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Abstract. Let B, be a ball of radius, in §” (H"), and letB, be a smaller ball of radius

ro such thatB, C B;. For S” we consider; < n. Letu be a solution of the problem
—Au = 1inQ := B, \ By vanishing on the boundary. It is shown that the associated
functional J (2) is minimal if and only if the balls are concentric. It is also shown that
the first Dirichlet eigenvalue of the Laplacian énis maximal if and only if the balls
are concentric.
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1. Introduction

Let (M, g) be a Riemannian manifold and I&t denote the Levi—Civita connection of
(M, g). For a smooth vector fieldd on M the divergence diiX) is defined as trac® X).
For a smooth functionf: M — R, the gradientV f is defined byg(V f(p),v) =
df(p)(v) (p € M, v € T,M) and the Laplace—Beltrami operatdr is defined by
Af =div(V f). FurtherV2 f denotes the Hessian ¢f Throughout this papes; and oV
denote the volume element @7, g).

Let @ ¢ M be a domain such th&® is a smooth compact submanifold af. The
Sobolev spacé/ () is defined as the closure 6% () (the space of real valued smooth
functions on$) with respect to the Sobolev norm

1/2 B
£l gy = ( /Q (f2+ IIVfIIZ}dV) (f €C™(Q)).

The closure ot3°(2) (the space of real valued smooth functionss@imaving compact
supportinQ) in H1(Q) is denoted b)H&(Q). The Sobolev spack?() is defined as the
closure ofc™($2) with respect to the Sobolev norm

1/2 _
I £l 2y = (/Q{f2 +IVLIZ+ ||V2f||2}dV) (f € C®(Q)).

These spaces are Hilbert spaces with the corresponding norms.
Consider the Dirichlet boundary value problem®@n

—Au=1 on Q,
! } (1.1)

u=0 on 9Q.
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Letu € H&(Q) be the unique weak solution of problem (1.1). By Theorem 4.8, p. 105 of
[1], u € C®(Q).
Consider the following eigenvalue problem @n

—Au=iu on £,
} (1.2)

u=0 on Q.

The eigenvalues of the positive Laplace—Beltrami operatr= —div(V f) are strictly
positive. The eigenfunctions corresponding to the first eigenveduare proportional to
each other. They belong &° () and they are either strictly positive or strictly negative
on 2. Moreover,

A1 =inf{ IIV¢I|L2(Q) | ¢ € Hy(%), ||¢|IL2(Q) 1

(cf. [1], Theorem 4.4, p. 102). Let:= y(RQ) € C*() be the unique solution of problem
(1.1). Lety1 := y1(£2) be the unique solution of problem (1.2), corresponding to the first
eigenvalue.; := 11(R2), characterized by

y1>0 onQ and /yfdvzl.
Q

The aim of this paper is to prove the main results of [3] for simply connected spherical
and hyperbolic space-forms.

Consider the unit spher§” = {(x1, x2, ... ,x,41) € R Y2 = 1) with
induced Riemannian metric ) from the Euclidean spad*+1. Also conS|der the hyper-
bolic spacél” = {(x1, x2, ..., Xp41) € RM Y1 x2—x2 | = —1andy, 1 > 0} with
the Riemannian metric induced from the quadratic fexmy) := Y71 xi yi — Xn4+-1Vn+1,
wherex = (x1, x2, ..., x,41) andy = (y1, y2, ... » Yut1)-

Fix 0 < ro < r1. We choose; < 7 for the case of5”. Let B; be any ball of radius
r1 in S"(H") and By be any ball of radiusg such thatBy c B;. Consider the family

= {B1\ Bo} of domains ins" (H"). We study the extrema of the following functionals:

J) = - /Q (V)2 — 2y()} dV, )

J1(Q) = — /Q {IVyL(R))17 — 22()[y1(2)]2 dV )

on F, associated to problems (1.1) and (1.2) respectively. Note here that the functionals
andJj are nothing but negative of the energy functioﬁg;\lWy(Q) |I2dV and the Dirichlet
eigenvalue\s, respectively.

We state our main results: PQy = B(p, r1) \ B(p, ro) for any fixedp € S"(H").

Theorem 1. The functional/ (2) on F assumes minimum & if and only if Q2 = Qq,
i.e., when the balls are concentric.

Theorem 2. The functional/1(2) on F assumes maximum & if and only if @ = Qq,
i.e., when the balls are concentric.

In 882 and 3, following [5], we develop the ‘shape calculus’ for Riemannian manifolds
for the stationary problem (1.1) and the eigenvalue problem (1.2) respectively. In 84, we
prove Theorems 1 and 2 fé', and make the necessary remarks to carry out the proofs
of Theorems 1 and 2 fdil".
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2. Shape calculus for the stationary problem

Let V be a smooth vector field aif having compact support. Lét: R x M — M be the
smooth flow forV. For eachr € R, denoted (¢, x) by ®,(x) (x € M). LetQ2 be an open
subset off such that2 is a smooth compact submanifoldf. PutQ, := ®,(Q) (¢t € R).
Let D be a domain inM such that supp’ C D. Fix f € C*°(D). Consider the Dirichlet
boundary value problem af;:
Au=f on 4, }

2.1
u=0 on 9%;. (1)

Let y, € C*®(2;) be the unique solution of problem (2.1) (cf. [1], Theorem 4.8, p. 105).
Throughout this section := y(£2) denotes the unique solution of (2.1) fo& 0.
Denotey, o ®,|q by y' (t € R).

PROPOSITION 2.1

The map — y' is aCl-curve inH2(2) N H(Q) from a neighbourhood d¥ in R.

Proof. By problem (2.1), for each e R, y, satisfies the equation
/ gVy, V) dv =— | fydV Vi eCgo (). 3)
Q Q

There exists smooth functiop: M — (0, o) such that®}w = y0 (here,w :=
dv, the volume element ofM, g)). Put B, := (D®,) 1, B} = transpose ofB; (i.e.,
gBi(x)v,w) = g, Bf(x)w) Yv € T,Q;, w € Ty, wherex’ = @fl(x)) and
A, = y; B B}. By the change of variabl®;: @ — ;, eq. (3) can be re-written as

/ —d|V(AtV(yt o CDI)) '(ﬂ e} th dV = —/ f e} q)['(/f e} q)t)/t dV
Q Q

Thereforey’ ;= y, o ®,: @ — R satisfies

—div(A;Vy") + fo®,, =0 on Q, }

2.2
y'=0 on 9Q. (2:2)

Define F: R x H?(Q) N HY(Q) —> L3(Q) by F(t,u) = —div(A,Vu) + f o ¢ ;.
Then F is aCl-map. FurtherD, F|o,)(0, u) = —div(Vu) (recally = y(Q)). By the
standard theory of Dirichlet boundary value problem on compact Riemannian manifolds
([1], Theorem 4.8, p. 105 and [2], Theorem 7.32, p. 259),

D2F |0,y HX() N HF(Q) —> LA(Q)

is an isomorphism. By (2.2); (¢, y') = 0Vt. Proposition 2.1 now follows by the implicit
function theorem. a

DEFINITION

y(Q2,V) = (dﬂty’)‘ o € H(}(Q) is called the (strongjnaterial derivative ofy in the
1=
direction ofV.

Consider?’ cc Q.
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PROPOSITION 2.2
The mapr —> | is a Cl-curve in HY(Q') from a neighbourhood ob in R and
d/dt]—o (yrle) = {y(2, V) —g(Vy, V)}la.

Proof. There existss§ > 0 such thatQ’ c ®;(Q) V|| < 8. Theny g = y' o
®_,|qr Vt| < 8. Proposition 2.2 now follows from Proposition 2.1 and Proposition 2.38,
p. 71 of [5]. |

DEFINITION

V(R,V) := 3R, V) — g(Vy, V) € HY() is called theshape derivative of in the
direction of V.

Consider the domain functiondk2,) defined byJ () := th vy dV (¢t € R).

DEFINITION

TheEulerian derivativedJ (2, V) of J(2;) att = 0 is defined as
J(2) — J(2)

dJ(2,V) = lim
( ) t—0 t

PROPOSITION 2.3
The function/ (£2;) is differentiable at = 0 anddJ (2, V) = fQ vy dv.

Proof. Let Lyw denote the Lie derivative ab with respect toV, andiyw denote the
interior multiplication ofw with respect tdV. Then

E[(q)t w)|i=0 =: Lyw = (diy +iyvd)w =d(iyw) = div(V) w.

Hence, by Propositions 2.1 and 2.2 we get

. V' Pfw — yo /’ d , .
Q = lim -t = iy d
dJ( V) tl >0/ { t Q dt{y tw} lr=0

= / {(y +ydiv(V)} dV = / '+ g(Vy, V)+ ydiv(V)} dV
Q Q

:/y’dV+fd(yivw):/y/dV. O
Q Q Q

The shape derivativg’ = y'(€2, V) is the weak solution of the Dirichlet boundary value
problem

PROPOSITION 2.4

Av =0 on Q,
} (2.3)

av
vlae = —55 &(V,n)

in the space?1(2). (Here, n is the outward unit normal field o&i2).
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Proof. Considery € C3°(€2) having support in a domaift’ cC Q. There exist$ > 0
such thatY’ c @, V |z| < §. By problem (2.1),

/g(Vyt,Vw)dV=—/ fydv for|t| < 6. (4)
Q/ Q/

By Proposition 2.2, differentiation of LHS of eq. (4) with respecttats = O can be
carried out under the integral sign. So we get

/ g(Vy,Vy)dv =0.
Q/

Thusy’ satisfiesAy’ = 0 weakly on<.
Nowy,y € HA(Q)NHZ(Q), andy’ = y—g(Vy, V) € H(Q). So by Proposition 2.39,
p. 88 of [2], we get

Ve = yloe — g(Vy, Vilhe and ylse =0.

Also, y € C®(Q2) andy = 0 ondQ by (2.1). S0,g(Vy, V)lsa = 2 g(V,n). Thus,
’ _ 9y

3. Shape calculus for the eigenvalue problem
Let (M, g),V, &, 2, @, y1, A; be as in §2. Consider problem (1.2) pose®in

—Au=iu on £, } (3.1)

u=0 on 0%;.

LetA1(2) := A1(2;) andy1(¢) := y1(2;) be as in 81. We denotg (2) by y; andi1(2)
by A1 throughout this section.
Denotey1 (1) o ®;|q by yj (r € R).

PROPOSITION 3.1

The map — (11(t), ¥} ) is acl-curve inR x H?(Q) N Hy(S2) from a neighbourhood
of 0inR.

Proof. By problem (3.1), for each e R, y1(¢) satisfies the equation

/Q g(Vy1(n), V) dV = / MOy Y dV VY e Hy(Q). ®)

Q

As in the proof of Proposition 2.1, eq. (5) can be re-written as
- [ dvavspuay = [y av vy e . (6)
Q Q

Therefore,r —> (A1(1), y}) satisfies

div(A;Vy) + 11 vy, =0 on L,
(A VYD) + A1) ¥y v } 3.2)

Ja )P vdv =1
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Let X := R x H*(Q) N H}(Q). Define F: R x X — L%(Q) x Rby F(t, u, u) =
(div(A,Vu) + puys, [qu?y: dV —1). Then F is a Cl-map. FurtherDaF|(o, 5, v
©, u, u) = (Au + A4y, 2 [o yiu dV).

Claim. D2F |, 1, yp: R x H2(Q) N H}(Q) — L%(Q) x R is an isomorphism.
Let (v, b) € L%(Q2) x R be arbitrary. Consider the following problem:

Au + Mu + =v on g,
1+ puy1 } 3:3)

2 oy dV =0b.

Now by Fredholm alternativeyu+x1u = v—u y1 has asolution i 2(Q2)NH () ifand
onlyif v—py1 L y1in L%(R). So, forug := [, vy1 dV there exista1 € H2(Q)NHF(RQ)
suchthatAuy +A1u1 + pnoy1 = v. Moreover, the solutions afu + Aqu + poy1 = v are of
the formu = u1+ayi,a € R.Givenb € Rthere existsaunique := b/2—fQ yiuy dV e
Rsuchthat2f, yiu dV = b. Putug = u1+agy1. Thusfor(v, b) € L?(Q) xR there exists
a unique(o, uo) € R x H3(Q) N HI(Q) such thatDz F (g, 14, y1) (0, wo. uo) = (v, b).
This proves the claim.

By (3.2), F(t, A1(1), ;) = 0Vz. Proposition 3.1 now follows by the implicit function
theorem. a

DEFINITION

y1(2, V) = ((d/dr)y)li=0 € Hol(Q) is called the (stronginaterial derivative ofy1 in
the direction ofV.

Consider®?’ cc Q.

PROPOSITION 3.2

The mapr — y1(t)|o is aCl-curve in H1(Q') from a neighbourhood @ in R and
((d/dD)[y1()laDli=0 = 1 — g(Vya, V)) lo € HYS'). Further, y; satisfiesy; =
11— g(Vy1, V) in HY(Q) andy]lse = — 32 g(V, n).

Proof. There exist$ > 0 such that?’ c ®,(Q2) V7| < §. The first part of Proposition
3.2 follows from Proposition 3.1 and Proposition 2.38, p. 71 of [5]. Nowas HY(Q)
andVy; € C®(Q), we gety; = y1 — g(Vy1. V) € HY(Q). Hence,y| s = yilaa —

g(Vy1, V)lan = =22 g(V,n). ]

DEFINITION
Theshape derivative of; in the direction ofV is the elemeny] = y;(2,V) € H(Q)
defined byy; = y1 — g(Vy1, V).
PROPOSITION 3.3
The shape derivative] € H(Q) satisfies
—Ayp =AMy;+Ay1 on Q

in the sense of distributions.
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Proof. Lety € C3°(R). LetQ cC Q be a domain such that sugpc Q'. As y1(1) is a
solution of problem (1.2) posed @, for ¢ sufficiently small we get

/Q/g(Vyl(t),Vt/f) dv = /;/M(t)yl(t)w dv. 7)

By Propositions 3.1 and 3.2, we can differentiate with respectirader the integral sign
in eq. (7). Thus we have

/Q/g(Vyi, Vy) dv = /Q/(Myi+k’1y1)1/f dv.
Hence,

—/ y1AY dV:/(Aly/l+)»/1y1)IpdV Ve CP (). a
Q Q

PROPOSITION 3.4
y1 € C(RQ).

Proof. By Proposition 3.2y] = y1 — g(Vy1, V) on Q. Hence it is enough to prove that
y1 € C®(Q). Considel. := A+ A1, alinear elliptic operator of order 2. Then € H&(Q)
satisfiesL (y1) = L(yy + g(Vy1, V)) = —Ayy1 + L(g(Vy1, V)), by Proposition 3.3.
From Proposition 3.58, p. 87 of [1], it follows thaf € C* (). ]

PROPOSITION 3.5

dy1\°

Proof. We write A} = 1} [, »? dV. By Eroposition 3.31) = [o{—Ay] — A1yi}y1 dV.
Hence by problem (1.2) and Proposition 3.4, we get

ay1 Y1
)\/1=/{—y1 Ayp +y1 Ay} dv =/ 1 SO §
Q 0 on on

dy1
= r—=dSs.
/39 yl on

Now the result follows by Proposition 3.2. a

4. Proofs of Theorem 1 and Theorem 2 foiS™

Proof of Theoren. for S". We continue with the notations of 81 suchmasry, F, and
v(Q),J(R) for @ € F for $". For|¢t| < 7, putp := (0,...,0,1) andq(t) =
0, ...,0,sint, cost) € S§". The Laplace—Beltrami operatax of (S”, (,)) is invari-
ant under isometries af”. So we need to study the functiondl only on domains
Q(q(@)) := B(r1) \ B(q(t),r0),0 < |t| < r1—ro, whereB(r1) := B (p,r1).

We definej: (ro — r1,r1 — ro) — R by j() = J(R(q(1))).
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Fix rg such that 0< 79 < r1 — rg and putQ := Q(g(f9)) and Bg := B(q(t0), ro). Fix
r2 such thatg < r2 < r1 — ro and consider a smooth functign S — R satisfying
p = 1onB(q(ty), r2) andp = 0 ond B(r1). Let V denote the vector field o$i* defined by
Vix)=px)O,...,0 x,41, —xp) VX = (x1, ... , xp41) € S". Let{®d,},cr be the one-
parameter family of diffeomorphisms 8f associated withy. Then for: sufficiently close
to 0, J(®,(R)) = j(to + ). Note that/ (P;(R2)) = th v dV, hence by Proposition 2.3,
J is differentiable atg.

Note that; is an even function which is differentiable at 0. Herj¢e) = 0.

Now onwards we fixg such that O< 9 < r1 — rg and consideg2 := Q(g(f)) and
Bo := B(q(to), ro). Let n denote the outward unit normal 6f on 2. Forx € 9By,
puta = d(p,x) anda = the angle atp of the spherical triangld” = [p, q(t0), x]
with verticesp, ¢(tp) andx. Thenn(x) = (q(t9) — cosrgx)/sinrg and(V, n) (x) =
(cosa sintg — sina costg cosw)/ sinrg. Hence, by eq. (19) on p. 30 of [6], we get

(V.n) (x) = cosp(x), 8

whereg(x) denotes the angle a{#p) of the spherical triangl& defined above.
By Proposition 2.3,'(t0) = [, ¥’ dV. Hence by Proposition 2.4 and problem (1.1),

Again by Proposition 2.4 and eq. (8) above, we get

9 2
j'(to) = / (a—y(x)) cosB(x) ds. ©)
x€dBg n

Let H denote the hyperplane B'* through(0, . .. , 0) havingg’(1o) as a normal vector.
Let ry denote the reflection of” aboutH. PutO = {x € Q| {(x, ¢'(t0)) > 0}. Then
ru(O) C B(r1) andry (Bo) = Bo. Forx € dBoNJ0, letx’ denotery (x). Note that for all

x € 90BN, cosB(x) < 0and coB(x’) = — cosB(x). Thus eq. (9) can be re-written as

y dy 2 .\
Jj'(t0) = / (—(x)) - (—(x )) cosB(x) ds. (10)
xedaBona© | \on on

The Laplace—Beltrami operatarof S” is uniformly elliptic onS” and hence the maximum
principle ([4], Theorem 5, p. 61) and the Hopf maximum principle ([4], Theorem 7, p. 65)
are applicable o®. Hence, by arguments analogous to [3] at this stage, we get

d ad
‘—y(x) <12 vxeaBynoo.
on on
Thus from eq. (10),’(t9) > 0. This completes the proof of Theorem 1 fg. m]

Proof of Theoren for §”. We continue with the notations of 81 such/as), y1(2)
and J1(2) for Q € F. Let p, ¢q(¢t) be as in the proof of Theorem 1. Defigg (ro —
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r1, r1—ro) — R by j1(¢2) = J1(2(q(2))). As in the proof of Theorem 1, fizy such that
0 <19 < ry—roand putQ := Q(q(t0)) andBg := B(q(t0), ro). Then forr sufficiently
close to 0 we havgi(io + t) = J1(P,(RQ)) = A1(D,(R)). By Proposition 3.1,1 is
differentiable at = 7o and j; (fo) = A7(2). AS A1(P;(R2)) = r1(P_,(R)), j1 is an even
function which is differentiable at 0. Thyg(0) =

Now onwards we fixtg such that O< g < r1 — rg and putQ = Q(q(f)) and
Bo := B(q(t0), ro)- Then by Proposition 3.5 and eq. (8), we get

2 2

Jji(to) = A1 (Q) = —/ (ﬁ) (V,n) dS = —/ <%> cospB(x) ds.
aq \ on 9By \ On

(11)

As in the proof of Theorem 1, eq. (11) can be re-written as

3 3 2
Jilio) = — / (ﬂ( )> - (ﬂ(x/)> cosf(x)ds.  (12)
x€d BgNdO on on

The Laplace—Beltrami operatar of S” is uniformly elliptic onS”. So, the Hopf max-
imum principle ([4], Theorem 7, p. 65) and the generalised maximum principle ([4],
Theorem 10, p. 73) are applicable 6h Hence, by arguments analogous to [3] we
get

dy1

()‘ ‘ (")

3
‘ b Vx € aBynao.

It follows from eq. (12) thatj;(r0) < 0. The proof of Theorem 2 is now complete for
S™. O

Remark on proofs of Theoretrand Theoren2 for H". For + € R, define g(t) =
(0, ..., 0,sinhz, coshr) € H". Putp := ¢(0) andq := g (7o) (to > 0). Define the vector
field V onH" by V(x) = p(x) (0, ...,0, xy41, xy) Vx = (x1,...,x,41) € H", where
p: H" — R is as in the proof of Theorem 1 foi".

Let n denote the inward unit normal d&(q, ro) ondB(q, ro). Then,

n(x) = (¢ — coshrgx)/ sinhrg
and
(V,n) (x) = (x,41 Sinhzg — x, coshrg)/ sinhrg = cosB(x),

whereg(x) denotes the angle atof the hyperbolic triangleg, ¢, x] with verticesp, ¢
andx.

Now Theorems 1 and 2 for the hyperbolic case can be proved using shape calculus of
882 and 3 as in the case of sphere. m]
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