Proc. Indian Acad. Sci. (Math. Sci.) Vol. 115, No. 1, February 2005, pp. 111-116.
© Printed in India

Measure free martingales

RAJEEVA L KARANDIKAR and M G NADKARNI *

Indian Statistical Institute, New Delhi 110 016, India
*Department of Mathematics, University of Mumbai, Kalina, Mumbai 400 098, India
E-mail: rlik@isid.ac.in; nadkarni@math.mu.ac.in

MS received 19 October 2004

Abstract. We give a necessary and sufficient condition on a sequence of functions on a
setQ under which there is a measure@nvhich renders the given sequence of functions

a martingale. Further such a measure is unigue if we impose a natural maximum entropy
condition on the conditional probabilities.
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1. Introduction

The notion of measure free martingale is implicit in the construction of equivalent martin-
gale measures in the theory of asset pricing in financial mathematics [1, 2], but it has not
been fully isolated and made free of probability. Rather it has remained hidden by specific
processes and terminology of asset pricing theory. We define a martingale purely in terms
of sets and functions, called measure free martingale, and show that every martingale is
a measure free martingale and conversely that every measure free martingale admits a
probability measure, which may be finitely additive, under which it is a martingale. We
describe the convex set (together with their extreme points) of all probability measures
under which a measure free martingale is a martingale. Among these measures there is
one which in some sense is most symmetric or most well spread, and entirely determined
by the measure free martingale. Boltzmann’s entropy maximizing distribution is needed
here. To the best of our knowledge probabilist's have not asked the simple question as to
when a sequence of function is a martingale under some measure. The answer is relatively
easy but has some pedagogic as well as research value.

2. Means of finite set of points

Let x1, x2, x3, ... , x; bek real numbers, with repetitions allowed. Assume thgand
x; are respectively the smallest and the largesti0ko, . .. , x;. Leta be a real number.
Then there exists a probability vectQr1, po, ... , px) such that

X1p1+xop2+ -+ Xkpr = @,

if and only if x; < @ < x;. If k = 2 andx1 # x2, such a probability vector is unique. If
k > 2, itis not unigue without some additional requirements.

111



112 Rajeeva L Karandikar ahM G Nadkarni

A result of Boltzmann proved using Lagrange’s multipliers says that there is a unique
probability vector(ps, p2, ..., pr) which satisfiesc1p1 + x2p2 + - -+ + x pr = o, and
maximizes the entropy

—palog p1 — polog p2 — - - — prlog pi.
Itis given by
exp(ix;
pJ:kp(—J), i:1,2,...,k,
2i—1 €XP(Ax;)
wherex is a constant.

We will call these probabilities the Boltzmann probabilities for xo, . . . , x¢; a.
In this connection it should be noted that for a fixadx,, . .. , x; and variable., the
probabilities
exp(Ax;
pi(h) = kp(—) i=12... .k
D i1 EXp(Ax;)
of x1, x2, ..., x; respectively have the meaﬁf.‘zl x; pi(A) which we denote byn()).
Sincex; andx; are minimum and maximum ofi, xo, ... , xx, we have
. 81 ) Sii
im pi) ==L, lim p;) = 2L,
A——00 i A—00 i
wheren; is the frequency of occurrence afin x1, x2, ... , xx. AS a consequence,

lim m() =x1, lim m(Q) = xi.
A—>—00 A—>00

A calculation shows thatd/dx = v(A) > 0, wherev(}) is the variance of the sys-

temx1, xo, ..., x; With probabilities p1(1), p2(A), ..., pr(A). Thusm(L) is a strictly
increasing function of which assumes every value betwegrandx;. If m(A) = «, then
p1(A), p2(A), ..., pr()) are the probabilities which maximize the entropy for the con-

strainth-‘=l prxr = a. (See [3], p. 172 for a related discussion of Boltzmann distribution
in the continuous case.)

Supposes, x2, ... , xi are distinct. The sef of probability vectors p1, p2, ..., pr)
such thatZ’;:1 xjp; = a is a convex set. It is easy to see that its extreme points are
precisely thosé€p1, p2, ..., px) € C which have at most two non-zero entries.

3. Measure free martingales

Let 2 be a non-empty set. Let,,n = 1,2, 3,... be a sequence of real valued functions
such that eaclf, has afinite range, say,1, x»2, - - . , Xak,), and these values are assumed
on the subset®, 1, 2,2, ... , i, . These sets form a partition &f which we denote by
P,. We denote by, the partition generated @y, Po, ... , P, and the algebra generated
by Q, is denoted byA, . Let A, denote the algebra;® ; A,.

Define A,, measurable functions,,, M, as follows: ForQ € Q, andw € Q,

my(w) = min Sur1(q),
q€Q

M, (w) = max f,11(q).
qeQ
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DEFINITION

The sequencef,, A,);- , is said to be a measure free martingale or probability free
martingale if

my(w) < fu(w) < My(w) Voe, n>1

Clearly, for eachp € Q,, the functionf, is constant orQ. We denote this constant by
fn(Q). With this notation, it is easy to see thaf,, A,);° ; is a measure free martingale
or probability free martingale if and only if for eaehand for eachQ € Q,,, f,(Q) lies
between the minimum and the maximum valueg,nf1(Q’) asQ’ runs overQ N Q,+1.

It is easy to see that if there is a probability measuredan with respect to which
(fn, An)i2 4 is @ martingale, theqf,, A,); ; is also a measure free martingale. Indeed,
let P be such a measure. Then, for a@yn Q,, f,,(Q) is equal to

1
S Y. fw(@)PW@),
PO {0'€Qu+1,0'C 0}

so thatf, (Q) lies between the minimum and the maximum valygs1 (Q"), Q' € O N
Qy+1- The theorem below proves the converse.

Theorem 1. Given a measure free martingalg,, A,),> ;, there exists for each > 0,
a measureP, on A, such that

Pn+1|_A,l = Py, En+l(fn+l|~An) = fn,

whereE,, ;1 denotes the conditional expectation with respect to the probability measure
P,+1. There is a finitely additive probability measuPkeon the algebrad,, which may
be countably additivesuch that for each, P| 4, = P,.

Proof. Define P; on A; arbitrarily. Having definedPy, P>, ..., P, on Ay, Az, ..., A,
such that

Pj|Aj_1=Pj_1, Ej(fj|.Aj_1)=fj_1, j=23...,n,

we defineP, ;1 0nA, 1 asfollows: Choose an elemaptn Q,.LetA1, A», ..., A;bethe
partition of Q induced byf, 1 so thatf, 1 assumes distinct values, say1, az, ... , a,

on Aj, Ao, ..., A; respectively. Lett = f,,(Q) (the value assumed bj, on Q). Since
(fn: An)i2 4 is ameasure free martingalelies between the minimum and the maximum
values off,+1 on Q, so there is a probability vectdps, p2, ... , p;) such that

aipr+azp2+---+ap =a.
We define
P1(0) =piP(Q), i=12...,L

Carrying out this procedure for aff € Q,, we get a probability measum®, 1 on A, 1
for which it is easy to check that

Pn+1|~/4n = Iy, En+1(fn+l|~/4n) = fn~

Induction completes the proof of the existence of the meaggrd3efine P by setting,
for A € Ay, P(A) = P,(A), if A € A,. Thus the theorem stands proved. O
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Remarks.The measureé® on A, may be called a martingale measure associated to the
measure free martingalg’,, A,);° ;. The totality of such measures forms a convex set
whose extreme points are precisely th&@sehich have the property that for anyand for
any Q € Q,, P (henceP,1) assigns positive probability to at most two elements in the
partition of Q induced byf,,+1. If, for eachn and for eactp € Q,, O N Q,+1 has two or
less elements, then there is only one martingale measure for the measure free martingale
fue A -

Let O be an element iY,,. If we assign Boltzmann probabilities of the valuesfpf 1
on Q to the corresponding elements of the partition@induced byf,,,1, then we have
the following theorem.

Theorem 2. Let(f,, Ao, be a measure free martingale. Then there is a unique prob-
ability measureP on Ay such that

(1) (fu. Aw);2 4 is a martingale with respect t8.

(2) Foreachn andforeach) € Q, if Q1, Q2, ... , O; arethe elements @NQ,+1,then
P(Q1)/P(Q), P(Q2)/P(Q),...,P(Q;)/P(Q) are the unique probabilities which
maximize

l
— Y pilogpi.
i=1

subject to the conditio@leaip,» = a, wherea is the value off,, on Q and
ai, az, ... ,a; are the values assumed gy, 1 on Q.
(3) The probabilitiesP(Q;),i =1, 2, ..., are given by the formula

exp(ia;
PQ) = P(Q) - — S Pa0)
where) is a constant depending @naz, az, . .. , q;.

In a certain sense this distributiadh of Theorem 2 may be viewed as most symmetric
or most well spread for the given measure free martingale. It is determined entirely by
the measure free martingale. One may @althe Boltzmann measure associated to the
measure free martingalg;, . A,);° ,, and the resulting measure theoretic martingale, the
Boltzmann martingale.

In the theory of asset pricing in financial mathematics there is an important point of
existence of equivalent martingale. Here, as a consequence of Theorem 2, we have the
following:

COROLLARY

With the notation of Theoreabove if m is a probability measure oM, for which
there exist two positive constarsand D such that for allA € U>2 ,Q,,

C =m(A)/P(A) =D,

then there is measure o4, (e.g, P), which is equivalent te: and with respect to which
(fn» An);,24 is a martingale. This martingale measure is unigaad equal toP, if we
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require, for eachn and for eachQ € Q,, the conditional distribution orQ N Q, 41 to
have maximum entropy.

A question arises. Note that we can associate the numtmethe setQ in Theorem 2.
When we do this for alp € Q,, we have afunctiog,, definedor2.1sg,,,n =1,2,3, ...

a measure free martingale?

Suppose2 is a compact metric space and that setsdin form a clopen base for
its topology. Then any martingale measure for the measure free martingald,, ), ;
extends to a countably additive measure on the Borel fietd ©2. The collectionC of
all martingale measures foy,,, A,);° ; defined on3 forms a compact convex set under
weak topology, whose extreme points are already described above.

4. A result on convergence

Let Q2 be a compact metric space and(¢});> ; be a sequence of continuous real valued
functions on2. LetQ,, be the partition of2 generated by, fo, ..., f,. Elements of),
are closed sets. Say thah,, Q,);° ; is a martingale of continuous functions if for each

and for eaclC € Q, the value off,, on C lies between the minimum and the maximum
value of f,,.1 on C. We have the following theorem.

Theorem 3. If the martingale(f,, Q)2 of continuous functions is also an equicon-

tinuous sequencee., the sequence of functiong, ) ; is equicontinuougthen(f,)7° ;
converges pointwise.

Proof. Let Q~ denote the common refinement of all t@g,n = 1, 2,... and assume
that Q. is made of singleton sets. Letbe a point of2 and letC,, be the element of
Qy to whichw belongs. Them™ ,C, = {w}, and sinceC,’s are closed, we see that the
diameter ofC,, tends to zero as tends toco. By martingale and equicontinuity property
of the sequencef,);> ; we conclude that given any > 0 there is amg such that for

n > no, | fa(@) — fag(@)| < €. SO(f,);2 1 converges pointwise.

If Qs is Nnot made of singletons, then we consider= Q/Q., equipped with the
quotient topology. Define far € Qn, f,,(c) = the constant value of, onc. We can view
Q, also as a partition af2. The sequencef ,, Qu)52 4 forms a martingale of continuous
functions on the compact s@tand the functiong’,, n = 1, 2, . .. form an equicontinuous
sequence of functions. The common refinem@gt of the partitionsQ,,,n = 1,2, ...
when considered as partition@fis the partition o2 into singleton sets. By considerations
of the previous paragraph we see that the sequ@ﬁp)@il converges pointwise, whence

the sequencef,): ; converges pointwise. The theorem is proved. |

We conclude by raising a question about Boltzmann distribution(Lbe a compact
subset of the real line and letbe strictly between maximum and minimum pointCof
Letxy, x2,..., xz, be ane-netinC. Let u. denote the Boltzmann distribution on tleis
net andx. Can one say that. converges weakly to a unique probability measur€as
€ — 0, independent of the choice of thenets?
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