
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 114, No. 4, November 2004, pp. 389–397.
© Printed in India

Some remarks on good sets

K GOWRI NAVADA

Department of Mathematics, University College, Mangalore University,
Hampanakatta 575 001, India
E-mail: gnavada@yahoo.com

MS received 3 February 2004; revised 4 July 2004

Abstract. It is shown that (1) if a good set has finitely many related components, then
they are full, (2) loops correspond one-to-one to extreme points of a convex set. Some
other properties of good sets are discussed.
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Introduction and preliminaries

In this note we make some remarks on good sets in n-fold Cartesian product as defined in
[2]. We need the following definitions:

Let X1, X2, . . . , Xn be non-empty sets and let � = X1 × X2 × · · · × Xn be their
Cartesian product. For each i, 1 ≤ i ≤ n, �i will denote the canonical projection of �

onto Xi . A subset S ⊂ � is said to be good, if every complex valued function f on S is of
the form:

f (x1, x2, . . . , xn) = u1(x1) + u2(x2) + · · · + un(xn), (x1, x2, . . . , xn) ∈ S,

for suitable functions u1, u2, . . . , un on X1, X2, . . . , Xn respectively ([3], p. 181).
A subset S of � is said to be full, if S is a maximal good set in �1S ×�2S ×· · ·×�nS

([3], p. 183).
Two points x, y in a good set S are said to be related, denoted by xRy, if there exists a

finite subset ofS, which is full and contains bothx andy.R is an equivalence relation, whose
equivalence classes we call as the related components of S. Note that related components
of S are full subsets of S ([3], p. 190).

Remark 1. Here we prove:

Theorem 1. If a full set F has finitely many related components: F = ∪k
i=1Ri , then k = 1.

To prove this we need some preliminary results.
LetS be a good set,S = ∪Rα whereRα are its related components. Define an equivalence

relation Ei on �iS as follows: xiEiyi if there exists a finite sequence R1, R2, . . . , Rk such
that xi ∈ �iR1, yi ∈ �iRk and �iRj ∩ �iRj+1 �= ∅ for 1 ≤ j ≤ k − 1 ([3], p. 189).
For xi ∈ �iS, [xi] denotes the Ei-equivalence class of xi . If an element in �iRα is Ei-
equivalent to an element in �iRβ , we will say that Rα and Rβ are Ei-equivalent. Let C

be a cross-section of Rα’s. Let Fi be the set of all Ei-equivalence classes for 1 ≤ i ≤ n.
Define φ: C → F1 × F2 × · · · × Fn by f (x1, . . . , xn) = ([x1], . . . , [xn]).
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Lemma 1. φ(C) is good. S is full if and only if φ(C) is full.

Proof. The φ: C 	→ φ(C) is one-to-one: If (x1, . . . , xn) �= (y1, . . . , yn) are in C then they
belong to two different related components. If ([x1], . . . , [xn]) = ([y1], . . . , [yn]) then
these two related components, say R1 and R2, have all the coordinates equivalent which is
not possible. To prove this, let us define a function h which is equal to zero everywhere in
S except on R1 where it is a non-zero constant. There exists functions ui defined on �iS,
1 ≤ i ≤ n, such that u1 + · · · + un = h on S. As the function h is constant on each Rα ,
the ui are constants on �iRα ([3], p. 185, Corollary 2). Let c1, . . . , cn be these constants
�iR2, 1 ≤ i ≤ n. As all the coordinates of R1 and R2 are equivalent we get the same
constants c1, . . . cn on the coordinates of R1. But c1 + · · · + cn = 0 and h is non-zero on
R1. This contradicts the fact that h = u1 + u2 + · · · + un. Therefore φ is one-to-one.

Next we show that φ(C) is good. Take a function h on φ(C). This defines in a natural
manner a function on C. Denote it also by h. Define g on S by taking it as a constant on each
Rα , i.e., g(y1, . . . , yn) = h(x1, . . . , xn) for all (y1, . . . , yn) ∈ Rα where (x1, . . . , xn)

is in C ∩ Rα . There exists u1, . . . , un such that u1 + · · · + un = g on S as S is good.
Since g is constant on each Rα , ui is constant on �iRα . Define vi([xi]) = ui(xi) for all
xi, 1 ≤ i ≤ n. These functions are well-defined. Further,

v1([x1]) + · · · + vn([xn]) = u1(x1) + · · · + un(xn)

= g(x1, . . . , xn) = h([x1], . . . , [xn]).

This shows φ(C) is good.
Suppose S is full. If φ(C) is not full, then given the zero function on φ(C) there exist

two distinct sets of functions {vi} and {v′
i} defined on the ith coordinate space of φ(C) for

each i whose sum is equal to zero which also satisfy

vi([x
0
i ]) = v′

i ([x
0
i ]) = 0

for some [x0
i ] ∈ �i(φ(C)) for 1 ≤ i ≤ n − 1. Define {ui} and {u′

i} on the ith coordinate
space �iS by

ui(xi) = vi([xi]) and u′
i (xi) = v′

i ([xi])

for 1 ≤ i ≤ n. Then the sum of ui as well as u′
i is equal to zero but they are different solu-

tions (with the same boundary conditions) because vi and v′
i are different. This contradicts

the fact that S is full.
Conversely, if φ(C) is full, then we prove S is also full. For this, take the zero function

on S. Suppose there are two distinct sets of functions {ui} and {u′
i} with

u1 + · · · + un = u′
1 + · · · + u′

n = 0

on S with ui(x
0
i ) = u′

i (x
0
i ) = 0 for some x0

i ∈ �i(S), 1 ≤ i ≤ n− 1. All the functions ui

and u′
i are constant on each �iRα so also on each Ei equivalence class. Define vi([xi]) =

ui(xi) and v′
i ([xi]) = u′

i (xi), ∀i. Then {vi} and {v′
i} are distinct solutions of the zero

function on φ(C) which also satisfy vi([x0
i ]) = v′

i ([x
0
i ]) = 0 for 1 ≤ i ≤ n − 1. Since

φ(C) is full, the functions vi and v′
i are the same which implies ui and u′

i are equal. So S

is full. �
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DEFINITION

For a finite good set S, we call the cardinality of ∪n
i=1�iS as the number of coordinates of

S and denote it by N(S). The cardinality of �iS is called the number of i-th coordinates
of S.

A finite good set S is full if and only if N(S) − (n − 1) = |S|. If S is good then
N(S) − (n − 1) ≥ |S|. For a finite set S if |S| > N(S) − (n − 1) then S is not good ([2],
p. 80).

Proof of Theorem 1. Suppose F = ∪k
i=1Ri is full. We want to show that there is a finite,

full subset S of F which intersects each Ri . If k > 1 this will be a contradiction to the fact
that Ri’s are related components. Since F is full, by lemma 1, φ(C) is full. It has k points
and dimension n. So the total number of coordinates in φ(C) is k + (n − 1). Let these
coordinates be labeled as α1, . . . , αk+n−1 in some order. There are k points each having n

entries and each of these nk entries should be one of these k + n − 1 coordinates of φ(C).
So we get a partition of nk as nk = l1 + l2 + · · · + l(k+(n−1)) where li denotes the number
of times αi is repeated. When a coordinate, say [xj ] ∈ �jφ(C), is repeated in φ(C), it
means the corresponding two related components of F are Ej -equivalent. If [xj ] occurs l

times in φ(C) then l number of related components of F are Ej -equivalent. For this, it is
necessary to have at least l − 1 different pairs of related components (Rα, Rβ) such that
�jRα ∩ �jRβ �= ∅:

Suppose l related components are Ej -equivalent. Consider a graph whose vertices are
these related components and whose edges are pairs of related components among these
which have at least one common j th coordinate. This graph is connected because the
related components are Ej -equivalent. The number of vertices is l so there should be at
least l − 1 edges in it.

In this way we get totally (at least) l1−1+l2−1+· · ·+l(k+(n−1))−1 = nk−(k+(n−1))

pairs of related components (Rα, Rβ) such that for some i, �iRα ∩ �iRβ �= ∅. For each
such pair (Rα, Rβ) take one point from each of the two related components Rα and Rβ

such that the chosen points have the same ith coordinate. All these points together form a
finite subset of F . The intersection of this set with each Ri is also finite and non-empty.
(Note that since F is full, each Rα has a common coordinate with some other related
component.) Take the finite full set Fi ⊂ Ri which contains this intersection. (Any finite
subset of a related component is contained in a finite full set.) Let S = ∪k

i=1Fi . Then S is
a finite subset of F .

To show that S is full we have to find the number of coordinates of S and the number
of points in S. Let Ai denote the number of coordinates of Fi . Then, since Fi is full, the
number of points in Fi is Ai − (n− 1). So the number of points in S is |S| = A− k(n− 1)

where A = A1 + · · ·+Ak . Now the number of coordinates of S is no more than A. In this
counting, if Fα and Fβ have a common coordinate, then this common coordinate will be
counted once each in Aα and Aβ . But we know that there are at least nk − (k + (n − 1))

such pairs Fα, Fβ . So the number of coordinates of S is at most

A − (nk − (k + (n − 1))) = A − (n − 1)(k − 1) = |S| + (n − 1).

But the number of coordinates of S cannot be lesser than this: if it is the case S will not be
good. This shows the number of coordinates of S is equal to |S| + (n − 1). So S is full. If
k > 1, this is a contradiction as noted at the beginning of the proof. �

Remark 2. Here we show the connection between loops and extreme points of a convex
set. We need the following definitions.
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Given any finitely many symbols t1, t2, . . . , tk with repetitions allowed and given any
finitely many integers n1, n2, . . . , nk , we say that the formal sum n1t1 + n2t2 + · · · +
nktk vanishes, if for every tj the sum of the coefficients of tj is equal to zero ([3],
p. 183).

DEFINITION

Let � = X1 × X2 × · · · × Xn. A non-empty finite subset L = {x1, x2, . . . , xk} of � is
called a loop, if there exist non-zero integers n1, n2, . . . , nk such that the sum

∑k
j=1 njxj

vanishes in the sense that the formal sum vanishes coordinate-wise and no strictly smaller
non-empty subset of L has this property ([3], p. 183).

Lemma 2. Let L = {x1, . . . , xk} be a loop. Then there is a unique (except for the
sign) set of integers n1, . . . , nk with gcd(n1, . . . , nk) = 1 such that the formal sum∑k

j=1 njxj vanishes.

Proof. Suppose there are two sets of integers {nj } and {mj } with these properties. Also
assume there is a p for which |np| �= |mp|. Then

∑k
j=1 njxj = 0 and

∑k
j=1 mjxj = 0

imply
∑k

j=1(mpnj − npmj )xj = 0, where the co-efficient of xp vanishes. As L is a
loop any proper subset of L is not a loop. So mpnj = npmj for 1 ≤ j ≤ n. Then
gcd(mpn1, . . . , mpnk) = gcd(npm1, . . . , npmk), i.e., |mp| = |np|. We have to prove
that either for all j, mj = nj or for all j, mj = −nj . Suppose mj = nj for some l

number of j ’s for 0 < l < n and mj = −nj for the remaining n − l number of j ’s. Then
adding the equations

∑k
j=1 njxj = 0 and

∑k
j=1 mjxj = 0 we get a smaller formal sum

(containing only l terms) to be zero which is a contradiction to the minimality of the loop∑k
j=1 njxj = 0. �

Lemma 3. Let L = {x1, . . . , xk} be a loop. Let nj be as in Lemma 2 above. Suppose the
formal sum

∑k
j=1 rj xj = 0 for some real numbers rj . Then there exists a real number α

such that rj = αnj for each j .

Proof. If we assume that rj ’s are rationals, then the result is easy to prove.
To prove the general case, note that the formal sum

∑k
j=1 rj xj = 0 gives a set of N

homogeneous equations – one for each coordinate in ∪n
i=1�iL where N = |∪n

i=1 �iL|.
The matrix corresponding to this set of equations gives a linear map from Rk to RN . This
matrix consists only of 0’s and 1’s and so can be thought of as a linear map from Qk to
QN the kernel of which is one-dimensional (by the result for the rational case). It means
that the rank of the matrix is k − 1. This is also the rank of the matrix, when the linear map
is considered from Rk to RN . The null space of this matrix is one-dimensional, i.e., there
exists some α such that rj = αnj for 1 ≤ j ≤ k. �

This also shows that
∑m

j=1 rj xj = 0 is not possible for m < k even for real rj ’s. The
above proof in fact shows that a finite set {x1, x2, . . . , xk} of points in X1 ×X2 ×· · ·×Xn

is a loop if and only if there is a finite set of non-zero real numbers r1, r2, . . . , rk such
that the formal sum

∑k
j=1 rj xj vanishes and no proper subset of {x1, x2, . . . , xk} has this

property. If we assume that
∑k

j=1 |rj | = 1 then |α| = (
∑k

j=1 |nj |)−1.
Let S ⊂ X1 × · · · × Xn be a finite set, not necessarily good. Let C(S) be the set of all

functions on S. The norm in C(S) is defined by ‖f ‖ = maxx∈S |f (x)|. Let U(S) = {f ∈
C(S)|f (x1, . . . , xn) = u1(x1) + · · · + un(xn) where ui is a function on �i(S)}. U(S) is
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a subspace of C(S). Let M(S) denote the space of all signed measures on S with the total
variation norm (which is just the L1 norm). Then M(S) = (C(S))∗. Take the subspace
(U(S))⊥ ⊂ M(S). This is the set of all signed measures µ with µ(f ) = 0, ∀f ∈ U(S).
Note that µ ∈ (U(S))⊥ if and only if all the one-dimensional marginals of µ vanish.
Consider

A = {µ ∈ (U(S))⊥ : ‖µ‖ ≤ 1}.

This set is convex.

DEFINITION

By a weak loop we mean a finite set {x1, x2, . . . , xl} ∈ X1 × X2 × · · · × Xn for which
there exist real numbers r1, r2, . . . , rl , with at least one ri non-zero, such that the formal
sum

∑l
i=1 rixi = 0, coordinate-wise.

Theorem 2. The extreme points of A are given by µL where L = {x1, . . . , xk} is a loop.
In this case

µL(xj ) = nj (|n1| + · · · + |nk|)−1,

where (n1, . . . , nk) are given by
∑k

j=1 njxj = 0, and for all other x ∈ S, µL(x) = 0.

Proof. First we note that µL ∈ (U(S))⊥: It is enough to show that µL(ui) = 0 where
ui is a function on �iS, and this is easily verified from the form of µL and the fact that
L is a loop. To show that µL is an extreme point of A suppose µL = aλ + bν where
a + b = 1, a > 0, b > 0 and λ, ν ∈ A. Then ‖λ‖, ‖ν‖ = 1 and λ, ν ∈ (U(S))⊥.
Restricting all these three measures to L, we have µL = µL|L = aλ|L + bν|L, and since
‖µL‖ = 1, we have ‖λ|L‖ = ‖ν|L‖ = 1. This shows that λ and ν are supported on L.
Denote λ(xj ) = αj , ν(xj ) = βj , 1 ≤ j ≤ k. Since λ, ν are in U(S)⊥, their marginals
vanish, which is equivalent to saying that the formal sum

∑k
j=1 αjxj = 0,

∑k
i=1 βjxj = 0.

Since
∑k

j=1 |αj | = 1,
∑k

j=1 |βj | = 1. By the above lemma λ = +ν or λ = −ν, and
since a, b > 0 we see that µL = λ = ν, and µL is an extreme point of A.

Conversely, take an extreme point µ of A. Then ‖µ‖ = 1. We show that support of µ is
a weak loop. Let {x1, . . . , xk} be the support of µ. Since µ ∈ (U(S))⊥, for any i, if ui is
a function on �i(S) then µ(ui) = 0, i.e.,

∑k
j=1 µ(xj )ui(xj ) = 0. Take ui(x1i ) = 1 and

ui(x) = 0 for all other x ∈ �i(S). Then µ(ui) = ∑
µ(xj ) = 0 where the sum runs over

all xj for which xji = x1i . With similar arguments for other xji we see that the formal
sum

∑k
j=1 µ(xj )xj = 0.

Now we prove that this weak loop has to be a loop. Call µ(xj ) as mj . Then we have∑k
j=1 mjxj = 0. Suppose this is not a loop. We prove that the measure µ is not an extreme

point of A. Any weak loop contains a loop. Let
∑

njxj = 0 be this loop. Here the sum runs
over a proper subset of {1, . . . , k}. Then taking nj = 0 whenever necessary

∑k
j=1 mjxj =∑k

j=1 njxj +∑k
j=1(mj −nj )xj is a sum of two weak loops. Note that the two weak loops

on the right side are not multiples of each other. Letµ1, µ2 be the measures corresponding to∑k
j=1 njxj and

∑k
j=1(mj −nj )xj respectively. That is, µ1(xj ) = nj , µ2(xj ) = mj −nj

for 1 ≤ j ≤ k and for any other x, µ1(x) = µ2(x) = 0. Clearly µ1, µ2 ∈ (U(S))⊥. Then
µ1 + µ2 = µ and ‖µ‖ = 1 ≤ ‖µ1‖ + ‖µ2‖. If for each j the coefficients nj and mj − nj
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of xj on the right-hand side have the same sign, then |mj | = |nj | + |mj − nj | for each j

so that ‖µ‖ = 1 = ‖µ1‖ + ‖µ2‖. Then we can write

k∑
j=1

mjxj = ‖µ1‖
(

k∑
j=1

njxj (‖µ1‖)−1

)
+‖µ2‖

(
k∑

j=1

(mj −nj )xj (‖µ2‖)−1

)

which shows µ is not an extreme point of A.
Now we show that the measure which is supported on a weak loop can be written as a

sum of two measures µ1 and µ2, both in U(S)⊥, with ‖µ‖ = ‖µ1‖ + ‖µ2‖. We already
know that

∑k
j=1 mjxj can be written as

k∑
j=1

mjxj =
k∑

j=1

njxj +
k∑

j=1

rj xj ,

where the two weak loops on the right-hand side are not multiples of each other. In this
representation we want |mj | = |nj | + |rj | for each j , i.e., nj and rj should have the same
sign. Suppose for some j0 this does not happen. Let us assume nj0 > 0, rj0 < 0 and
|rj0 | > |nj0 |. Then we can write

k∑
j=1

mjxj =
k∑

j=1

(nj − (nj0/rj0)rj )xj +
k∑

j=1

(rj + (nj0/rj0)rj )xj .

The right-hand side is a sum of two weak loops; the first does not contain the term xj0

and the second contains mj0xj0 . If for some j , nj and rj have the same sign, then since
(nj0/rj0) < 0, −(nj0/rj0)rj has the same sign as rj so nj − (nj0/rj0)rj has the same
sign as nj . Also rj + (nj0/rj0)rj has the same sign as rj because |(nj0/rj0)| < 1. This
shows that the new coefficients of xj in the new weak loops have the same sign if they
had the same sign in the original weak loops. Also because the original weak loops are
not multiples of each other, these two weak loops cannot have all the coefficients equal to
0. In this way we get another representation of the left-hand side as a sum of weak loops
with lesser number of j ’s for which nj and rj have opposite signs. Again the two weak
loops are not multiples of each other because xj0 is present in the second weak loop but
not in the first. Applying the same procedure repeatedly we get the two weak loops with
all j having the nj and rj of the same sign. This proves µ is not an extreme point of A.�

Remark 3. Here we discuss some properties of a maximal good set contained in a given
set.

Let S ⊂ X1 × · · · × Xn, S not necessarily good. Consider the collection G of good
subsets of S. This collection is closed under arbitrary increasing unions, hence by Zorn’s
lemma there exists a maximal set M in G. Note that �i(M) = �i(S) for 1 ≤ i ≤ n.
Denote the space of all functions on M as C(M). Call a function f good if for each i there
is a function ui on �iS such that

f (x1, . . . , xn) = u1(x1) + u2(x2) + · · · + un(xn)

for all (x1, . . . , xn) ∈ S. Let U(S) denote the class of good functions on S.

Theorem 3. The map f 	→ f |M is a one-to-one linear map from U(S) onto C(M).
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Proof. Clearly this map is linear. It is also onto. To prove this, take any function g on M .
Then g = u1 + · · · + un. Here ui are defined on �i(M) which is same as �i(S). Then
f defined on S by f = u1 + · · · + un has the property that f |M = g. Because M is a
maximal good set, any x ∈ S\M forms a loop with some finitely many elements of M . Let
this loop be {x, y2, . . . , yk} where yj are from M . Then n1x +∑k

j=2 njyj = 0 for some
integers nj . This loop is unique because if {x, z2, . . . , zl} where zj are from M is another
loop, then m1x + ∑l

j=2 mjzj = 0 for some integers mj . Multiplying the first equation
by m1 and the second by n1 and subtracting one from the other we get a weak loop in M

which is not possible because M is good.
Given the zero function on M , there is a unique extension of this function to the whole

of S which is in U(S) (namely, the zero function): Let 0 = u1 + · · ·+un on M . By taking
f = u1 + · · · + un we can extend this function to S. Take a point x in S\M and the loop
{x, y2, . . . , yk} it makes with the elements of M . Then the formal sum n1x+∑k

j=2 njyj =
0 which gives n1xi +

∑k
j=2 njyji = 0 for each 1 ≤ i ≤ n, where xi and yji denote the ith

coordinate of x and yj respectively. This gives xi = −∑k
j=2(nj /n1)yji formally. Then

n∑
i=1

ui(xi) =
n∑

i=1

ui

(
−

k∑
j=2

(nj /n1)yji

)
.

We can also write
n∑

i=1

ui(xi) = −
k∑

j=2

(nj /n1)

n∑
i=1

ui(yji)

because
∑

nj/n1 = 0 when the sum is taken over those j for which yji fixed and �= xi and∑−nj/n1 = 1 when the sum is over those j for which yji = xi . But
∑n

i=1 ui(yji) = 0
as yj are in M . So we get

∑n
i=1 ui(xi) = 0. This shows f = ∑n

i=1 ui = 0 on S. So the
zero function on M has a unique extension to a function in U(S). It follows that the map
f 	→ f |M is one-to-one from U(S) to C(M), and the theorem is proved.

Let C(S) denote the set of all functions on S. Let U(S)⊥ = {µ ∈ C(S)∗|µ(f ) =
0, ∀f ∈ U(S)}. �

Theorem 4. The dimension of U(S)⊥ is |S| − |M| when S is finite. A basis for U(S)⊥ is
given by the set of µL where L is a loop of the form {x, y2, . . . , yk} where x ∈ S\M and
y2, . . . , yk are in M .

Proof. The dimension of C(S) is |S| and that of U(S) is |M| by the previous theorem.
The space U(S)⊥ is equivalent to (C(S)/U(S))∗. Therefore dim(U(S)⊥) = dim(C(S))−
dim(U(S)), which is equal to |S| − |M|. Every x ∈ S\M makes a unique loop Lx with
suitable elements from M . These loops give rise to |S| − |M| measures in U(S)⊥ by the
theorem in Remark 2. They are linearly independent: If

∑
cjµLxj

= 0 then
∑

cjµLxj
(x) =

0, ∀x ∈ S. Taking x = xi we get µLxj
(xi) = 0, ∀j �= i and µLxi

(xi) �= 0. This gives
ci = 0. Therefore, these |S| − |M| measures are linearly independent and so form a basis
for U(S)⊥. This proves the theorem. �

DEFINITION

A set S ⊂ X1 × · · · × Xn is called relatively full if there exist x0
i ∈ �iS, 1 ≤ i ≤ n − 1

such that any f ∈ U(S) has a unique representation as f = u1 + · · · + un when we fix
the value of ui(x

0
i ), 1 ≤ i ≤ n − 1.



396 K Gowri Navada

It is easy to see that if S is relatively full then for any choice of elements x0
i ∈ �iS, 1 ≤

i ≤ n − 1 the solution of f = u1 + u2 + · · · + un, f ∈ U(S) is unique if we fix the
values of ui(x

0
i ), 1 ≤ i ≤ n − 1. Moreover, if the solution is unique, with the prescribed

constraints, for the zero function, then it is unique for all functions in U(S).

Theorem 5. If S is relatively full then any maximal good set M ⊂ S is full.

Proof. Take the zero function on M . Fix ui(x
0
i ) = 0 for 1 ≤ i ≤ n − 1. Let 0 = ∑n

i=1 ui

on M . It can be uniquely extended to S as a function f in U(S). Then f = ∑n
i=1 ui on

S with ui(x
0
i ) = 0 for 1 ≤ i ≤ n − 1. These ui’s are unique because S is relatively full.

Therefore M is full. This proves the theorem.
Any set S ⊂ X1 × · · · × Xn can be written uniquely as a disjoint union S = ∪Rα of

maximal relatively full sets Rα of S: A one point set of S is relatively full. Union of a chain
of relatively full sets is again relatively full. Using Zorn’s lemma, there exist maximal
relatively full sets in S. As union of two relatively full sets with non-empty intersection is
again relatively full, these maximal relatively full sets of S do not intersect each other and
their union is S.

1. Rα and Rβ for α �= β cannot have n − 1 coordinates in common.
2. For n = 2, �iRα ∩ �iRβ = ∅ if α �= β.
3. In each Rα , there exists a maximal good set Fα which is also full.
4. Although each Fα is good and full, ∪Fα ⊂ S need not be good, except when

n = 2 in which case ∪Fα is a maximal good subset of S. Consider the set
S = {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)} Here R1 = F1 = {(0, 0, 0), (0, 0, 1)}
R2 = F2 = {(1, 1, 0), (1, 1, 1)}. But F1 ∪ F2 is not good.

5. If bounded functions f on M have bounded solution of

f = u1 + u2 + · · · + un, (∗)

then clearly bounded functions f in U(S) will have bounded solution of (∗).)
6. Suppose X1, X2, . . . , Xn are compact topological spaces. Let S ⊂ X1 × . . . × Xn

be compact and M ⊂ S a maximal good set. If continuous functions f on M have
continuous solution of (∗) then clearly continuous function in U(S) have continuous
solution of (∗).

7. Let M ⊂ S is maximal good set and let D be a boundary of M (refer § 4 of [3], for the
definition of boundary). Let f be in U(S). Let gi be defined on D ∩ �iS = D ∩ �iM

for 1 ≤ i ≤ n. Then there exists a unique set v1, . . . , vn such that f = v1 + · · · + vn

on S and vi |D∩�iS = gi .
8. For any choice of Fα’s (Fα as above), ∪Fα is a maximal good set of S if and only if L

is a loop in S implies L ⊂ Rα for some α.

Proof. Suppose {x1, . . . , xk} is a loop in S, and {x1, . . . , xk}∩Rα �= ∅ for more than one
α. Then each such intersect is good because it is part of a loop. Let Fα be a maximal full set
in Rα such that {x1, . . . , xk}∩Rα ⊂ Fα . (A good subset of a set is contained in a maximal
good subset of that set.) Then ∪Fα contains a loop so is not good. Conversely suppose that
any given loop in S is contained in some Rα . Then ∪Fα cannot contain a loop because
if it contains a loop then it is in some Rα , hence in some Fα . But Fα cannot contain a
loop.
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