ξ), 	0(x − k)	0(ξ − k′)〉. Since

|〈σ(x, ξ), 	0(x − k)〉| ≤ C(1 + |ξ |)m, we apply Lemma 3, and get

|a0,0
0,k,0,k′ | ≤ C(1 + |k′|)m.

(2) If ε = 0, ε′ 
= 0, then

a
ε,ε′
j,k,j ′,k′ = a

0,ε′
0,k,j ′,k′ = 〈σ(x, ξ), 	0(x − k)	ε

j ′,k′(ξ)〉

= 2−j ′|β|〈∂β
ξτε

σ (x, ξ), 	0(x − k)(Iβ
ε 	ε)j ′,k′(ξ)〉.

Since |〈∂β
ξτε

σ (x, ξ), 	0(x − k)〉| ≤ C(1 + |ξ |)m, we apply Lemma 3, and get

|aλ| ≤ CN 2−j ′N(1 + |2−j ′
k′|)m.
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(3) If ε 
= 0, ε′ = 0, then

a
ε,ε′
j,k,j ′,k′ = a

ε,0
j,k,0,k′ = 〈σ(x, ξ), 	ε

j,k(x)	0(ξ − k′)〉.

Hence by Lemmas 2 and 3, we get

|aε,0
j,k,0,k′ | ≤ C2−( n

2 +α)j (1 + |k′|)m+δα.

(4) If |ε||ε′| 
= 0, then

a
ε,ε′
j,k,j ′,k′ = 〈σ(x, ξ), 	ε

j,k(x)	ε′
j ′,k′(ξ)〉

= 2−j ′|β|〈∂β
ξτε

σ (x, ξ), 	ε
j,k(x)(I

β

ε′	
ε′
)j ′,k′(ξ)〉.

Hence by Lemmas 2 and 3, we get

|aλ| ≤ Cα,β2−( n
2 +α)j 2−( n

2 +|β|)j ′
(1 + |2−j ′

k′|)m+δα.

Final step. We consider the case where δ > 0 and we prove that (3.5) implies (3.4). Let
σ(x, ξ) = ∑

λ∈�0,δ
aλ	λ(x, ξ), then we have

∂
β
ξ σ (x, ξ) =

∑
λ∈�0,δ

2j ′|β|aλ	
ε
j,k(x)(∂

β
ξ 	ε′

)j ′,k′(ξ).

By Lemma 2, we have

‖∂β
ξ σ2(x, ξ)‖B

α,∞∞ = sup
ε,j,k

|2( n
2 +α)j

∑
ε′,j ′,k′

2j ′|β|aλ(∂
β
ξ 	ε′

)j ′,k′(ξ)|

≤ sup
k

∑
ε′,j ′,k′

2j ′|β||a0,ε′
0,k,j ′,k′ ||(∂β

ξ 	ε′
)j ′,k′(ξ)|

+ sup
ε 
=0,j,k

2( n
2 +α)j

∑
ε′,j ′,k′

2j ′|β||aε,ε′
j,k,j ′,k′ ||(∂β

ξ 	ε′
)j ′,k′(ξ)|

≤ C(1 + |ξ |)m + C(1 + |ξ |)m+δα ≤ C(1 + |ξ |)m+δα.

Hence we get σ(x, ξ) ∈ S̃m
0,δ .

4. Wavelet characterization for S̃m
ρ,δ(ρ > 0)S̃m
ρ,δ(ρ > 0)S̃m
ρ,δ(ρ > 0)

We use the wavelet basis which comes from the tensor product of wavelet basis in n-
dimension. Let �ρ,δ = �n × �n. For λ = (ε, j, k, ε′, j ′, k′) ∈ �ρ,δ , let 	λ(x, ξ) =
	ε

j,k(x)	ε′
j ′,k′(ξ). Then {	λ(x, ξ)}λ∈�ρ,δ is an orthogonal normal wavelet basis in L2(Rn×

Rn). For aλ = 〈σ(x, ξ), 	λ(x, ξ)〉, it is clear that {aλ}λ∈�ρ,δ becomes a new representation
for symbol. For λ = (ε, j, k, ε′, j ′, k′), if ε′ = 0, then j ′ = 0 and we write λ = (ε, j, k, k′)
and aλ = aε

j,k,k′ . Let τβ = τ
β
+ be the operator acting on k′. We say that {aλ}λ∈�ρ,δ ∈ Nm

ρ,δ ,
if aλ satisfies the following properties:
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(i) The absolute value of aλ satisfies:

|aλ| ≤
{

Cα,β2−( n
2 +α)j 2−( n

2 +β)j ′
(1 + |2−j ′

k′|)m+δα−ρβ, ∀α, β ≥ 0, if ε′ 
= 0;
Cα2−( n

2 +α)j (1 + |k′|)m+δα, ∀α ≥ 0, if ε′ = 0.

(4.1)

(ii) In addition, for ε′ = 0, aλ also satisfies

|τβaε
j,k,k′ | ≤ Cα,β2−( n

2 +α)j (1 + |k′|)m+δα−ρ|β|, ∀α ≥ 0, β ∈ Nn, if ε′ = 0. (4.2)

Then we have the following theorem.

Theorem 6. The following two conditions are equivalent:

σ(x, ξ) ∈ S̃m
ρ,δ, (4.3)

{aλ}λ∈�ρ,δ ∈ Nm
ρ,δ. (4.4)

Proof. From symbol to number array. To prove (4.1), we consider first the case where
ε′ 
= 0. For arbitrary α and β ∈ Nn, for sufficiently large N ′ > n + |m| + δ|α| − ρ|β|, we
have

|aλ| = |〈σ(x, ξ), 	ε
j,k(x)	ε′

j ′,k′(ξ)〉|

= 2
nj
2 2j ′( n

2 −|β|)|〈∂β
ξτ

ε′
σ(x, ξ), 	ε(2j x − k)(I

β

ε′	
ε′
)(2j ′

ξ − k′)〉|. (4.5)

By Lemma 2, we get

|aλ| ≤ C2−j ( n
2 +|α|)2j ′( n

2 −|β|)
∫

(1 + |ξ |)m+δα−ρ|β|

(1 + |2j ′
ξ − k′|)N ′ dξ.

Then applying Lemma 3 to (1 + |ξ |)m+δα−ρ|β|, we have

|aλ| ≤ C2j ( n
2 −|α|)2j ′( n

2 −|β|)(1 + |2−j ′
k′|)m+δα−ρ|β|

×
∫

(1 + |2j ′
ξ − k′|)|m+δα−ρ|β||−N ′

dξ

≤ C2−j ( n
2 +|α|)2−j ′( n

2 +|β|)(1 + |2−j ′
k′|)m+δα−ρ|β|.

For ε′ = 0, for arbitrary α and for sufficiently large N ′ > n + |m| + δ|α|, by Lemma 2,
we have

|aλ| = |〈σ(x, ξ), 	ε
j,k(x)	0

0,k′(ξ)〉|

≤ C2−j ( n
2 +|α|)

∫
(1 + |ξ |)m+δα−ρ|β|

(1 + |ξ − k′|)N ′ dξ.

Then applying Lemma 3 to (1 + |ξ |)m+δα , we have

|aλ| ≤ C2j ( n
2 −|α|)(1 + |k′|)|m+δα|

∫
(1 + |ξ − k′|)|m+δα|−N ′

dξ

≤ C2−j ( n
2 +|α|)(1 + |k′|)m+δα.
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To prove (4.2), ∀α ∈ Nn, let τα±f (x) = ∏n
i=1 τ

αi±ei
f (x). Hence we have

τβaε
j,k,k′ = 〈σ(x, ξ), 	ε

j,k(x)τβ	0(ξ − k′)〉

= 〈τβ
−σ(x, ξ), 	ε

j,k(x)	0(ξ − k′)〉.

For ξ ∈ Rn, β ∈ Nn, there exists a ξ ′ ∈ B(ξ, 1 + |β|) such that τ
β
−σ(x, ξ) = ∂

β
ξ σ (x, ξ ′).

Hence we have

τβaε
j,k,k′ = 〈∂β

ξ σ (x, ξ ′), 	ε
j,k(x)	0(ξ − k′)〉.

Then applying the same argument as above, we get the desired conclusion (4.2).

From wavelet representation to symbol representation. We consider three cases:
(1) |ε||ε′| 
= 0; (2) ε = 0, ε′ 
= 0; (3) ε′ = 0. We calculate the derivation of the following
three symbols:

σ1(x, ξ) =
∑

λ∈�ρ,δ

|ε||ε′| 
= 0

aλ	λ(x, ξ),

σ2(x, ξ) =
∑

λ∈�ρ,δ

ε= 0,ε′ 
= 0

aλ	λ(x, ξ),

σ3(x, ξ) =
∑

λ∈�ρ,δ

ε′= 0

aλ	λ(x, ξ).

We prove that σ1(x, ξ), σ2(x, ξ) ∈ Sm
ρ,δ and σ3(x, ξ) ∈ S̃m

ρ,δ . As for σ1(x, ξ), for
arbitrary α, β ∈ Nn, we choose s > |α|, t > |β|, δ(s − α) ≤ ρ(t − β) and N ′ >

n + |m + sδ − tρ|. Then we have

|∂α
x ∂

β
ξ σ1(x, ξ)| ≤

∑
j,j ′≥0

2j (|α|−s)2j ′(|β|−t)
∑
ε,k

|(∂α
x 	ε)(2j x − k)|

×
∑
ε′,k′

(1 + |2−j ′
k′|)m+sδ−tρ |(∂β

ξ 	ε′
)(2j ′

ξ − k′)|

≤
∑

j,j ′≥0

2j (|α|−s)2j ′(|β|−t)
∑
k′

(1 + |2−j ′
k′|)m+sδ−tρ

(1 + |2j ′
ξ − k′|)−N ′ .

Applying Lemma 3 to (1 + |2−j ′
k′|)m+sδ−tρ , we have

|∂α
x ∂

β
ξ σ1(x, ξ)| ≤ Cα,β(1 + |ξ |)m+δ|α|−ρ|β| ∑

j,j ′≥0

2j (|α|−s)2j ′(|β|−t)

≤ Cα,β(1 + |ξ |)m+δ|α|−ρ|β|.
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As for σ2(x, ξ), for arbitrary α, β ∈ Nn, we choose t > |β| and N ′ > n + |m − tρ|.
Then we have

|∂α
x ∂

β
ξ σ2(x, ξ)| ≤

∑
j ′≥0

2j ′(|β|−t)
∑

k

|(∂α
x 	0)(x − k)|

×
∑
ε′,k′

(1 + |2−j ′
k′|)m−tρ |(∂β

ξ 	ε′
)(2j ′

ξ − k′)|

≤
∑
j ′≥0

2j ′(|β|−t)
∑
k′

(1 + |2−j ′
k′|)m+sδ−tρ

(1 + |2j ′
ξ − k′|)−N ′ .

Applying Lemma 3 to (1 + |2−j ′
k′|)m−tρ , we have

|∂α
x ∂

β
ξ σ2(x, ξ)| ≤ Cα,β(1 + |ξ |)m−ρ|β| ∑

j ′≥0

2j (|α|−s)2j ′(|β|−t)

≤ Cα,β(1 + |ξ |)m−ρ|β|.

As for σ3(x, ξ), for arbitrary β ∈ Nn, we have

∂
β
ξ σ3(x, ξ) =

∑
ε,j,k,k′

aε
j,k,k′	ε

j,k(x)(∂
β
ξ 	0)(ξ − k′)

=
∑

ε,j,k,k′
τβaε

j,k,k′	ε
j,k(x)Sβ(∂

β
ξ 	0)(ξ − k′).

For all α ∈ N , we choose N > n + |m + δα − ρ|β||. Applying Lemmas 1 and 2, we have

‖∂β
ξ σ3(x, ξ)‖B

α,∞∞ ≤ Cα,β

∥∥∥∥∥2j ( n
2 +α)

∑
k′

τβaε
j,k,k′Sβ(∂

β
ξ 	0)(ξ − k′)

∥∥∥∥∥
∞

≤ C

∥∥∥∥∥
∑
k′

(1 + |k′|)m+δα−ρ|β|(1 + |ξ − k′|)−N

∥∥∥∥∥
≤ Cα,β(1 + |ξ |)m+δ|α|−ρ|β|.

That is to say, σ3(x, ξ) ∈ S̃m
ρ,δ .

5. Kernel-distribution

In this section, we consider the kernel-distribution property of symbols and prove The-
orem 2. By Theorem 7, the kernel-distribution of the symbol operator σ(x, D) can be
written as

k(x, z) = (2π)−n
∑

(ε,j,k;ε′,j ′,k′)∈�n

a
ε,ε′
j,k,j ′,k′	

ε(2j x − k)	̂ε′
(2−j ′

z) ei2−j ′
k′z,

where

2
n
2 (j ′−j)a

ε,ε′
j,k,j ′,k′ ∈ Nm

ρ,δ.
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We decompose k(x, z) into three parts:

k1(x, z) = (2π)−n
∑

λ∈�ρ,δ

|ε||ε′|
=0

a
ε,ε′
j,k,j ′,k′	

ε(2j x − k)	̂ε′
(2−j ′

z) ei2−j ′
k′z,

k2(x, z) = (2π)−n
∑

λ∈�ρ,δ

ε=0,ε′ 
=0

a
0,ε′
0,k,j ′,k′	

0(x − k)	̂ε′
(2−j ′

z) ei2−j ′
k′z,

k3(x, z) = (2π)−n
∑

λ∈�ρ,δ

ε′=0

aε
j,k,k′ eik′z	ε(2j x − k)	̂0(z).

Hence, by Meyer’s wavelet property, we know that: (i) if |z| ≤ π
3 , then k1(x, z) =

k2(x, z) = 0; and (ii) if |z| ≥ 4π
3 , then k3(x, z) = 0. Now we prove that

|∂α
x ∂β

z k1(x, z)| + |∂α
x ∂β

z k2(x, z)| ≤ Cα,β,N (1 + |z|)−N, ∀N > 0

and

‖∂β
z k3(x, z)‖B

α,∞∞ ≤ Cα,β,N |z|−N, ∀N ≥ 0

and

n + m + δα + max(1, ρ)β < Nρ.

First, we consider k1(x, z). For α, β ∈ Nn, ∀s1 and t1, we have

I1 = |∂α
x ∂β

z k(x, z)| ≤ C
∑

j,j ′≥0

2(|α|−s1)j 2−(n+t1)j
′

×
∑
k′

(1 + |2−j ′
k′|)m+s1δ−t1ρ+|β|

×
∑

ε 
=0,k

|∂α
x 	ε(2j x − k)|

∑
ε′ 
=0,|γ |≤|β|

|∂γ
z 	̂ε′

(2−j ′
z)|.

By choosing t1ρ > m + s1δ + |β| + n, we have∑
k′

(1 + |2−j ′
k′|)m+s1δ−t1ρ+|β| ≤ C2nj ′

.

Note that
∑

ε,k |∂α
x 	ε(2j x − k)| ≤ C; hence we have

I1 ≤ C
∑

j,j ′≥0

2(|α|−s1)j 2−t1j
′ ∑
ε′ 
=0

|	̂ε′
(2−j ′

z)|.

Since 	ε(x)(ε 
= 0) are Meyer’s wavelets, there exists 0 < M ′ < M such that ∀α ∈ Nn,
we have supp∂α

z 	̂ε(z) ⊂ B(0, 2M)\B(0, 2M ′
). Hence, there exists at most a finite number

j ′ such that
∑

ε′ 
=0 |	̂ε′
(2−j ′

z)| 
= 0 and 2−j ′ ∼ C(1 + |z|)−1. By choosing s1 > |α| and

t1 > max{m+s1δ+|β|+n
ρ

, N}, we get

I1 ≤ Cα,β,N (1 + |z|)−N.
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Secondly, we consider k2(x, z). For α, β ∈ Nn, s2 and t2, we have

I2 = |∂α
x ∂β

z k(x, z)| ≤ C
∑
j ′≥0

2−(n+t2)j
′ ∑

k′
(1 + |2−j ′

k′|)m−t2ρ+|β|

×
∑

k

|∂α
x 	0(x − k)|

∑
ε′ 
=0,|γ |≤|β|

|∂γ
z 	̂ε′

(2−j ′
z)|.

We choose t2 > max{m+|β|+n
ρ

, N} and applying the same proof as above, we get

I2 ≤ Cα,β,N (1 + |z|)−N.

Finally, we consider k3(x, z). We know that

∑
k′

aε
j,k,k′ eik′z =

n∏
i=1

(1 − eizi )−βi
∑
k′

(τβaε
j,k,k′) eik′z

and

∂
γ
z

∑
k′

(τβaε
j,k,k′) eik′z = Cγ

∑
k′

k′γ (τβaε
j,k,k′) eik′z.

Hence,

∂
γ
z k3(x, z) = C

∑
(ε,j,k)∈�n

	ε(2j x − k)
∑

γ1+γ2+γ3=γ

Cγ1,γ2
γ

×
(

∂
γ1
z

n∏
i=1

(1 − eizi )−βi

)(∑
k′

k′γ2(τβaε
j,k,k′) eik′z

)
∂

γ3
z 	̂0(z).

By Lemma 2 and by the estimation of τβaε
j,k,k′ , we choose a convenient β ∈ Nn such that

m + δα − ρ|β| + |γ2| + n < 0 and get the desired conclusion.

6. L2L2L2-continuity for symbol operator

First, we prove a useful lemma. For i = 1, 2, let 	i(x) be real-valued functions which
belong to S(Rn). For j ≥ 0 and m = (k, l) ∈ Z2n, let

Tj,mf (x) =
∫

eixy	1
j,k(x)	2

j,l(y)f (y) dy =
∫

Kj,m(x, y)f (y) dy, (6.1)

where

Kj,m(x, y) = eixy	1
j,k(x)	2

j,l(y). (6.2)

The kernel-distribution of the conjugate operator T ∗
j,m is

K∗
j,m(x, y) = e−ixy	2

j,l(x)	1
j,k(y). (6.3)

Then we have the following lemma.
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Lemma 5. ∀m = (k, l), m′ = (k′, l′) ∈ Z2n, there exists a sufficiently large N0 > n such
that Tj,m satisfies the following two conditions:

‖Tj,k,lT
∗
j,k′,l′ ‖L2→L2 ≤ C(1 + 4−j |k − k′|)−2N0(1 + |l − l′|)−2N0 , (6.4)

‖T ∗
j,k,lTj,k′,l′ ‖L2→L2 ≤ C(1 + |k − k′|)−2N0(1 + 4−j |l − l′|)−2N0 . (6.5)

Proof. The kernel-distribution of T ∗
j,k,lTj,k′,l′ is

K
1,j

m,m′(y, z) = 	1,k,k′(2−j (y − z))	2
j,l(y)	2

j,l′(z),

where

	1,k,k′(z) =
∫

	1(x − k)	1(x − k′) e−ixz dx.

Since

|	1,k,k′(2−j (y − z))| ≤ C(1 + |k − k′|)N(1 + 2−j |y − z|)−N,

we get the desired conclusion for the norm of T ∗
j,k,lTj,k′,l′ .

Further, the kernel-distribution of Tj,k,lT
∗
j,k′,l′ is

K
2,j

m,m′(y, z) = 	2,l,l′(2
−j (y − z))	1

j,k(y)	1
j,k′(z),

where

	2,l,l′(z) =
∫

	2(x − l)	2(x − l′) eixz dx.

Since

|	2,l,l′(2
−j (y − z))| ≤ C(1 + |l − l′|)N(1 + 2−j |y − z|)−N,

we get the desired conclusion for the norm of T ∗
j,k,lTj,k′,l′ .

Proof of Theorem 3. Let

K̃
ε,ε′
j (x, y) = eixy

∑
k,l

a
ε,ε′
j,k,l	

ε
j,k(x)	ε′

j,l(y)

be the kernel-distribution of T̃
ε,ε′
j . By Lemmas 4 and 5, we have

‖T̃ ε,ε′
j ‖L2→L2 ≤ C4jn sup

k,l

|aε,ε′
j,k,l |.

Let

K̃(x, y) = eixy
∑

ε,ε′,j,k,l

a
ε,ε′
j,k,l	

ε
j,k(x)	ε′

j,l(y)

be the kernel-distribution of T̃ ; then we have

‖T̃ ‖L2→L2 ≤ C
∑
j

4jn sup
ε,ε′,k,l

|aε,ε′
j,k,l |.
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Let Ff (x) be the Fourier transform of f (x); then we have σ(x, D)f (x) = T̃ Ff (x),
i.e. σ(x, D) is continuous from L2 to L2.

Now we prove part (ii) of Theorem 3. Let 	1(x) be a regular mother wavelet, and
supp	1(x) ⊂ B(0, 2M) where M is an integer. Let 	̃(x) be the Fourier transform of the
function (	1(x))2; then there exists C1 such that for |x| ≤ 2C1, we have 	̃(x) ≥ C1. For
j ≥ 0, let τj be the set of l satisfying 2−M−2l ∈ Zn and |l| ≤ C24j where C2 satisfies

|∑l∈τj
ei4−j lx | ≥ C4jn for |x| ≤ C1. Further, for j ≥ 0, 2−M−2k and 2−M−2l ∈ Zn, let

aj,k,l = e−i4−j kl ; otherwise, aj,k,l = 0. For j ≥ 0, l ∈ τj , let aj,l = 2−jn; otherwise,
aj,l = 0.

To show that the result in Theorem 3 is sharp, we construct a special function and a
special operator. Let fj (x) = ∑

l aj,l	
1
j,l(x) and let

Kj(x, y) = eixy
∑
k,l

aj,k,l	
1
j,k(x)	1

j,l(y)

be the kernel-distribution of the operator T̃j . We have ‖fj‖L2 ∼ C and

Ij = ‖T̃j fj (x)‖2
L2

=
∑

k

∫ ∣∣∣∣
∫ ∑

l

aj,k,laj,l(	
1
j,l(y))2 eixy dy

∣∣∣∣
2

(	1
j,k(x))2 dx.

According to the definition of 	̃(x) and aj,k,l , we have

Ij =
∑

k

∫ ∣∣∣∣∑
l

aj,k,laj,l ei2−j lx

∣∣∣∣	̃(2−j x)|2(	1
j,k(x))2 dx

=
∑

k

∫ ∣∣∣∣∑
l

aj,l ei2−j l(x−2−j k)

∣∣∣∣	̃(2−j x)|2(	1
j,k(x))2 dx.

By changing variables 2j x − k → x and by the definition of aj,l , we have

Ij = 4−jn
∑

k

∫ ∣∣∣∣∑
l∈τj

ei4−j lx

∣∣∣∣
2

|	̃(4−j x + 4−j k)|2|	1(x)|2 dx.

For |k| ≤ C14j and |x| ≤ C1, we have |	̃(4−j x + 4−j k)|2 ≥ C1. Hence, we have

Ij ≥ C

∫ ∣∣∣∣∑
l∈τj

ei4−j lx

∣∣∣∣
2

|	1(x)|2 dx ≥ C42jn.

Let Kj(x, ξ) be the symbol of the operator σj (x, D); then we have

‖σj (x, D)‖L2→L2 ≥ C4jn and ‖Kj(x, ξ)‖B
s,∞∞ = 2j (s+n).

That is to say, for 0 < s < n, there exists a symbol σ(x, ξ) ∈ B
s,∞∞ but σ(x, D) is not

continuous from L2 to L2.
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7. LpLpLp-continuity

We begin with a lemma about the characterization of symbol.

Lemma 6. If σ(x, ξ) satisfies condition (1.6), then

∑
j,ε,ε′

2nj sup
k

∑
l

|aε,ε′
j,k,l | < ∞. (7.1)

In addition, for 0 < s < n, the following two conditions are equivalent:∑
j

2j (n+s)ω(j) < ∞, (7.2)

∑
j,ε,ε′

2sj sup
k

∑
l

|aε,ε′
j,k,l | < ∞. (7.3)

Proof. From wavelet representation to symbol. That is to say, we prove that (7.3) implies
(7.2). For j ≥ 1, e ∈ I2n, we have

σj,e(x, ξ) =
∑
j ′≥j

∑
(ε,ε′,k,l)

a
ε,ε′
j ′,k,l

τ n
2−j e

	
ε,ε′
j ′,k,l

(x, ξ)

+
∑
j ′<j

∑
(ε,ε′,k,l)

a
ε,ε′
j ′,k,l

τ n
2−j e

	
ε,ε′
j ′,k,l

(x, ξ).

Hence, we have

Is,e =
∑
j≥1

2j (n+s) sup
m∈Zn

∫
2−j m+2−j Q

dx

∫
Rn

|σj,e(x, ξ)| dξ

≤ C
∑
j≥1

2j (n+s) sup
m∈Zn

∫
2−j m+2−j Q

∑
j ′≥j

∑
(ε,ε′,k,l)

|aε,ε′
j ′,k,l

||	ε(2j ′
x − k)| dx

+ C
∑
j≥1

2j (n+s) sup
m∈Zn

∫
2−j m+2−j Q

∑
j ′<j

2(j ′−j)n

×
∑

(ε,ε′,k,l)

|aε,ε′
j ′,k,l

||	ε(2j ′
x − k)| dx

≤ C
∑
j≥1

∑
j ′≥j

2js sup
k∈Zn

sup
ε,ε′

∑
l

|aε,ε′
j ′,k,l

|

+ C
∑
j≥1

∑
j ′<j

2(j ′−j)n2js sup
k∈Zn

sup
ε,ε′

∑
l

|aε,ε′
j ′,k,l

|.

If 0 < s < n, then

Is,e ≤ C
∑
j ′

2j ′s sup
ε,ε′,k

∑
l

|aε,ε′
j ′,k,l

|.
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And further, we have

I ′ = sup
m∈Zn

∫
m+Q

dx

∫
Rn

|σ(x, ξ)| dξ

≤ C sup
m∈Zn

∫
m+Q

∑
j≥0

∑
(ε,ε′,k,l)

|aε,ε′
j,k,l ||	ε(2j x − k)| dx

≤ C
∑
j≥0

sup
k∈Zn,ε,ε′

∑
l

|aε,ε′
j,k,l |

≤ C
∑
j

2js sup
ε,ε′,k

∑
l

|aε,ε′
j,k,l |.

From symbol to wavelet representation. For (ε, ε′, j, k, l) ∈ �2n, we have

|aε,ε′
j,k,l | = |〈σ(x, ξ), 	

ε,ε′
j,k,l(x, ξ)〉|.

If |ε| + |ε′| = 0, then j = 0 and we have

|a0,0
0,k,l | = |〈σ(x, ξ), 	0,0(x − k, ξ − l)〉|

≤ C
∑

|k−k′|≤2M

∫
k′+Q

∫
Rn

|σ(x, ξ)| dx dξ.

If |ε| + |ε′| 
= 0, according to Lemma 1, we have

|aε,ε′
j,k,l | = 2jn|〈σ(x, ξ), τn

−2−1e(ε,ε′)
	̃ε,ε′

(2j x − k, 2j ξ − l)〉|

= 2jn|〈σ1+j,(ε,ε′)(x, ξ), 	̃ε,ε′
(2j x − k, 2j ξ − l)〉|.

Hence we get

|aε,ε′
j,k,l | ≤ C

∑
|k−k′|≤2M

2jn

∫
2−j k′+2−j Q

∫
Rn

|σ1+j,(ε,ε′)(x, ξ)| dx dξ.

So we get the desired conclusion.

Proof of Theorem 4. Let

K
ε,ε′
j (x, y) =

∑
k,l

a
ε,ε′
j,k,l	

ε(2j x − k)	̂ε′
(2−j (x − y)) ei2−j l(x−y)

be the kernel-distribution of the operator T
ε,ε′
j . We have

|Kε,ε′
j (x, y)| ≤ C

∑
k

∑
l

|aε,ε′
j,k,l ||	ε(2j x − k)||	̂ε′

(2−j (x − y))|.

That is, ∫
|Kε,ε′

j (x, y)| dx ≤ C2jn sup
k

∑
l

|aε,ε′
j,k,l |
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and ∫
|Kε,ε′

j (x, y)| dy ≤ C2jn sup
k

∑
l

|aε,ε′
j,k,l |.

Hence, for 1 ≤ p ≤ ∞, T
ε,ε′
j is continuous from Lp to Lp.

Let

� = {(ε, ε′, j), ∀k, l ∈ Zn, (ε, ε′, j, k, l) ∈ �2n}.

Hence σ(x, D) = ∑
(ε,ε′,j)∈� T

ε,ε′
j is continuous from Lp to Lp for 1 ≤ p ≤ ∞.

Then we prove part (ii) of Theorem 4. Let M be a sufficiently big integer, let 	1(x)

be a regular Daubechies’ wavelet with supp 	1(x) ⊂ B(0, 2M) and let 	2(x) be Meyer’s
wavelet. Moreover, let

σj (x, ξ) =
∑

2M+2k∈Zn

	1(2j x − k)	2(2j ξ)

and let

σ(x, ξ) =
∑

(2+M)j∈N

j22−jnσj (x, ξ).

Then σ(x, ξ) satisfies conditions (1.8) and (1.9).
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