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Abstract. We show that, for a closed non-orientable surface F, an automorphism of
H,(F, Z) is induced by a homeomorphism of F if and only if it preserves the (mod 2)
intersection pairing. We shall also prove the corresponding result for punctured surfaces.
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1. Introduction

Let F be a closed, non-orientable surface. A homeomorphism f: F — F induces an
automorphism on homology f.: H|(F,Z) — H(F,Z). Further, any automorphism
¢: Hi(F,Z) — H{(F,Z) in turn induces an automorphism with Z/2Z-coefficients
¢: Hi(F,Z/27) — H\(F,7Z/27Z).If ¢ = f, for a homeomorphism f, then ¢ also pre-
serves the (mod 2) intersection pairing on homology.

Our main result is that, for an automorphism ¢: Hy(F, Z) — Hi(F, Z), if the induced
automorphism ¢: H{(F, Z/27) — H|(F, Z/27Z) preserves the (mod 2) intersection pair-
ing, then ¢ is induced by a homeomorphism of F.

Theorem 1.1. Let ¢o: H|(F,7Z) — H\{(F,Z) be an automorphism. If the induced auto-
morphism ¢: H\(F,Z/27) — H|(F, 7Z/27) preserves the (mod 2) intersection pairing,
then ¢ is induced by a homeomorphism of F.

We have a natural homomorphism Aut(H (F, Z)) — Aut(H{(F, Z/27)). Let K denote
the kernel of this homomorphism, so that we have an exact sequence

1 > K — Aut(H((F,7Z)) — Aut(H|(F,7Z/2Z)) — 1.

Observe that elements of K automatically preserve the intersection pairing. We shall show
that every element of /C is induced by a homeomorphism of F'. Further, we shall show that
an element of Aut(H;(F, Z/27)) is induced by a homeomorphism of F if and only if it
preserves the intersection pairing. Theorem 1.1 follows immediately from these results.

Theorem 1.2. Suppose ¢: H\(F,7Z) — H\(F, Z) is an automorphism which induces the
identity on H\(F, Z/2Z). Then ¢ is induced by a homeomorphism of F.

251



252 Siddhartha Gadgil and Dishant Pancholi

Theorem 1.3. Let F; and F> be closed, non-orientable surfaces. Suppose that
v H(F1,7Z)27) — H{(F>, Z/27) is an isomorphism which preserves the intersection
pairing. Then  is induced by a homeomorphism f: F1 — F».

We also consider the case of a compact non-orientable surface F with boundary. In
this case an automorphism of Hj(F,Z) induced by a homeomorphism of F permutes
(up to sign) the elements representing the boundary components. We shall show that
all automorphisms of H;(F, Z) which satisfy this additional condition are induced by
homeomorphisms. Other results regarding the homeomorphisms of non-orientable surfaces
have been obtained by many authors, for instance [1-3].

2. Preliminaries

Let F be a closed, non-orientable surface with x(F) = 2 — n and let F be obtained
from F by deleting the interior of a disc. Then F is the connected sum of n projective
planes P; and F is the boundary-connected sum of n corresponding Mobius bands M;.
Let y; denote the central circle of M; and let o; = [y;] € H; (I3 , Z) be the corresponding
elemgnts in homology. Then H; (ﬁ ,Z) = 7" with basis «; and H{(F, Z) is the quotient
H\(F,Z)/(2%;a;).

We shall need the following elementary algebraic lemma.

Lemma 2.1. Any automorphism ¢: H\(F,Z) — H\(F,Z) lifts to an automorphism
¢: H\(F,7) — H(F,7) such that §(3°; i) = Y ; ai.

Proof. Consider the basis of Hl(ﬁ, Z) givenby e1 = o1, ... ,ep—1 = 0p—1, €, = ] +
--+a;, and let [e;] be the corresponding generators of H; (F, Z). Observe that [e,] is the
unique element of order 2 in H;(F, Z), and hence ¢([e,]) = [e,]. Thus, we can define
¢(ey) =ey. For 1 < j <n — 1, pick an arbitrary lift 4 ; of ¢(e;) and set ¢(e;) = h;.
Observe that H1(I:“, Z)/{en) = H|(F,Z)/(len]). Further, as ¢(e,) = e, we have an
induced map on H; (F,7) /(en) which agrees with the quotient map induced by ¢ on
H(F,7Z)/{len]) (wWhich exists as ¢([e,]) = [e,]) under the natural identification of these
groups. As ¢ is an isomorphism, so is the induced quotient map on H|(F, Z)/{[en]), and
hence the map induced by ¢ on H; (}A’ , L)/ {en).
Thus, ¢ induces an isomorphism on the quotient H; (F,7) /(en) as well as the kernel
(e, of the quotient map. By the five lemma, ¢ is an isomorphism. O

Henceforth, given an automorphism ¢ as above, we shall assume that a lift has been
chosen as in the lemma. Observe that a homeomorphism of F induces a homeomorphism
of F. Hence it suffices to construct a homeomorphism of F inducing ¢. Note that the
intersection pairing is preserved by ¢ as it only depends on the induced map on homology
with Z/2Z-coefficients.

3. Automorphisms in £

In this section we prove Theorem 1.2. Let ¢: H{(F,Z) — H{(F, Z) be as in the hypoth-
esis. As in Lemma 2.1, we can lift ¢ to an automorphism of Hl(I:", Z) fixing Zi o;. We
shall denote this lift also by ¢. We shall construct a homeomorphism of F inducing this
automorphism.
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Figure 1. Cross-cap slide.

Our strategy is to use elementary automorphisms e;j, 1 < i, j < n, which are induced by
homeomorphisms g;;. Observe that, for 1 < i, j < n, the automorphism ¢ is induced by a
homeomorphism if and only if e;; o ¢ is induced by a homeomorphism (as ¢;; is induced
by a homeomorphism). Thus we can replace ¢ with e;; o ¢. We call this an elementary
move. For ¢ preserving the intersection pairing, we shall find a sequence of elementary
moves such that on performing these moves we obtain the identity automorphism, which is
obviously induced by a homeomorphism (namely the identity). This will prove the result.

Lemma 3.1. There are homeomorphisms g;; of F so that ife;j is the induced automorphism
on H1(I:", Z), then ejj(a;) = a; + 20, ejj(o;) = —oj and ejj(ax) = ay fork #1, j.

Proof. We shall use cross-cap slides [3, 4] of the surface F. Namely, suppose « is an
orientation reversing simple closed curve on a surface S’ and D is a small disc centered
around a point on «. Let S be the surface obtained by replacing D by a Mobius band.
Consider a homeomorphism f’ of §” which is the identity outside a neighbourhood of «
and which is obtained by dragging D once around « so that D is mapped to itself. By
construction this extends to a homeomorphism f of S, which we call a cross-cap slide. In
figure 1, the arc A in the Mbius band M on the left-hand side is mapped to the arc A’ in
the Mobius band M’ on the right-hand side and the homeomorphism is the identity in a
neighbourhood of the boundary.

We define g;; as the cross-cap slide of M around the curve y;. Note that the M&bius
band M ; is mapped to itself, but, as y; is orientation reversing, the map on the Mdbius
band takes o; to —c ;. Further for any k different from i and j, the cross-cap slide fixes
vj, hence «;. Finally, in figure 1 (where we regard M as a neighbourhood of «;), if B
is a curve in the boundary of M joining the endpoints of A, then [A U B] = «; and
[A"U B] = gij(a;). It is easy to see that [A U B] — [A’ U A] = [A U A’] is homologous
to the boundary 2o; of the cross-cap. Thus, ¢;;(o;) = a; + 20t;. a

Lemma 3.2. There exists a sequence of elementary moves e;; taking ¢ to the identity.

Proof. Let ¢ be represented by a matrix A = (a;;) with respect to the basis o;. Then
A =1(mod2). As g fixes ) ; a;, forevery i, } ; a;; = 1. Observe that on performing the
elementary move e;;, the ith column A,; of A is replaced by Ay; + 2A., the jth column
is replaced by — A, ; and the other columns of A are unchanged.

We first use the elementary moves e;; to reduce the firstrow Ay, to [1,0,0, ..., 0]. To
do this, we define a complexity C1(A) of A as |aj1| + laz]| + - - - + |a1al-

Observe that if aj; and ay; are both non-zero, have different signs and |a x| > |ay],
ex; reduces the complexity C1(A). As aj; is odd and a;; is even for j > 1, we know
that ajy # ay; for every j > 1. Further, as Zj ajj = 1,unless ajy is 1 and a;; = O for
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J # 1, thereexists a j > 1 such thatay; and a1 ; are of opposite signs (and both non-zero).
Thus we can reduce complexity by performing an elementary operation. By iterating this

finitely many times, we reduce the first row to [1, 0,0, ..., 0].
Next, suppose i > 1 and the rows Ajy, Ax, ..., Ai_1)x are the unit vectors ey, e3,
., €(i—1)x. We shall transform the ith row to [0,0,...,1,0, ..., 0] without changing
the earlier rows.
First we shall transform the row A;, to a row of the form [*, *,...,1,0,...,0] (i.e.,

with the first i — 1 entries arbitrary) by performing elementary moves e¢;;. To do this, we
define a complexity C;(A) = 3 _; laijl, j > i.

Observe that, for k > i, the elementary operation e changes the sign of a;, does not
alter a;y, for m # k, m > i and does not change first i — 1 rows. By such operations we
can ensure that a;; > 0 and a;; < 0 for j > i without changing the complexity.

As before, a;; # a;j for j > i (as a;; is odd and g;; is even) and (using operations ey if
necessary) a;; and a;; have different signs. Hence, unless a;; = 0 for j > i we can reduce
the complexity using either ¢;; or e ;;, without altering the first i rows. Thus we can reduce
A;s to a vector of the form [*, ..., *,m,0,...,0].

Now A is a block lower triangular matrix with a;; as a diagonal entry. As A is invertible
it follows that m = q;; = *1.

We define another complexity C;(A) = Zizj lai;|. As Zj a;j = 1 and a;; = £1,
unless A;, is a unit vector we can find as before an operation ej;, j < i, which reduces
this complexity (without changing the first (i — 1) rows). Hence after finitely many steps
the ith row is reduced to a unit vector. By applying these moves fori = 2,3,... ,n, we
are done. m|

4. Automorphisms of H,(F, Z/27Z)

We now prove Theorem 1.3. We shall proceed by induction on 7. In the case whenn = 1
the result is obvious. We henceforth assume that n is greater than 1.

We first make some observations. For a surface S, any element o of H{(S, Z/2Z) can
be represented by a simple closed curve. The curve « is orientation reversing if and only
if o - @ = 1. The surface is non-orientable if and only if there exist @ € H(S, Z/27Z) with
o-a=1.

Asbefore, let F be the connected sum of Py, P, ... , Py, where P; denotes a projective
plane and M; denotes the corresponding Mobius band. Let oy, o, ... , o and yq, . .. , ¥y
be as before.

Let i be as in the hypothesis. Let ; = ¥ («;) and let C be a simple close curve that
represents 1. As B1 - B1 = a1 -1 = 1, C is orientation reversing (as is y1). Hence regular
neighbourhoods of C and y; are Mobius bands.

Let F| = Fy — int(N (1)) and £} = Fy — int(NV'(C)). Let F| = F{ U D* and F} =
132/ U D? be closed surfaces obtained by capping off F;.

Observe that the surface F 1’ is non-orientable as n > 2 and y» is an orientation reversing
curve on it. Now since 1 preserves the intersection pairing it takes orthonormal basis of
H\(Fy, Z/2Z) to orthonormal basis of Hy (f2, Z/27Z). It follows that 8; - B; = 1 for every
J - Further, by a Mayer—Vietoris argument, Hy (F;, Z/27) = Z/27 & H\(F/, Z/2Z), with
the decomposition being orthogonal and the component Z /27 in Hy(F1, Z/2Z) (respec-
tively Hy(F3, Z/27)) is spanned by o (respectively 81). As i preserves the intersection
pairing, it follows that v induces an isomorphism v: Hy(F1, Z/27Z) — H\(F>, Z/27).
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Hence if C; is a curve in Fz/ representing B, in H|(F», Z/27Z), then C; is orientation
reversing and hence F} is non-orientable. Also, we have seen that the map ¥ induces an
isomorphism from Hi(F/, Z/27Z) to H\(F,, Z/27Z). By the induction hypothesis such a
map is induced by a homoeomorphism f’: F{ — F,.

Note that F| (respectively F3) is obtained from F 1’ (respectively Fz’) by deleting the
interior of a disc D; (respectively D,) and gluing in A/ (y;) (respectively N'(C)). We can
modify f’ so that f/(D;) = Dj;. On F; — int(D;) we define f = f’. This restricts
to a homeomorphism mapping 9N (1) to N (C), which extends to a homeomorphism
mapping N (y1) to N (C). As f|n): N (y1) = N(C) is a homeomorphism, it maps the
generator a1 of Hj(N(y1), Z) = Z to a generator =8 of H;(N(C), Z) = Z. Thus with
mod 2 coefficients, f, = ¢ as required. o

5. An algebraic corollary

We shall deduce from Theorem 1.1 and a theorem of Lickorish [3] a purely algebraic
corollary. While this has a straightforward algebraic proof (and is presumably well-known),
it may still be of interest to see its relation to topology.

Let V = (Z/2Z)" be a vector space over Z/27 and let {e;} be the standard basis of
V. Consider the standard inner product {((x;), (y;)) = Y_; xiyi. Let O be the group of
automorphisms of V that preserve the inner product. We shall show that O is generated
by certain involutions.

Namely, let 1 <ij < iy < --- < ipr < n be 2k integers between 1 and n. We define an

element R = R(iy, ... , i2k) to be the transformation defined by
R(ei_/) = Zeil’
I#]

R(ej) = ej, j #i1,02, .. 02k
Theorem 5.1. The group O is generated by the involutions R(iy, ... , o).

Proof. We identify V with H{(F, Z/27Z) for a non-orientable surface F' and identify the
basis elements e; with ¢;. Under this identification, the bilinear pairing on V corresponds
to the intersection pairing. We shall see that the transformations R (i1, ... , iox) correspond
to the action of Dehn twists on Hy (F, Z/27Z), where we identify the generators e; with ¢;.
First note that any element y of Hy(F, Z/2Z) can be expressed as y = o, + -+ + o,
Observe that a simple closed curve C representing y is orientation preserving if and only
if y - y = 0, which is equivalent to m being even.

Now let C be an orientation preserving curve on F and consider the Dehn twist T about
C. Let y = [C] € H|(F,Z/27Z) be the element represented by C. By the above (as
y =« + -+ «a;, and m is even), we can express y as y = o, + -+ - + &y, . f v is
another element of H,(F, Z/27Z) and « - y is the (mod 2) intersection number, then (with
mod 2 coefficients) 7.(e) = o + y. It is easy to see that t, = R(iy, ... , i2k). Note that
r*z(oz) = o + 2y = «, hence 7, = R(iy, ... , i2) is an involution as claimed.

Now, by Theorem 1.3, any element ¢ € O is induced by a homeomorphism f of
F. Further, by a theorem of Lickorish [3], f is homotopic to a composition of Dehn
twists and cross-cap slides. We have seen that Dehn twists induce the automorphisms
T, = R(iy, ... i) on V. It is easy to see that cross-cap slides induce the identity on
H\(F,Z/27Z). Thus ¢ is a composition of elements of the form 7, = R(iy, ..., i) as
claimed. ]
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Remark 5.2. We can alternatively deduce Theorem 1.3 from Theorem 5.1 as the generators
of O can be represented by homeomorphisms (namely Dehn twists).

6. Punctured surfaces

Let F be a compact non-orientable surface with m boundary components and let 8; €
H|(F,7Z),1 < j < m,be elements representing the boundary curves. A homeomorphism
f:+ F — F induces an automorphism ¢ = f of H|(F, Z). Furthermore, as boundary com-
ponents of F are mapped to boundary components by f (possibly reversing orientations),
for some permutation o of {1, ... ,m} and some constants €; = x1, ¢(8;) = €;B5(j),
forall j,1 < j <m.

We show that conversely any automorphism ¢ that preserves the (mod 2) intersection
pairing and takes boundary components to boundary components is induced by a homeo-
morphism.

Theorem 6.1. Let F be a compact non-orientable surface with m boundary components
and let ¢ be an automorphism of H\(F, Z/27Z) that preserves the (mod 2) intersection
pairing. Suppose for some permutation o of {1, ... , m} and some constants €; = £1, we
have p(B;) = €;Bs(j), forall 1 < j < m. Then ¢ is induced by a homeomorphism of F'.

Proof. Let F be obtained from F by attaching discs to all the boundary components. Then
we can assume that F has been obtained from F by deleting the interiors of m discs Dj,

. Dy, all of which are contained in a disc E C F. Further we can assume that the central
curves y;, 1 < i < ninadecomposition of F into projective planes are disjoint from E, as
are all the Dehn twists and cross-cap slides we perform on F in the proof of Theorem 1.1.
Hence the Dehn twists and cross-cap slides we perform give homeomorphisms of F' which
are the identity on the boundary components.

Let @; = [y;] and let &; be the images of these elements in Hj (F,7). By choosing
appropriate orientations, we get that Hy (F, Z) is generated by the elements c; and 8; with
the relation

ZZO[,'ZZ,BJ'. (6~1)
i J

Note that as H; (F L) = Hy(F,Z)/{B}), it follows by the hypothesis that ¢ induces
an automorpism ¢ of Hi(F,Z). By Theorem 1.1 (and its proof), this is induced by a
composition of Dehn twists and cross-cap slides, hence a homeomorphism g: F — F. By
composing ¢ by g~ !, we can assume that ¢ is the identity.

Similarly, we can use homeomorphisms supported in E (which do not change any
;) to reduce to the case when the permutation o is the identity, i.e. ¢(8;) = €;8;. As
p(aj) =aj,wegetp(a;) = o; —i—Zj ¢;j B for some integers c; ;. We define the complexity
of ¢ tobe C(¢p) = Zi’j |cijl.

If ¢ is not the identity, we shall reduce the complexity of ¢ using homeomorphisms
called boundary slides [2] similar to cross-cap slides.

Lemma 6.2. There are homeomorphisms h;; of I such that the induced automorphism of
H\(F, Z) takes a; to o; — Bj, maps B to —B; and fixes all other o’s and B’s.

Proof. We shall use boundary slides [2] of the surface F. Namely, suppose « is an orien-
tation reversing simple closed curve on a surface S” and D is a small disc centered around
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apoint on «. Let S be the surface obtained by deleting the interior of D. Consider a home-
omorphism of S” which is the identity outside a neighbourhood of « and which is obtained
by dragging D once around « so that D is mapped to itself. By construction this extends
to a homeomorphism of §, which we call a boundary slide.

As in the case of cross-cap slides, the automorphism of Hj (F, Z) induced by the bound-
ary slide of the boundary component corresponding to 8; along the simple closed curve
y; (representing «;) is as in the statement of the lemma. O

Now suppose ¢ is not the identity. Observe that as ¢ is a homomorphism, 2 ) ; ¢(a;) =
> 9(B)). Using g(a;) = o + 3 cijBj, ¢(Bj) = €;Bjand 23, o; = 37 ; B, we see
that 3, ¢ijBj = (¢; — 1)B;. As the elements B;, 1 < j < n are independent, it follows
that for each j, ), ¢ij = €; — 1.

We now consider two cases. Firstly, if some €; = —1, then observe that postcomposing
with h;; takes ¢(a;) to (a;) — @(Bj) = @(a;) + B;. Hence ¢;; is changed to ¢;; + 1
(and no other ¢y, is changed). In particular, if ¢;; < 0, the complexity is reduced. But
as y ;cij = €; —1 = —2, we must have some ¢;; < 0, and hence a move reducing
complexity.

Suppose now that each 8 is 1. Then as ) ; ¢;j = €; — 1 = 0, either each ¢;; = 0,
in which case we are done, or some c¢;; > 0. Observe that postcomposing with #;; takes
@(a;) to o(a;) — @(Bj) = ¢(a;) — B;. Hence ¢;; is changed to ¢;; — 1 (and no other ¢y
is changed), and hence the complexity is reduced. Thus in finitely many steps, we reduce
to the case where ¢ is the identity. a
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