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Abstract. LetB1 be a ball of radiusr1 in Sn(Hn

), and letB0 be a smaller ball of radius
r0 such thatB0 ⊂ B1. ForSn we considerr1 < π . Let u be a solution of the problem
−1u = 1 in � := B1 \ B0 vanishing on the boundary. It is shown that the associated
functionalJ (�) is minimal if and only if the balls are concentric. It is also shown that
the first Dirichlet eigenvalue of the Laplacian on� is maximal if and only if the balls
are concentric.
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1. Introduction

Let (M, g) be a Riemannian manifold and letD denote the Levi–Civita connection of
(M, g). For a smooth vector fieldX onM the divergence div(X) is defined as trace(DX).
For a smooth functionf : M −→ R, the gradient∇f is defined byg(∇f (p), v) =

df (p)(v) (p ∈ M, v ∈ T

p

M) and the Laplace–Beltrami operator1 is defined by
1f = div(∇f ). Further,∇2

f denotes the Hessian off . Throughout this paper,ω and dV
denote the volume element of(M, g).

Let � ⊂ M be a domain such that¯� is a smooth compact submanifold ofM. The
Sobolev spaceH 1

(�) is defined as the closure ofC

∞

(

¯

�) (the space of real valued smooth
functions on¯

�) with respect to the Sobolev norm

‖f ‖

H

1
(�)

=

(

∫

�

{f

2
+ ‖∇f ‖

2
} dV

)1/2

(f ∈ C

∞

(

¯

�)).

The closure ofC∞

0 (�) (the space of real valued smooth functions on� having compact
support in�) inH 1

(�) is denoted byH 1
0 (�). The Sobolev spaceH 2

(�) is defined as the
closure ofC∞

(

¯

�) with respect to the Sobolev norm

‖f ‖

H

2
(�)

=

(

∫

�

{f

2
+ ‖∇f ‖

2
+ ‖∇

2
f ‖

2
} dV

)1/2

(f ∈ C

∞

(

¯

�)).

These spaces are Hilbert spaces with the corresponding norms.
Consider the Dirichlet boundary value problem on�:

−1u = 1 on �,

u = 0 on ∂�.

}

(1.1)
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Let u ∈ H

1
0 (�) be the unique weak solution of problem (1.1). By Theorem 4.8, p. 105 of

[1], u ∈ C

∞

(

¯

�).
Consider the following eigenvalue problem on�:

−1u = λu on �,

u = 0 on ∂�.

}

(1.2)

The eigenvalues of the positive Laplace–Beltrami operator−1 = −div(∇f ) are strictly
positive. The eigenfunctions corresponding to the first eigenvalueλ1 are proportional to
each other. They belong toC∞

(

¯

�) and they are either strictly positive or strictly negative
on�. Moreover,

λ1 = inf { ‖∇φ‖

2
L

2
(�)

| φ ∈ H

1
0 (�), ‖φ‖

2
L

2
(�)

= 1}

(cf. [1], Theorem 4.4, p. 102). Lety := y(�) ∈ C

∞

(

¯

�) be the unique solution of problem
(1.1). Lety1 := y1(�) be the unique solution of problem (1.2), corresponding to the first
eigenvalueλ1 := λ1(�), characterized by

y1 > 0 on � and
∫

�

y

2
1 dV = 1.

The aim of this paper is to prove the main results of [3] for simply connected spherical
and hyperbolic space-forms.

Consider the unit sphereSn = {(x1, x2, . . . , xn+1) ∈ R

n+1
|

∑

n+1
i=1 x

2
i

= 1} with
induced Riemannian metric〈 , 〉 from the Euclidean spaceRn+1. Also consider the hyper-
bolic spaceHn

= {(x1, x2, . . . , xn+1) ∈ R

n+1
|

∑

n

i=1 x
2
i

−x

2
n+1 = −1 andx

n+1 > 0} with
the Riemannian metric induced from the quadratic form(x, y) :=

∑

n

i=1 xiyi −xn+1yn+1,
wherex = (x1, x2, . . . , xn+1) andy = (y1, y2, . . . , yn+1).

Fix 0 < r0 < r1. We chooser1 < π for the case ofSn. Let B1 be any ball of radius
r1 in Sn(Hn

) andB0 be any ball of radiusr0 such thatB0 ⊂ B1. Consider the family
F = {B1 \B0} of domains inSn(Hn

). We study the extrema of the following functionals:

J (�) = −

∫

�

{ ‖∇y(�)‖

2
− 2y(�)} dV, (1)

J1(�) = −

∫

�

{ ‖∇y1(�)‖
2
− 2λ1(�)[y1(�)]

2
} dV (2)

onF , associated to problems (1.1) and (1.2) respectively. Note here that the functionalsJ

andJ1 are nothing but negative of the energy functional
∫

�

‖∇y(�)‖

2 dV and the Dirichlet
eigenvalueλ1, respectively.

We state our main results: Put�0 = B(p, r1) \ B(p, r0) for any fixedp ∈ S

n

(H

n

).

Theorem 1. The functionalJ (�) on F assumes minimum at� if and only if� = �0,
i.e., when the balls are concentric.

Theorem 2. The functionalJ1(�) on F assumes maximum at� if and only if� = �0,
i.e., when the balls are concentric.

In §§2 and 3, following [5], we develop the ‘shape calculus’ for Riemannian manifolds
for the stationary problem (1.1) and the eigenvalue problem (1.2) respectively. In §4, we
prove Theorems 1 and 2 forSn, and make the necessary remarks to carry out the proofs
of Theorems 1 and 2 forHn.
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2. Shape calculus for the stationary problem

LetV be a smooth vector field onM having compact support. Let8: R×M −→ M be the
smooth flow forV . For eacht ∈ R, denote8(t, x) by8

t

(x) (x ∈ M). Let� be an open
subset ofM such that¯� is a smooth compact submanifold ofM. Put�

t

:= 8

t

(�) (t ∈ R).
LetD be a domain inM such that suppV ⊂ D. Fix f ∈ C

∞

(D). Consider the Dirichlet
boundary value problem on�

t

:

1u = f on �

t

,

u = 0 on ∂�

t

.

}

(2.1)

Let y
t

∈ C

∞

(

¯

�

t

) be the unique solution of problem (2.1) (cf. [1], Theorem 4.8, p. 105).
Throughout this sectiony := y(�) denotes the unique solution of (2.1) fort = 0.

Denotey
t

◦8

t

|

�

by yt (t ∈ R).

PROPOSITION 2.1

The mapt 7−→ y

t is aC

1-curve inH 2
(�) ∩H

1
0 (�) from a neighbourhood of0 in R.

Proof. By problem (2.1), for eacht ∈ R, y
t

satisfies the equation
∫

�

t

g(∇y

t

,∇ψ) dV = −

∫

�

t

fψ dV ∀ψ ∈ C

∞

0 (�t ). (3)

There exists smooth functionγ
t

: M −→ (0,∞) such that8∗

t

ω = γ

t

ω (here,ω :=
dV , the volume element of(M, g)). PutB

t

:= (D8

t

)

−1, B∗

t

= transpose ofB
t

(i.e.,
g(B

t

(x)v,w) = g(v, B

∗

t

(x)w) ∀v ∈ T

x

�

t

, w ∈ T

x

′

�, wherex′ := 8

−1
t

(x)) and
A

t

:= γ

t

B

t

B

∗

t

. By the change of variable8
t

: � −→ �

t

, eq. (3) can be re-written as
∫

�

−div(A
t

∇(y

t

◦8

t

)) ψ ◦8

t

dV = −

∫

�

f ◦8

t

ψ ◦8

t

γ

t

dV.

Therefore,yt := y

t

◦8

t

: � −→ R satisfies

−div(A
t

∇y

t

)+ f ◦8

t

γ

t

= 0 on �,

y

t

= 0 on ∂�.

}

(2.2)

DefineF : R × H

2
(�) ∩ H

1
0 (�) −→ L

2
(�) by F(t, u) = −div(A

t

∇u) + f ◦ φ

t

γ

t

.
ThenF is a C

1-map. FurtherD2F |

(0,y)(0, u) = −div(∇u) (recall y = y(�)). By the
standard theory of Dirichlet boundary value problem on compact Riemannian manifolds
([1], Theorem 4.8, p. 105 and [2], Theorem 7.32, p. 259),

D2F |

(0,y): H
2
(�) ∩H

1
0 (�) −→ L

2
(�)

is an isomorphism. By (2.2),F(t, yt ) = 0 ∀t . Proposition 2.1 now follows by the implicit
function theorem. 2

DEFINITION

ẏ(�, V ) :=
(

d
dty

t

)

∣

∣

∣

t=0
∈ H

1
0 (�) is called the (strong)material derivative ofy in the

direction ofV .

Consider�′

⊂⊂ �.
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PROPOSITION 2.2

The mapt 7−→ y

t

|

�

′ is a C

1-curve inH 1
(�

′

) from a neighbourhood of0 in R and
d/dt |

t=0 (yt |
�

′

) = {ẏ(�, V )− g(∇y, V )}|

�

′ .

Proof. There existsδ > 0 such that�′

⊂ 8

t

(�) ∀ |t | < δ. Then y
t

|

�

′

= y

t

◦

8

−t

|

�

′

∀ |t | < δ. Proposition 2.2 now follows from Proposition 2.1 and Proposition 2.38,
p. 71 of [5]. 2

DEFINITION

y

′

(�, V ) := ẏ(�, V ) − g(∇y, V ) ∈ H

1
(�) is called theshape derivative ofy in the

direction ofV .

Consider the domain functionalJ (�
t

) defined byJ (�
t

) :=
∫

�

t

y

t

dV (t ∈ R).

DEFINITION

TheEulerian derivativedJ (�, V ) of J (�
t

) at t = 0 is defined as

dJ (�, V ) := lim
t−→0

J (�

t

)− J (�)

t

.

PROPOSITION 2.3

The functionJ (�
t

) is differentiable att = 0 anddJ (�, V ) =

∫

�

y

′ dV .

Proof. Let L
V

ω denote the Lie derivative ofω with respect toV , and i
V

ω denote the
interior multiplication ofω with respect toV . Then

d

dt
(8

∗

t

ω)|

t=0 =: L
V

ω = (d i

V

+ i

V

d) ω = d(i
V

ω) = div(V ) ω.

Hence, by Propositions 2.1 and 2.2 we get

dJ (�, V ) = lim
t−→0

∫

�

{

y

t

8

∗

t

ω − yω

t

}

=

∫

�

(

d

dt
{y

t

8

∗

t

ω}

)

|

t=0

=

∫

�

{ẏ + y div(V )} dV =

∫

�

{y

′

+ g(∇y, V )+ y div(V )} dV

=

∫

�

y

′ dV +

∫

�

d(y i
V

ω) =

∫

�

y

′ dV.
2

PROPOSITION 2.4

The shape derivativey′

= y

′

(�, V ) is the weak solution of the Dirichlet boundary value
problem

1v = 0 on �,

v|

∂�

= −

∂y

∂n

g(V, n)

}

(2.3)

in the spaceH 1
(�). (Here, n is the outward unit normal field on∂�).
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Proof. Considerψ ∈ C

∞

0 (�) having support in a domain�′

⊂⊂ �. There existsδ > 0
such that�′

⊂ �

t

∀ |t | < δ. By problem (2.1),
∫

�

′

g(∇y

t

,∇ψ) dV = −

∫

�

′

f ψ dV for |t | < δ. (4)

By Proposition 2.2, differentiation of LHS of eq. (4) with respect tot at t = 0 can be
carried out under the integral sign. So we get

∫

�

′

g(∇y

′

,∇ψ) dV = 0.

Thusy′ satisfies1y′

= 0 weakly on�.
Now ẏ,y ∈ H

2
(�)∩H

1
0 (�), andy′

= ẏ−g(∇y, V ) ∈ H

1
(�). So by Proposition 2.39,

p. 88 of [2], we get

y

′

|

∂�

= ẏ|

∂�

− g(∇y, V )|

∂�

and ẏ|

∂�

= 0.

Also, y ∈ C

∞

(

¯

�) andy = 0 on ∂� by (2.1). So,g(∇y, V )|
∂�

=

∂y

∂n

g(V, n). Thus,

y

′

|

∂�

= −

∂y

∂n

g(V, n). 2

3. Shape calculus for the eigenvalue problem

Let (M, g), V ,8
t

,�,�
t

, γ
t

, A
t

be as in §2. Consider problem (1.2) posed in�
t

:

−1u = λu on �

t

,

u = 0 on ∂�

t

.

}

(3.1)

Let λ1(t) := λ1(�t ) andy1(t) := y1(�t ) be as in §1. We denotey1(�) by y1 andλ1(�)

by λ1 throughout this section.
Denotey1(t) ◦8

t

|

�

by yt1 (t ∈ R).

PROPOSITION 3.1

The mapt 7−→

(

λ1(t) , y
t

1

)

is aC

1-curve inR ×H

2
(�)∩H

1
0 (�) from a neighbourhood

of 0 in R.

Proof. By problem (3.1), for eacht ∈ R, y1(t) satisfies the equation
∫

�

t

g(∇y1(t),∇ψ) dV =

∫

�

t

λ1(t) y1(t) ψ dV ∀ψ ∈ H

1
0 (�t ). (5)

As in the proof of Proposition 2.1, eq. (5) can be re-written as

−

∫

�

div(A
t

∇y

t

1) ψ dV =

∫

�

λ1(t) y
t

1 γt ψ dV ∀ψ ∈ H

1
0 (�). (6)

Therefore,t 7−→

(

λ1(t) , y
t

1

)

satisfies

div(A
t

∇y

t

1)+ λ1(t) y
t

1 γt = 0 on �,
∫

�

(

y

t

1

)2
γ

t

dV = 1.

}

(3.2)



98 M H C Anisa and A R Aithal

Let X := R × H

2
(�) ∩ H

1
0 (�). DefineF : R × X −→ L

2
(�) × R by F(t, µ, u) =

(

div(A
t

∇u)+ µuγ

t

,

∫

�

u

2
γ

t

dV − 1
)

. Then F is a C

1-map. FurtherD2F |

(0, λ1, y1)

(0, µ, u) =

(

1u+ λ1u+ µy1 , 2
∫

�

y1u dV
)

.

Claim. D2F |

(0, λ1, y1): R ×H

2
(�) ∩H

1
0 (�) −→ L

2
(�)× R is an isomorphism.

Let (v, b) ∈ L

2
(�)× R be arbitrary. Consider the following problem:

1u+ λ1u+ µy1 = v on �,

2
∫

�

y1u dV = b.

}

(3.3)

Now by Fredholm alternative,1u+λ1 u = v−µy1 has a solution inH 2
(�)∩H

1
0 (�) if and

only if v−µy1 ⊥ y1 inL2
(�). So, forµ0 :=

∫

�

vy1 dV there existsu1 ∈ H

2
(�)∩H

1
0 (�)

such that1u1+λ1u1+µ0y1 = v. Moreover, the solutions of1u+λ1u+µ0y1 = v are of
the formu = u1+ay1,a ∈ R. Givenb ∈ R there exists a uniquea0 := b/2−

∫

�

y1u1 dV ∈

R such that 2
∫

�

y1u dV = b. Putu0 = u1+a0y1. Thus for(v, b) ∈ L

2
(�)×R there exists

a unique(µ0, u0) ∈ R ×H

2
(�) ∩H

1
0 (�) such thatD2F |

(0, λ1, y1)(0, µ0, u0) = (v, b).
This proves the claim.

By (3.2),F(t, λ1(t), y
t

1) = 0 ∀t . Proposition 3.1 now follows by the implicit function
theorem. 2

DEFINITION

ẏ1(�, V ) := ((d/dt)yt1)|t=0 ∈ H

1
0 (�) is called the (strong)material derivative ofy1 in

the direction ofV .

Consider�′

⊂⊂ �.

PROPOSITION 3.2

The mapt 7−→ y1(t)|
�

′ is a C

1-curve inH 1
(�

′

) from a neighbourhood of0 in R and
((d/dt)[y1(t)|

�

′ ])|
t=0 = (ẏ1 − g(∇y1, V )) |

�

′

∈ H

1
(�

′

). Further, y′

1 satisfiesy′

1 =

ẏ1 − g(∇y1, V ) in H 1
(�) andy′

1|∂� = −

∂y1
∂n

g(V, n).

Proof. There existsδ > 0 such that�′

⊂ 8

t

(�) ∀ |t | < δ. The first part of Proposition
3.2 follows from Proposition 3.1 and Proposition 2.38, p. 71 of [5]. Now asẏ1 ∈ H

1
(�)

and∇y1 ∈ C

∞

(

¯

�), we gety′

1 = ẏ1 − g(∇y1, V ) ∈ H

1
(�). Hence,y′

1|∂� = ẏ1|∂� −

g(∇y1, V )|∂� = −

∂y1
∂n

g(V, n). 2

DEFINITION

Theshape derivative ofy1 in the direction ofV is the elementy′

1 = y

′

1(�, V ) ∈ H

1
(�)

defined byy′

1 = ẏ1 − g(∇y1, V ).

PROPOSITION 3.3

The shape derivativey′

1 ∈ H

1
(�) satisfies

−1y

′

1 = λ1y
′

1 + λ

′

1y1 on �

in the sense of distributions.
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Proof. Letψ ∈ C

∞

0 (�). Let�′

⊂⊂ � be a domain such that suppψ ⊂ �

′. As y1(t) is a
solution of problem (1.2) posed in�

t

, for t sufficiently small we get
∫

�

′

g(∇y1(t),∇ψ) dV =

∫

�

′

λ1(t) y1(t) ψ dV. (7)

By Propositions 3.1 and 3.2, we can differentiate with respect tot under the integral sign
in eq. (7). Thus we have

∫

�

′

g(∇y

′

1,∇ψ) dV =

∫

�

′

(λ1y
′

1 + λ

′

1y1) ψ dV.

Hence,

−

∫

�

y

′

11ψ dV =

∫

�

(λ1y
′

1 + λ

′

1y1) ψ dV ∀ ψ ∈ C

∞

0 (�). 2

PROPOSITION 3.4

y

′

1 ∈ C

∞

(

¯

�).

Proof. By Proposition 3.2,y′

1 = ẏ1 − g(∇y1, V ) on�. Hence it is enough to prove that
ẏ1 ∈ C

∞

(

¯

�). ConsiderL := 1+λ1, a linear elliptic operator of order 2. Thenẏ1 ∈ H

1
0 (�)

satisfiesL (ẏ1) = L(y

′

1 + g(∇y1, V )) = −λ

′

1 y1 + L(g(∇y1, V )), by Proposition 3.3.
From Proposition 3.58, p. 87 of [1], it follows thatẏ1 ∈ C

∞

(

¯

�). 2

PROPOSITION 3.5

λ

′

1 = −

∫

∂�

(

∂y1

∂n

)2

g(V, n) dS.

Proof. We writeλ′

1 = λ

′

1

∫

�

y

2
1 dV . By Proposition 3.3,λ′

1 =

∫

�

{−1y

′

1 − λ1y
′

1} y1 dV .
Hence by problem (1.2) and Proposition 3.4, we get

λ

′

1 =

∫

�

{−y11y
′

1 + y

′

11y1} dV =

∫

∂�

{

y

′

1
∂y1

∂n

− y1
∂y

′

1

∂n

}

dS

=

∫

∂�

y

′

1
∂y1

∂n

dS.

Now the result follows by Proposition 3.2. 2

4. Proofs of Theorem 1 and Theorem 2 forSn

Proof of Theorem1 for Sn. We continue with the notations of §1 such asr0, r1,F , and
y(�), J (�) for � ∈ F for Sn. For |t | < π , put p := (0, . . . ,0, 1) and q(t) =

(0, . . . ,0, sint, cost) ∈ S

n. The Laplace–Beltrami operator1 of (Sn, 〈, 〉) is invari-
ant under isometries ofSn. So we need to study the functionalJ only on domains
�(q(t)) := B(r1) \ B(q(t), r0), 0 ≤ |t | < r1 − r0, whereB(r1) := B (p, r1).

We definej : (r0 − r1, r1 − r0) −→ R by j (t) = J (�(q(t))).
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Fix t0 such that 0≤ t0 < r1 − r0 and put� := �(q(t0)) andB0 := B(q(t0), r0). Fix
r2 such thatr0 < r2 < r1 − t0 and consider a smooth functionρ: Sn −→ R satisfying
ρ = 1 onB(q(t0), r2) andρ = 0 on∂B(r1). LetV denote the vector field onSn defined by
V (x) = ρ(x) (0, . . . ,0, x

n+1,−xn) ∀x = (x1, . . . , xn+1) ∈ S

n. Let {8
t

}

t∈R

be the one-
parameter family of diffeomorphisms ofSn associated withV . Then fort sufficiently close
to 0,J (8

t

(�)) = j (t0 + t). Note thatJ (8
t

(�)) =

∫

�

t

y

t

dV , hence by Proposition 2.3,
j is differentiable att0.

Note thatj is an even function which is differentiable at 0. Hencej ′

(0) = 0.
Now onwards we fixt0 such that 0< t0 < r1 − r0 and consider� := �(q(t0)) and

B0 := B(q(t0), r0). Let n denote the outward unit normal of� on ∂�. For x ∈ ∂B0,
put a = d(p, x) andα = the angle atp of the spherical triangleT := [p, q(t0), x]
with verticesp, q(t0) andx. Thenn(x) = (q(t0) − cosr0 x)/ sinr0 and 〈

V, n

〉

(x) =

(cosa sint0 − sina cost0 cosα)/ sinr0. Hence, by eq. (19) on p. 30 of [6], we get

〈

V, n

〉

(x) = cosβ(x), (8)

whereβ(x) denotes the angle atq(t0) of the spherical triangleT defined above.
By Proposition 2.3,j ′

(t0) =

∫

�

y

′ dV . Hence by Proposition 2.4 and problem (1.1),

∫

�

y

′ dV = −

∫

�

{

y

′

1y − y 1y

′

}

dV = −

∫

∂�

{

y

′

∂y

∂n

− y

∂y

′

∂n

}

dS

= −

∫

∂�

y

′

∂y

∂n

dS.

Again by Proposition 2.4 and eq. (8) above, we get

j

′

(t0) =

∫

x∈∂B0

(

∂y

∂n

(x)

)2

cosβ(x) dS. (9)

LetH denote the hyperplane inRn+1 through(0, . . . ,0) havingq ′

(t0) as a normal vector.
Let r

H

denote the reflection ofSn aboutH . PutO = {x ∈ � | 〈x, q

′

(t0)〉 > 0}. Then
r

H

(O) ⊂ B(r1) andr
H

(B0) = B0. Forx ∈ ∂B0∩∂O, letx′ denoter
H

(x). Note that for all
x ∈ ∂B0∩∂O, cosβ(x) < 0 and cosβ(x′

) = − cosβ(x). Thus eq. (9) can be re-written as

j

′

(t0) =

∫

x∈∂B0∩∂O

{

(

∂y

∂n

(x)

)2

−

(

∂y

∂n

(x

′

)

)2
}

cosβ(x) dS. (10)

The Laplace–Beltrami operator1ofSn is uniformly elliptic onSn and hence the maximum
principle ([4], Theorem 5, p. 61) and the Hopf maximum principle ([4], Theorem 7, p. 65)
are applicable on¯�. Hence, by arguments analogous to [3] at this stage, we get

∣

∣

∣

∣

∂y

∂n

(x)

∣

∣

∣

∣

<

∣

∣

∣

∣

∂y

∂n

(x

′

)

∣

∣

∣

∣

∀ x ∈ ∂B0 ∩ ∂O.

Thus from eq. (10),j ′

(t0) > 0. This completes the proof of Theorem 1 forSn. 2

Proof of Theorem2 for Sn. We continue with the notations of §1 such asλ1(�), y1(�)

andJ1(�) for � ∈ F . Let p, q(t) be as in the proof of Theorem 1. Definej1: (r0 −
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r1, r1 − r0) −→ R by j1(t) = J1(�(q(t))). As in the proof of Theorem 1, fixt0 such that
0 ≤ t0 < r1 − r0 and put� := �(q(t0)) andB0 := B(q(t0), r0). Then fort sufficiently
close to 0 we havej1(t0 + t) = J1(8t (�)) = λ1(8t (�)). By Proposition 3.1,j1 is
differentiable att = t0 andj ′

1(t0) = λ

′

1(�). As λ1(8t (�)) = λ1(8−t

(�)), j1 is an even
function which is differentiable at 0. Thusj ′

1(0) = 0.
Now onwards we fixt0 such that 0< t0 < r1 − r0 and put� := �(q(t0)) and

B0 := B(q(t0), r0). Then by Proposition 3.5 and eq. (8), we get

j

′

1(t0) = λ

′

1(�) = −

∫

∂�

(

∂y1

∂n

)2

〈

V, n

〉 dS = −

∫

∂B0

(

∂y1

∂n

)2

cosβ(x) dS.

(11)

As in the proof of Theorem 1, eq. (11) can be re-written as

j

′

1(t0) = −

∫

x∈∂B0∩∂O

{

(

∂y1

∂n

(x)

)2

−

(

∂y1

∂n

(x

′

)

)2
}

cosβ(x) dS. (12)

The Laplace–Beltrami operator1 of Sn is uniformly elliptic onSn. So, the Hopf max-
imum principle ([4], Theorem 7, p. 65) and the generalised maximum principle ([4],
Theorem 10, p. 73) are applicable on¯�. Hence, by arguments analogous to [3] we
get

∣

∣

∣

∣

∂y1

∂n

(x)

∣

∣

∣

∣

<

∣

∣

∣

∣

∂y1

∂n

(x

′

)

∣

∣

∣

∣

∀ x ∈ ∂B0 ∩ ∂O.

It follows from eq. (12) thatj ′

1(t0) < 0. The proof of Theorem 2 is now complete for
S

n. 2

Remark on proofs of Theorem1 and Theorem2 for H

n. For t ∈ R, define q(t) =

(0, . . . ,0, sinht, cosht) ∈ H

n. Putp := q(0) andq := q(t0) (t0 > 0). Define the vector
field V on H

n by V (x) = ρ(x) (0, . . . ,0, x
n+1, xn) ∀x = (x1, . . . , xn+1) ∈ H

n, where
ρ: H

n

−→ R is as in the proof of Theorem 1 forSn.
Let n denote the inward unit normal ofB(q, r0) on ∂B(q, r0). Then,

n(x) = (q − coshr0 x)/ sinhr0

and

〈

V, n

〉

(x) = (x

n+1 sinht0 − x

n

cosht0 )/ sinhr0 = cosβ(x),

whereβ(x) denotes the angle atq of the hyperbolic triangle [p, q, x] with verticesp, q
andx.

Now Theorems 1 and 2 for the hyperbolic case can be proved using shape calculus of
§§2 and 3 as in the case of sphere. 2
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