
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 115, No. 3, August 2005, pp. 309–318.
© Printed in India

Estimates and nonexistence of solutions of the scalar
curvature equation on noncompact manifolds

ZHANG ZONGLAO

Department of Mathematics, Wenzhou Normal College, Wenzhou, Zhejiang 325 000,
People’s Republic of China
E-mail: zonglao@sohu.com

MS received 7 January 2004

Abstract. This paper is to study the conformal scalar curvature equation on complete
noncompact Riemannian manifold of nonpositive curvature. We derive some estimates
and properties of supersolutions of the scalar curvature equation, and obtain some nonex-
istence results for complete solutions of scalar curvature equation.
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1. Introduction

Let M be an n-dimensional complete Riemannian manifold with metric g0 and scalar
curvature k(x). The problem of the conformal deformation of scalar curvature is to find
conditions on the function K(x) so that K(x) is the scalar curvature of a conformally
related metric g = ρ(x)g0, here ρ(x) is some positive function on M . As is well-known,
let ρ = u4/(n−2) for n ≥ 3. Then this problem is equivalent to finding a positive solution
of the following equation (the so-called (conformal) scalar curvature equation):

cn�u − ku + Kuσ = 0, (1.1)

where cn = 4(n−1)
n−2 , σ = n+2

n−2 , �u is the Laplacian of u with respect to the metric g0. If u

is a positive solution of eq. (1.1) such that the metric g = u4/(n−2)g0 is complete, we call
u to be complete. If M is noncompact, usually one seeks complete solutions of eq. (1.1).

The problem of conformal deformation of scalar curvature has been extensively studied
by many authors in recent years [1, 2, 7–9]. However, this problem is far from being settled,
especially if M is noncompact.

The purpose of this paper is to continue to study the problem of conformal deformation of
scalar curvature. We consider the case when M is complete and noncompact. We will derive
some estimates and properties of supersolutions of eq. (1.1), and obtain some nonexistence
results for complete solutions of (1.1). If M is noncompact, in order to obtain a positive
solution of (1.1), one usually exploits the method of supersolution–subsolution. To do so,
one usually needs a positive supersolution bounded from below by a positive constant or
a positive subsolution bounded from above by a constant as in [1, 2, 7–9]. Here we will
see that, under some suitable assumptions, the supersolutions of (1.1) have no positive
constant lower bound for a large class of the functions K .

This paper is organized as follows. In §2, we introduce some notations and give some
results that will be needed in §3. In §3 we will state and prove the main results of our paper.
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2. Preliminaries

We call M a CH manifold if it is a complete simply-connected C∞ Riemannian mani-
fold of nonpositive sectional curvature [6]. If M is a CH manifold, by the well-known
Cartan–Hadamard Theorem, for every o ∈ M , the exponential mapping expo: Mo → M

is a diffeomorphism [3], where Mo denotes the tangent space to M at o. This diffeo-
morphism gives a global normal coordinate neighborhood of M center at o. Denote by x

the coordinates of points and by (r, θ) the (geodesic) polar coordinates around o, where
r = r(x) ≡ dist (o, x) is the geodesic distance from o.

We call a CH manifold M to be strongly symmetric around o ∈ M if every linear
isometry φ: Mo → Mo is realized as the differential of an isometry �: M → M , i.e.,
�(o) = o and �∗(o) = φ, where �∗(o) denotes the differential of � at o. For a more
detailed discussion about strongly symmetric manifold, we refer the reader to [6] (where
the authors use the term ‘model’ instead of ‘strongly symmetric manifold’).

From now on we will assume that M is an n-dimensional strongly symmetric CH
manifold around o, where o is a fixed point in M . Let g0 be the metric of M and k(x) the
scalar curvature of g0. We always assume n = dim M ≥ 3.

In the polar coordinates, the metric g0 is expressed by

ds2 = dr2 +
∑
i,j

dij dθidθj = dr2 + h(r)2d�2 (2.1)

on M − {o} [6]. Here dij = g0
(

∂
∂θi ,

∂
∂θj

)
and d�2 denotes the canonical metric on the

unit sphere of Mo. Let Sr be the geodesic sphere of M with center o and radius r . The
Riemannian volume element of Sr can be written as

dSr =
√

D(r, θ)dθ1 · · · dθn−1, (2.2)

where D ≡ det(dij ). We will denote by V (r) the volume of Sr .
If u(r) is a C2 function defined on (0, ∞), we can consider it as a function defined on

M − {o}. A calculation shows

�u = 1√
D

∂r(
√

D∂ru), (2.3)

�r = 1√
D

∂r(
√

D) = ∂r log
√

D (2.4)

and

�u = u′′ + (�r)u′. (2.5)

We can define a scalar product operation η on M as follows:

η : R × M → M; (t, (r, θ)) 	→ (tr, θ). (2.6)

We also write η(r, x) ≡ rx.

3. The main results

In this section we will state and prove our main results. To do so, we first introduce a
notation.
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Let M be an n-dimensional strongly symmetric CH manifold around o. If f is a con-
tinuous function on M , define

f̄ (r) ≡ 1

V (r)

∫
Sr

f dSr = 1

V (1)

∫
S1

[f (rξ)]dS1, (ξ ∈ S1) (3.1)

(the second equality is by (2.1)).

Theorem 3.1. Let M be an n-dimensional strongly symmetric CH manifold around o with
metric g0. Let k be the scalar curvature of the metric g0, and let K ∈ C∞(M). Suppose
n ≥ 3. If u is a C2 positive supersolution of equation (1.1) on M , set α = 1 − σ and
v = uα , then v̄ satisfies the following inequality

v̄(r) ≥ 1

n − 1

∫ r

0

1

V (s)

∫
B(s)

Kdµds (3.2)

for all r ≥ 0, here B(s) is the geodesic ball of radius s and center o, and dµ the volume
element of M .

Proof.

Step 1. We first prove that v satisfies the following inequality

�v ≥ 1

n − 1
(K − kv). (3.3)

In fact, a computation shows that

�v = αuα−1�u + α − 1

α
u−α|�uα|2. (3.4)

Since u is a positive supersolution of eq. (1.1) and α = − 4
n−2 < 0, we have

�v ≥ α

cn

uα−1(ku − Kuσ )

= 1

n − 1
(K − kv).

Step 2. We prove that v̄ satisfies

�v̄ ≥ 1

n − 1
(K̄ − kv̄). (3.5)

By the definition (3.1) of v̄(r), for any r > 0, we have

v̄′(r) = 1

V (1)

∫
S1

∂v

∂r
(rξ)dS1 = 1

V (r)

∫
Sr

∂rvdSr .

So for r > 0,

v̄′(r)V (r) =
∫

Sr

∂rvdSr . (3.6)
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Thus, for r > 0, by the divergence theorem [4, 5] we have∫
B(r)

�vdµ =
∫

Sr

∂rvdSr = v̄′(r)V (r). (3.7)

But we also have∫
B(r)

�vdµ =
∫ r

0

∫
St

�vdSt dt. (3.8)

So from (3.7) and (3.8), we obtain∫
Sr

�vdSr = [
v̄′(r)V (r)

]′

= V (r)

{
v̄′′(r) + V ′(r)

V (r)
v̄′(r)

}
. (3.9)

On the other hand, by (2.2) and (2.4),

V ′(r) =
∫ 2π

0

∫ π

0
· · ·

∫ π

0

∂r

√
D√

D

√
Ddθ1 · · · dθn−2dθn−1 = V (r)�r,

so we get

�r = V ′(r)
V (r)

. (3.10)

From (2.5), (3.9) and (3.10) we get∫
Sr

�vdSr = V (r)
{
v̄′′(r) + (�r)v̄′(r)

}

= V (r)�v̄(r).

Thus, for r > 0, we obtain

�v̄(r) = 1

V (r)

∫
Sr

�vdSr . (3.11)

Now from (3.3) and (3.11) we see that

�v̄(r) ≥ 1

(n − 1)V (r)

∫
Sr

(K − kv)dSr

= 1

n − 1
(K̄ − kv̄).

Step 3. We are now ready to prove inequality (3.2).
Integrating (3.5) we get∫

B(r)

�v̄(r)dµ ≥ 1

n − 1

∫
B(r)

(K̄ − kv̄)dµ

= 1

n − 1

∫ r

0
{K̄(t) − k(t)v̄(t)}V (t)dt. (3.12)
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It is easy to prove that v̄′(r) is continuous on [0, ∞) and v̄′(0) = 0. Then, by the
divergence theorem, (3.12) implies that

v̄′(r)V (r) =
∫

Sr

v̄′(r)dSr

=
∫

B(r)

�v̄(r)dµ

≥ 1

n − 1

∫ r

0
{K̄(t) − k(t)v̄(t)}V (t)dt,

that is,

v̄′(r) ≥ 1

(n − 1)V (r)

∫ r

0
{K̄(t) − k(t)v̄(t)}V (t)dt. (3.13)

Note that k ≤ 0. Integrating (3.13) we obtain

v̄(r) ≥ v̄(0) + 1

n − 1

∫ r

0

1

V (s)

∫ s

0
{K̄(t) − k(t)v̄(t)}V (t) dtds

≥ 1

n − 1

∫ r

0

1

V (s)

∫ s

0
K̄(t)V (t) dtds

= 1

n − 1

∫ r

0

1

V (s)

∫
B(s)

Kdµds. (3.14)

Thus (3.2) is established, and this completes the proof of Theorem 3.1. �

Theorem 3.2. Let M be an n-dimensional strongly symmetric CH manifold around o with
n ≥ 3. Let k be the scalar curvature of M , and let K ∈ C∞(M). Assume u is a C2 positive
supersolution of eq. (1.1) on M . If we have either

(a)
∫ ∞

0

1

V (s)

∫
B(s)

Kdµds = +∞ (3.15)

or
(b) for r large,

∫
B(r)

Kdµ ≥ 0, and

∫ ∞

0

1

V (s)

∫
B(s)

|k|dµds = +∞, (3.16)

then

inf
x∈M

u(x) = 0. (3.17)

Proof. As in Theorem 3.1, set α = 1 − σ and v = uα , then v̄ satisfies inequalities (3.13)
and (3.14).
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If (a) holds, it is obvious that v̄(∞) = ∞, and hence supx∈M v(x) = ∞. Since α < 0,
we see that infx∈M u(x) = 0.

If (b) holds, then there exists τ > 0 such that for all r ≥ τ,
∫
B(r)

Kdµ ≥ 0. From (3.13)
we have that for r ≥ τ, v̄′(r) ≥ 0 and hence v̄(r) is increasing. This means that if we set
C = inf v̄(r), then C > 0. From (3.14) we have

v̄(r) ≥ 1

n − 1

∫ r

0

1

V (s)

∫ s

0
K̄(t)V (t)dtds

+ C

n − 1

∫ r

0

1

V (s)

∫ s

0
|k(t)|V (t)dtds

= 1

n − 1

∫ r

0

1

V (s)

∫
B(s)

Kdµds + C

n − 1

∫ r

0

1

V (s)

∫
B(s)

|k|dµds

= 1

n − 1

∫ τ

0

1

V (s)

∫
B(s)

Kdµds + 1

n − 1

∫ r

τ

1

V (s)

∫
B(s)

Kdµds

+ C

n − 1

∫ r

0

1

V (s)

∫
B(s)

|k|dµds.

Now it is easy to see that v̄(∞) = ∞. Then (3.17) follows as in Case (a). The proof of
Theorem 3.2 is finished. �

To show the following theorems, we need a lemma. This result itself is an interesting
property of CH manifolds.

Lemma 3.3. Let M be an n-dimensional strongly symmetric CH manifold around o. As
before, let Sr be the geodesic sphere of M with center o and radius r , and V (r) the volume
of Sr . Then for every δ ∈ [0, 1),

lim
r→∞

V (r)

rn−2+δ
= +∞. (3.18)

Proof. Since the sectional curvatures of M are less than or equal to zero, by the vol-
ume comparison theorem (comparing with the n-dimensional Euclidean space Rn) [3,
4], we have vol(B(r)) ≥ rnωn, where vol(B(r)) denotes the volume of the ball B(r) =
{x ∈ M, dist(o, x) < r} and ωn denotes the volume of the unit ball in Rn. Hence we
get

lim
r→∞

∫ r

0 V (t)dt

rn−1+δ
= lim

r→∞
vol(B(r))

rn−1+δ
= +∞. (3.19)

On the other hand, by the Laplacian comparison theorem (see p. 26 of [6]) (again
comparing with the n-dimensional Euclidean space Rn), we have

�r ≥ �0r = n − 1

r
, (3.20)
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for r > 0. Here �0 denotes the Laplacian of Rn. So for r > 0 we have(
V (r)

rn−2+δ

)′
= V (r)

rn−2+δ

(
V ′(r)
V (r)

− n − 2 + δ

r

)

= V (r)

rn−2+δ

(
�r − n − 2 + δ

r

)

> 0.

This means that V (r)

rn−2+δ is increasing and hence limr→∞ V (r)

rn−2+δ exists (may be +∞). Then
using the L’ Hôpital’s rule, we have

lim
r→∞

∫ r

0 V (t)dt

rn−1+δ
= lim

r→∞
V (r)

(n − 1 + δ)rn−2+δ
. (3.21)

Then (3.18) follows immediately from (3.19) and (3.21). �

Theorem 3.4. Let M be an n-dimensional strongly symmetric CH manifold around o with
n ≥ 3. Let k be the scalar curvature of M , and let K ∈ C∞(M) such that, for r large,∫
B(r)

Kdµ ≥ 0. Assume u is a C2 positive supersolution of eq. (1.1) on M . If we have
either

(a) limr→∞
∫
B(r)

Kdµ = +∞, and

lim
r→∞

r2K̄(r)

r�r − 1
= β, where β > 0 or β = +∞ (3.22)

or
(b) limr→∞

∫
B(r)

|k|dµ = +∞, and

lim
r→∞

r2|k(r)|
r�r − 1

= γ, where γ > 0 or γ = +∞, (3.23)

then

inf
x∈M

u(x) = 0. (3.24)

Proof. We only prove that condition (a) implies (3.24). The proof for (b) is similar to that
of (a). From Theorem 3.2, by the limit comparison test for improper integrals, we only
need to prove that limr→∞ r

V (r)

∫
B(r)

Kdµ = λ, where λ > 0 or λ = +∞. In fact, from
the assumption of the theorem and Lemma (3.3) we have

lim
r→∞

∫ r

0
K̄(t)V (t)dt = lim

r→∞
V (r)

r
= +∞.

So by the L’Hôpital’s rule, we have

lim
r→∞

r

V (r)

∫
B(r)

Kdµ = lim
r→∞

∫ r

0 K̄(t)V (t)dt

V (r)
r

= lim
r→∞

K̄(r)V (r)(
V (r)

r

)′
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= lim
r→∞

r2K̄(r)

r�r − 1

= β.

This completes the proof of the theorem. �

Remark 3.5. Let Hn(−c2) be the n-dimensional (simply-connected and complete) hyper-
bolic space form with constant sectional curvature −c2 (c > 0). If M = Hn(−c2) with
n ≥ 3, then for any K ∈ C∞(M) such that

∫
B(r)

Kdµ ≥ 0 for r large, it is easy to verify
that the condition (b) of Theorem 3.4 is satisfied since �r = (n− 1)c coth(cr), and hence
for any C2 positive supersolution u of eq. (1.1), we have infx∈M u(x) = 0. Comparing
with theorem 1.4 in [8], this is very different from the case of the Euclidean space. Hence
the method used by Ni to obtain the existence results for eq. (1.1) in Rn is no longer valid
in the case of hyperbolic space forms.

Theorem 3.6. Let M be a CH manifold with metric g0. Suppose M is strongly symmetric
around o with respect to the metric g0 and n = dim(M) ≥ 3. Let k(r) be the scalar
curvature of the metric g0 and K(r(x)) ∈ C∞(M). If there is a > 0 such that, for
r ≥ a,

∫ r

0
1

V (t)

∫
B(t)

Kdµdt > 0 and

∫ ∞

a

[∫ r

0

1

V (t)

∫
B(t)

Kdµdt

]−1/2

dr < +∞, (3.25)

then there exists no complete metric g on M such that

(a) g is (pointwise) conformal to the metric g0,
(b) M is strongly symmetric around o with respect to the metric g,
(c) K(r) is the scalar curvature of the metric g.

Proof. We argue by contradiction. Assume that g is a complete metric on M satisfying
(a)–(c). Since g is conformal to the metric g0, there exists a C∞ positive function u such
that g = u4/(n−2)g0 and u is a solution of eq. (1.1). It is obvious that u = u(r) since the
metrics g and g0 are both strongly symmetric around o. Set v(r) = [u(r)]−4/(n−2). Then
by Theorem (3.1), v(r) satisfies

v(r) ≥ 1

n − 1

∫ r

0

1

V (t)

∫
B(t)

Kdµdt.

Therefore we get

[u(r)]2/(n−2) ≤
{

1

n − 1

∫ r

0

1

V (t)

∫
B(t)

Kdµdt

}−1/2

for r ≥ a. By (3.25), this implies

∫ ∞

a

[u(r)]2/(n−2)dr ≤
∫ ∞

a

{
1

n − 1

∫ r

0

1

V (t)

∫
B(t)

Kdµdt

}−1/2

dr < +∞.

That is, for the metric g, the ray ϕ = {(r, θ0)|a ≤ r < ∞} has finite length for a fixed
θ0. Thus the metric g is not complete. This is a contradiction. �
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COROLLARY 3.7

Let M, g0, o and k(r) be as in Theorem 3.6. Assume the sectional curvature sec(g0) of
g0 satisfies −c2 ≤ sec(g0) ≤ 0 for some positive constant c. If K(r) ∈ C∞(M), and for
some positive constant δ, we have

lim
r→∞

K(r)

r1+δ
= +∞, (3.26)

then there exists no complete metric g on M satisfying the conditions (a)–(c) in Theo-
rem 3.6.

Proof. By (3.26), it is easy to show that there is a > 0 such that
∫ r

0
1

V (t)

∫
B(t)

Kdµdt > 0
for r ≥ a. To prove the corollary, it is sufficient to show that condition (3.25) is satisfied.
This can done by using the limit comparison test for improper integral.

In fact, from the assumption of the theorem for sectional curvature and the well-known
Laplacian comparison theorem [6], we have

n − 1

r
≤ �r ≤ (n − 1)c coth(cr). (3.27)

So �r is bounded as r → ∞.
On the other hand, by (3.26) it is obvious that

lim
t→∞

∫
B(t)

Kdµ = lim
t→∞

∫ t

0
K(s)V (s)ds = +∞.

Thus by the L’Hôpital’s rule, (3.26) and (3.27), we have

lim
t→∞

∫
B(t)

Kdµ

V (t)
= lim

t→∞
K(t)V (t)

V ′(t)

= lim
r→∞

K(r)

�r

≥ lim
r→∞

K(r)

(n − 1)c coth(cr)

= +∞.

Then it is easy to see that

lim
r→∞

∫ r

0

1

V (t)

∫
B(t)

Kdµdt = +∞.

Now by the L’Hôpital’s rule we have

lim
r→∞

r2+δ∫ r

0
1

V (t)

∫
B(t)

Kdµdt
= lim

r→∞
(2 + δ)r1+δV (r)∫ r

0 K(t)V (t)dt

= (2 + δ) lim
r→∞

(1 + δ)rδV (r) + r1+δV ′(r)
K(r)V (r)

= (2 + δ) lim
r→∞

r1+δ

K(r)

(
1 + δ

r
+ �r

)

= 0.
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Therefore we obtain

lim
r→∞

r
2+δ

2[∫ r

0
1

V (t)

∫
B(t)

Kdµdt
]1/2

= 0.

Then (3.25) follows by the limit comparison test. This completes the proof of the corol-
lary. �
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