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Abstract. Let p and! be rational primes such thats odd and the order gf modulo

[ is even. For such primeg and!, and fore = [, 2/, we consider the non-singular
projective curvestY® = bX° + cZ° (abc # 0) defined over finite field§, such that

q = p* = 1(mod ¢). We see that the Fermat curves correspond precisely to those curves
among each class (fer= [, 2/), that are maximal or minimal ovéi,. We observe that
each Fermat prime gives rise to explicit maximal and minimal curves over finite fields
of characteristic 2. Far = 21, we explicitly determine the-function(s) for this class of
curves, oveF,, as rational functions in the variabigfor distinct cases af, b, andc, in

F. The¢-function in each case is seen to satisfy the Weil conjectures (now theorems)
for this concrete class of curves.

Fore =1, 21, we determine the class numbers for the function fields associated to each
class of curves ovef,. As a consequence, when the field of definition of the curve(s)
is fixed, this provides concrete information on the growth of class numbers for constant
field extensions of the function field(s) of the curve(s).
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1. Introduction

Let p and! be rational primes such thatis odd and the order gbf modulo!, written
as ordp(mod1), is even. Letf = ord p(mod); this is defined to be the least positive
integer such thap/ = 1(mod/). For such primeg and!, we consider finite field&,
such thaly = p* = 1(mode), fore = [, 2/; thusa = fs for some integes > 1. If

e = 21, clearly p is odd.

In ([1], Theorems 6, 7), we had considered the non-singular projective culifes-
bX°® +cZ¢ (abc # 0, ande = [, 2I) defined over such finite fields,, and had explicitly
obtained the number d%,.-rational points on these curves for each integer 1. This
was done by applying explicit results obtained in [1] for the cyclotomic numbers of order
eoverk,.

Further, for the case= [, we had obtained in ([1], Theorem 8) the explicifunction(s)
for this class of curves defined ovy. In this paper, we consider the case 2/ and apply
the results of ([1], Theorem 7) to obtain the expligifunction(s), in Theorem 1 (83), for
the class of non-singular projective curveg? = X2 + ¢Z? (abc # 0) defined over
F,. as rational function(s) in the variableWe do this for all distinct cases of b, andc,
in F*. There are seven distinct cases, andstienction in each case is seen to satisfy the
Weil conjectures (proven in generality) for this concrete class of curves.
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In 82, we define maximal and minimal curves over finite fields, and we interpret the
results obtained in ([1], Theorems 6, 7), in this context, to link these results with facts
previously known in the literature. In addition, we make some simple but pertinent obser-
vations pertaining to these results.

In 83, as a consequence to the explicitunctions obtained in Theorem 1 and ([1],
Theorem 8), for the projective curved’® = bX° + cZ¢ (e = [, 2I) defined overF,, we
obtain the class numbers of the associated function fields in Theorems 2 and 3, for all
distinct cases ofi, b, c € F}. Further, fore = I, 2/, if we fix the field of definitionF,,
and consider the curve(s) over all finite extension§ gfthese results provide concrete
information on the growth of class numbers for constant field extensions of the function
field of the curve(s) ovef,.

For easy reference, we restate ([1], Theorems 6, 7) as Lemmas 1 and 2 below:

Lemmal ([1], Theorem 6). Let p be any prime such that f = ord p(mod /) is even. Let
g = p* = 1(mod!), anda = fs for some integes > 1. Consider the projective curve
aY! = bX'+cZ' (abc # 0) defined over the finite fief, . Fix any generatoy of F; and
letind, (b/c) = i(mod!) andind, (a/c) = j(mod!). Then for eactx > 1, the number
a;(n) of F 4« -rational points on this curve is given as below

an)=q"+1—(1—1D( —2(=D™q¢"?, if in, jn =0(mod1),
a(n) =q" +1—2(=1)"¢"?, if in, jn,in—jn % 0(modl),

an)=q"+1+ (- 2)(—1)’”q”/2, in all other cases of
in, jn(modl).

Lemma2 ([1], Theorem 7). Let p be an odd prime such that f = ord p(mod [) is
even. Lely = p* = 1(mod 2), anda = fs for some integes > 1. Consider the
projective curveaY? = bX? + cZ? (abc # 0) defined over the finite field,. Fix
any generatory of F; and letind, (b/c) = i(mod 2) andind, (a/c) = j(mod 2).
Then for eaclw > 1, the numbeuwy; (n) of F,«-rational points on this curve is given as
below

ag(n) = q¢" +1— (2 — 1)(2 — 2)(=1)"¢"'?, if in, jn = 0(mod 2),
ay(n) = g" +1—2(=1"¢"2, if in, jn,in — jn % 0(mod 2),

ay(n) =q" +1+2(1 — 1)(—1)'”6]"/2, in all other cases of
in, jn(mod 2).

2. Maximal curves defined over finite fields

Denote byC /F, a non-singular projective algebraic cuwelefined over a finite fielé, .
Denote bya(n, C) the number of,.-rational points orC, for each integen > 1. Let
g > 0 be the genus af'. The Weil conjectures for the curé@state that the-function of
C overF,, which is defined as

2.0) = 2. C/Fy) :exp(z &)

n=1

satisfies the following properties:
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1. Z(, C) is arational function in the variableof the formP(¢) /(1 — 1)(1 — gt), where
P(¢) is a polynomial inz of degree 2, having integer coefficients, leading tegf,
and constant term 1.

2. Z(t, C) satisfies a functional equation given by

g% 1% 271/qt,C) = Z(t, C).

Equivalently, if we expres®(t) = H,fil(l— agt), we may pair they's in such a way
thatogogr =g forl <k <g.

3. The reciprocal roots; of P(r) satisfy the property thaty| = ¢%/2 for 1 < k < 2g.
This is known as the Riemann hypothesis i, .

These conjectures were first stated (in full generality) by &Andfeil [15] in 1949, for
non-singular projective varieties of dimensienl defined over finite fields. Curves are
varieties of dimension 1. These conjectures have been proven in complete generality (see,
for example, [2]). For a proof of these conjectures for curves, see [10].

The first general proof of these conjecturediavesvas given by Weil [14]. He showed
that for such a curve€’/F,,

2
an,C)=¢q"+1-) of, foreachn > 1.
=1

As a consequence of the Riemann hypothesig'jtf,, he obtained the following bounds
ona(n, C), given by

la(n, C) — (¢" + 1)| < 2g¢™/?, foreachn > 1.

These bounds, and a proof of the Riemann hypothesis, were earlier obtained by Hasse in
1936 for curves of genug = 1 (or elliptic curves), and have come to be known as the
Hasse—Weil bounds for the cur¢g sometimes simply referred to as the Weil bounds
for C.

There has been considerable interest and search in the literature for Cyifgs$or
which the upper Weil bounds are attained for the numbé&i,efational points orC. Such
curves are called maximal, and the associated function fields are called maximal function
fields. Maximal curves are of theoretical interest; they provide examples of curves with
large automorphism groups, and have interesting arithmetic and geometric properties (cf.
[3, 8,9, 11, 12]). Such curves, and cur@g-, with large number of,-rational points,
find important applications in coding theory, since the construction by Goppa of codes
with good parameters from such curves (cf. [4, 5]).

In keeping with the terminology for maximal curves, one may define minimal curves
to be curvesC/F, for which the lower Weil bounds are attained for the numbef pf
rational points orC (i.e,a(1, C) = ¢ + 1 — 2gq'/?). It is clear from the expression for
the Weil bounds that curves/F, are maximal or minimal only wheqis a square (even
power of p), or the genug = 0.

As a special case of the curves treated in Lemmas 1 and 2, consider the Fermat curves
Y¢ = X¢ 4 Z¢ (for e = I, 2I) defined over finite field§,, ¢ = p* = 1(mode), when
f = ord p(mod1) is even. If we fixg = p/, itis clear from Lemmas 1 and 2 that these
curves are maximal over finite odd degree extensiorfs,pnd are minimal over finite
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even degree extensionsef. It would thus appear that there is a close inter-relationship
between maximal and minimal curves defined over finite fields.

Further, keeping = p/, if we write ¢ — 1 = et, fore = [, 21, ands > 1, then since
f = ord p(mod1), it follows thatg/? + 1 = et’ for somer’ > 1,¢'|r. Fort’ = 1, the
corresponding Fermat curves are then defined by

Yq1/2+l — qu/2+1 + qu/2+l

over the finite field=,. These are just the Hermitian curves which have been studied in the
literature and known to be maximal ovgy. The corresponding function fields are called
Hermitian function fields. Hermitian curves have been characterized as the (essentially)
unique maximal curves ové, with genusg = ¢/2(¢/? — 1)/2. This is the maximum
possible genus for a maximal curve defined ovgr(cf. [6, 11]). Fors” > 1, we have

elg? + 1, and the corresponding Fermat curves are again known to be maximal,over
these are not Hermitian, but the function fields associated to these curves occur as subfields
of the Hermitian function field (cf. ([13], pp. 196-203)).

The case whei is a Fermat prime is interesting; if= 22' + 1, the corresponding
Fermat curver’ = X' + 7! is a Hermitian curve over the finite fieR,, ¢ = 22", of
characteristic 2, with genys= 2%'~1(2%" — 1). Further, as observed above, these curves
are maximal (resp. minimal) over finite odd degree (resp. even degree) extensions of
Thus each Fermat prime gives rise to explicit maximal and minimal curves over finite
fields of characteristic 2. The converse, however, is not true. For example, take then
r =22 + 1isnota prime, but the corresponding Fermat cutVe= X" + Z" is maximal
(or minimal) over finite extensions of the fieh}, g = 22,

From the explicit results in Lemmas 1 and 2, it is also clear that the only class of
coefficientss, b, cin F; for which the curveaY® = b X° 4+ cZ¢ are maximal (or minimal)
overF, are those that correspond to the Fermat cuifes: X¢ + Z¢ (fore =1, 2/) (i.e.,
the coefficients reduce to the case= b = ¢ = 1). The cases faot, b, ¢ which do not
correspond to the Fermat curves amvermaximal or minimal. (Note that in Lemma 1,
for I = 3, we havef = ord p(mod 3 = 2, andg = p%. Fors odd, each element of
F;S is a cube, and hence, all cases when, ¢ € F;‘;. correspond to the Fermat curve

Y3 = X3+ 73, and this curve is maximal ové,.)

3. Zeta function(s) of the projective curvea¥?! = bX?! + ¢Z?! over F,

Theorem 1. Let p and/ be odd rational primes such thgt = ord p(mod]/) is even.
Consider the projective curv€: a¥? = bX? 4 ¢Z? (abc # 0) defined over the finite
field F,, whereq = p® = 1(mod 2), anda = fs for s > 1. Fix a generatory of FZ
and letind, (b/c) = i(mod 2) andind, (a/c) = j(mod 2). Letd = (-1)*¢/? and let
¢ be any primitive(comple) I-th root of unity. Then the-functionZ(z, C) of the curve
C/F, is a rational function in the variable, of the formP () /(1 — t)(1 — ¢t), and the
polynomial P (¢) is given explicitly for distinct cases afj (mod 2) as below

1. Fori = j = 0(mod 2),

P(t) = (1— 0@ D=2,
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2. Fori, j =0(mod 2, i, j,i — j # 0(mod 2),

-1
P() = 1-on**Ta-¢on*".
r=1
3. Fori,j =0mod2 and(i)i = 0, j % 0(mod 2), (i) i £ 0, j = 0(mod 2),
(iiiy i, #£0, i = j(mod 2),

-1
P)y=1-on?2TJa—-¢on" "
r=1
4. For ()i =0, j =Il(mod 2), (i) i =1, j = 0(mod 2), and (iii) i = j = I(mod
2),

P(t) = (1— 002D (1 4 920D,

5. For(i) j £0(mod 2, i =0, j £ I(mod 2), (i) i £ 0(mod 2, i #1, j = 0(mod
20y, and(iii) i #0(mod 2, i = j, i #I(mod 2),
-1
P(t) =1+ 2@ - 001+ ¢ 61)* 2
r=1
21

=[]a-¢&on?2
r=1

where¢ is a primitive comple/-th root of unity.
6. Fori, j,i — j #£0,l(mod 2) and(i) i # j(mod 2, (ii) i, j # 0(mod 2,
-1
P(6) = ((1—0nA+00)? [ (@ —¢"0n* 1+ ¢ 0n?72).
r=1
7.For()i=1,j#0,I(mod 2), (i) i 0,1, j =I(mod 2), and(iii) i, j £ 0,1, i —
j =Il(mod 2),

-1
P(t) = (A-00A+00) (@@= ¢ 00?3+ ¢on? .
r=1

Proof. The numbee:y (n) of F x-rational points on the curv€, for eachn > 1, has been
determined explicitly in ([1], Theorem 7) (cf. Lemma 2 above). Taking into account the
distinct cases that arise whéln, [ fn, 2|n, and 2} n, and substituting the corresponding
values foray (n) in the definition ofZ(z, C), we obtain the -function of the curveC /F,,

for distinct cases of, j(mod 2), as below:

1. Fori = j = 0(mod 2),
i G"+1-@2 -2 - 2)(_1)nsqn/2)tn

n

logZt, C) =

n=1

1 1
= | -2 -2 -2
09—, +log =, ~@-D@-2)

log———.
T T
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Hence
(1= (—=1)*qY2nH@-D@-2)
Q-1 —q1)

Z(t,C)=
2. Fori, j=0(mod 2, i, j,i — j # 0(mod 2),

logZ(z, C) = Z aﬂ(:)’" n Z azz(:)t”

lln lyn
(@ 1 - (@ - D@ = 2=l
—= In

o] n ns ,n/2yn
+1—2(=D)"q"?)t
+Z(q (=" q"'*)

n=1 n

0 (qln +1-— 2(_1)lnsqln/2)tln

__2: In

n=1
B U o
n=1 n

(- 1)lns ln/Ztln

— (4l - 6)2

=lo +Io ! —2lo —1
= 91 97— 97 1 (C1yq%
— (4 —-6)log T= Dbl
Hence
NS 120201 _ _n\Is 1/2,1\4—6
Z(t’c):(l (=D°q“)=(L— (=1)*q'/t")
L=l —gq)
_a- o0 415 - ¢7on4 -6
1-0n1—q1) ‘

3. Fori, j = 0(mod 2 and ()i = 0, j % 0(mod 2), (i) i £ 0, j = 0(mod 2), (iii)
i,j#0,i=j(mod 2),

logZ(t, C) = Z “21(:”” " Z Cl21(:)l‘”

ln l)n
- i (" +1— (2 = (@ — 2 (=D)"g"/2)
— In
o] 142 — D=1 n/Ztn
+Z (q ( )(—=1)"q"'*)
n

n=1
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o] (qln +14+ 2(1 _ 1)(_1)lnsqln/2)tln

o In
_ i (q" + 1420 — (=)™ q"/?)"
n=1 n

(- 1)lns ln/2tln

— - 4)2

1 1
log—— +2( —-1lo
_qt+ 97—, t20-Dlog

1
:IO _
91 1— (—1)qV%

1
— (4l —4log— .
( ) 0g 1— (_1)lsql/211

It follows that
(1 _ (_1)lsql/2tl)4l—4
(1=DT—gn1— (=19qY2)2-2

(1 Qt)zl 21—[ (1 Cret)4l —4
1-0A—-q1)

Z(t,C) =

. For()i =0, j=I(mod 2), (i) i =/, j =0(mod 2), and (iii))i = j =/(mod 2),

|og Z(t,C) = Z ag (n)t" N Z a2[(:)tn

2|n 2)n
_ i (@2 +1— (2 — 1)(2 — 2)(—1)215g2/2) 2
_n=l 2n

o] n _ _1\ns ,n/2\4n
+Z(61 +1+2(1—-D(D"qg" )

n

n=1
X (2 + 1+ 201 — 1)(=D)Zsg2/2) 2

_Z o

n=1

00 (qn T 2([ _ 1)(_1)nsqn/2)tn

n=1 n

—21(—1) Z

1 1
log—— +2( —-1lo
_qt+ gl—t+( )log

(— 1)2113 2n/22n

1
—lo -
97 - (—1yq2
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It follows that

a- (_1)25qt2)2](lfl)
11— —gtHH)(L— (—1)5gY2r)20-D

Z(t,C) =

(1—60)20-D*(1 4 0120
- (1-01—q1) '

. For(i)j #£0(mod 2, i =0, j £ I(mod 2), (ii) i £ 0(mod 2, i # 1, j = 0(mod
20, and (iii)i 2 0(mod 2, i = j, i ZI(mod 2),

t" t"
logZ(, C) = Z a2 (1) + Z a2(®)
2 am N
_ i (q2ln 41— (2] _ 1)(21 _ 2)(_1)21nsq21n/2)t2ln
— 2ln
00 2
(q" + 1420 — (=D q"/)1"
+y .
n=1
B i (q21n 414 2(1 _ 1)(_1)21nAvq21n/2)t2]n
—~ 2In
_ i (@" + 1420 — D(=D"q")1"
n=1 n
© ¢ 1\2ns ,2In/2,2In
-1 t
—20-1) 1
n=1 n
=lo +lo 1 +2(—-1lo -
- gl—qt 91 g1—(—1)%]1/%
—2(I—-1)log

1— (_1)21sqlt21 '
This implies that

1- (_l)ZIsqltZI)ZZ—Z
(1-0A—-gnl— (=1sql/2n2-—2

Z(t,C)=

B (1+ 91#)2[—2 Hi;]i(l _ Cret)Zl—Z
- (1-0(1—q1) '
. Fori, j,i —j #£0,l/(mod 2) and (i)i # j(mod 2, (ii) i, j # 0(mod 2,

IogZ(t,c):ZMJr ) azz(")f"+zazz(’;1)t”

2am " 2fndn Ifn
B i (q2ln +1— (2[ _ 1)(2[ _ 2)(_1)2]nsq21n/2)t2ln
- 2In

n=1



Zeta function of the projective curv&? = bx? + cz? 9

o In Ins ,In/2y:In
+ 1421 1 1 t

o ln
B i (qZIn L1+ 2(1 _ 1)(_1)2lnsq21n/2)t21n
—~ 2in

0 n] (=1 n/ZZn
+Z(q (=D"q"*)
n=1

n

B i (qln +1-— 2(_1)lnsqln/2)tln

n=1 In
_ i (@" +1—2(=1)"5g"/2)m
_n=l n
n=1 n ot n
1

=lo 1 +lo ! 2lo
=09 9T S O OV

— (2 —2)log + 2log

1
Thus we obtain
1- (—1)Sq1/2t)2(1 _ (_1)2lsqlt21)2172
1—1(1—qt)(L— (=L)bsqli2ly2

Z(t,C) =

_ (1 _ 902(1 _ Gltl)21—4(1 + Qltl)Zl—Z
B 1-0)1—q1) '

.For()i=1, j#£0,I(mod 2), (ii)i #£0,1, j =Il(mod 2), and (ii))i, j # 0,1, i —
j =I1(mod 2),

az (n)t" n ag (n)t"

A N 2fndn

az (n)t" az (n)t"
by e, 5 e
2in, lfn 2)fn,l)n

B i (q2ln 41— (2] _ 1)(2[ _ 2)(_1)21nsq21n/2)t2ln
N 2in

n=1
00 In _ _1\Ins ,In/2\,In
+1+2(1—-1(-1 t
+ Z (g (I =DH(=D"™q™*)
n=1

In

oo (q21n +14+ 2([ _ 1)(_1)21nArq21n/2)t2]n
2In

n=1
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DD g2

0 2n
@ +1+2(1-
+y >
n=1
o0 (qZIn L1+ 2(1 _ 1)(_1)2lnsq21n/2)t21n
—~ 2in

o (¢" +1-2(=1)"g" )

+
n

n=1
N (g2 + 1= 2(=1)" g2

_Z 2n

n=1

e (qln 41— 2(_1)lnsqln/2)[ln

— In

_1)21nsq21n/2)t21n

o] 2ln
@ +1—-2
+ Z 2ln

n=1

o0 n ns ,n/2yn 0 Ins In/2.In
+1—2(=D)"q"?)t -1 /2t
2:(q =D™q"*) 22:( )"q
n n=1

n=1 n

00 -1 2lns 21n/2t21n o] -1
—@-py EP 1y ¢
n=1 n n=1

=

=lo ! +lo ! 2lo
=097 79T - g

1 1
+2log 1— (=D)sglizd (2 —1)log 1— (—1)Zsqgle2

1
[log ———.
+ g 1— (—1)2Sqt2

Hence we obtain
NS, 1/2N201 o 4n2s 1,21N21—1
2(t.C) = A-(=1%q7)(1 - (=D q't7)
Q-1 —-g)A— (=DFg! 2121 - (-1 qr?)!

B (1 _ 91#)2[73(1 + 91#)2[71
C A-0A-gn-6n'2(L+6n)

(A=A + o) i@ = ¢on? 3+ ¢ on? Y
- 1-nA-q1) '

Hence the theorem.

The curveC in Theorem 1 is non-singular of degrek Bence it has genys = (21 —
1)(2l — 2)/2. From the expressions fé(¢) in Theorem 1, it is clear that in each case for

i, j(mod 2),
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e P(¢)isapolynomial of degree?—= (2/ —1)(2/ —2) of the formP (r) = ]_[,fil(l—akt),
and thew,’s are algebraic integers equal4g /27, 0 < r < — 1. Thus|og| = ¢g%/?
forl <k < 2g.

o We may pair they,’s in such a way thadyo,r = g for 1 < k < g. The polynomial
P(r) has integer coefficients (/2 is an integer), constant term 1, and leading term
q% (since]’[,f"i1 ax = g% by the above pairing).

This corroborates the Weil conjectures for the concrete class of caiigs considered
in Theorem 1.

Given a non-singular projective curvé defined over a finite field, it is well-known
that the class number of the function field ofX/k satisfies the relation = P (1),
where P(r) is the polynomial that appears in the numerator of ¢hteinction of the
curveX/k.

For the curveC/F, considered in Theorem 1, and the€function(s) obtained therein,
we may thus substitute= 1 in the expressions for the polynomiatgr), to obtain the
class number(s) of the associated function field(s) in Theorem 2 below.

Theorem 2. Consider the projective curv€: aY? = bX% + ¢Z? (abc # 0) defined
over the finite field=,, with notations as in Theoreth Setgo = p/ andu = ,/go. Thus
u is an integerg = g, and /g = u®. For eachs > 1, let K denote the function field of
the curveC/F,, g = p/3, and leth, denote its class number. Liet = h1 for s odd, and
hs = hy for s even. Substituting, = P (1), we obtain the class numbeks and /5, for
the seven distinct cases in Theorgpas below

1. Fori = j = 0(mod 2),
hl — (us + l)(21—1)(21—2)’ h2 — (uS _ 1)(21—1)(2]—2)
2. Fori, j =0(mod 2, i, j,i — j # 0(mod 2),
hl — (MS + 1)2(uls + 1)41—6’ ]’l2 — (uS _ 1)2(MIS _ 1)41—6

3. Fori,j =0mod2 and(i)i =0, j % 0(mod 2), (i) i £ 0, j = 0(mod 2),
(i) i, j #£0,i = j(mod 2),

hl — (ul.s‘ + 1)41—4/(1/‘3‘ + 1)21—2’ h2 — (MZS _ 1)41—4/(MS _ 1)2]—2

4. For(i)i =0, j=Imod2),(i)i =, j =0mod 2), and (i) i = j = I/(mod
2l),

h= (' + 1)2(1—1)2(us — 2Dy = — 1)2(l—1)2(us +1)20-D),

5. For(i) j 20(mod 2, i =0, j £ I(mod 2), (i) i # 0(mod 2, i #1, j = 0(mod
20), and(iii) i 2 0(mod 2, i = j, i #I(mod 2),

hi= (@™ = D/@* +1)?7%  hy= (@™ - /@' —1)?72
6. Fori, j,i — j #£0,l(mod 2) and(i) i # j(mod 2, (ii) i, j % 0(mod 2,

h1 = (u® + %@ + 24w — )22,

ho = W® — 12w’ — 124wl + 122
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7.For()i=1, j £0,I(mod 2), (i) i #0,/, j =Il(mod 2), and(iii) i, j 0,1, i —
j =I1(mod 2),

hl — (uls + 1)2[—3(u15 _ 1)2[—1/(u5 + 1)[—2(MS _ 1)1’
h2 — (uls _ 1)2[—3(u13 + 1)2]—1/(u3 _ 1)1—2(MS + 1)[

Forthe class of curves/F, considered in Lemma 1, the explicit form of the polynomials
P (1) in the¢-function(s) forC /F, were obtained in ([1], Theorem 8). Substituting- 1
in these expressions far(r), we obtain the class number(s) of the associated function
field(s) in Theorem 3 below.

Theorem 3. Consider the projective cun@: aY' = bX! + cZ! (abc # 0) defined over
the finite fieldF,, with notations as in Lemma Letgg = pl andu = V4q0. Thusu is
anintegef g = ¢, and /g = u*. Letd = (—1)*qY/? and let¢ be a primitive(complex
I-th root of unity. For eacly > 1, let K denote the function field of the curég/F,,
q= p/$, and leth, denote its class number. Liet = 1 for s odd andi, = hy for s even.
Substitutingz;, = P(1) in the expressions for the polynomillr) in the ¢-function(s) of
the curveC/F, (cf. ([1], TheorenB), reproduced belojy we obtain the class numbeig
andhy, for the distinct cases in Lemniaas below

1. Fori, j = 0(modl),
P(t) = (1—0n~Di=2,
hl — (MS + 1)(171)(172), h2 — (us _ 1)(171)([72).

2. For (i) i = Omodl),j # 0O@modI), (i) i # Omodl),j = O(mod!/), and
(i) i, j £ 0(mod1),i = j(modl),

-1
Pty=[Ja-¢on"2
r=1

hi= (W' + /@ +1)72  hy= (" -1/ —1)2

3. Fori, j,i — j # 0(modl),
-1
P@)=@a-6n""[Ta-¢on',
r=1
hl — (MS + l)Z(MZS + 1)]—3’ hz — (MS _ 1)2(uls _ 1)l—3

Consider now the projective curve€y/'F, in Theorems 2 and 3 as defined over some
fixed base fieldr,, ¢ = p/%0, with associated function fiellly,. Then for eacly > 1, the
function fieldsK, of the curvesC/F,s, are isomorphic to the constant field extensions
Ky, - Fgs of the function fieldK,. In this case, the results in Theorems 2 and 3 provide
concrete information on the growth of class numbess (s > 1) for the constant field
extensionsKy, - F s /Ky, for each class of curves. Note that in this consideration, two
cases arise: (i) farg odd, the results for both; andi, come into picture, while (i) for
so even, only the results fdr, are required.
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Concluding Remarks.

1. In Theorem 1, for each distinct case, the roots of the polynomial, all of which
lie on the circle|z| = ¢~/2 in the complex plane, aneot uniformly distributed on
this circle. In each case, the roots are of the fgrr: &g /2, where¢ is a complex
2/-th root of unity. This is similarly the case for the class of cury®$ = bX' + cZ!
considered in ([1], Theorem 8).

2. For each distinct case in Theorems 2 and 3, the class number is a polynog/alon
degree 2, with integral coefficients and constant term 1, whgiis the genus of the
curveC/F,. (The genus of the curv€/F, in Theorem 3ig = (| — 1)(I — 2)/2.)

3. The polynomialP (r) in the¢-function of a maximal curve /F, is of the form

P(t) = (L+q"2n%,
and that of a minimal curve'/F, is of the form
P(1) = (1—q"?n*.

These expressions follow easily from the Weil conjectures applied to the expression for
a(1, C) in 82. Conversely, given a non-singular projective cu@y,, such that the
polynomial P (¢) in its ¢-function has the above form(s), one sees that the odrige
maximal (resp. minimal) ovef, .

From the explicit expressions for the polynomi{z) in the ¢-function(s) of the
projective curverY® = bX° +cZ* defined ovef, (cf. [1], Theorem 8) (foe = I) and
Theorem 1 (foe = 27)), it is clear that these curves are maximal (or minimal) dyer
precisely when the coefficients b, ¢ reduce to the case= b = ¢ = 1 corresponding
to the Fermat curves.

4. In ([7], Proposition 2), the author has stated results (to appear) for the polynomials
P(¢) in the¢-functions of the projective curvesl’® = bX¢ + ¢Z¢ (abc # 0) defined
over finite fieldsF,, ¢ = p* = 1(mode), for integerse > 3 and primeg such that
ord p(mod e) is even. These results generalize the results obtained for the polynomials
P(¢) in ([1], Theorem 8) and Theorem 1 of this paper.
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