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Abstract. In this paper we study second order non-linear periodic systems driven by
the ordinary vectop-Laplacian with a non-smooth, locally Lipschitz potential function.

Our approach is variational and it is based on the non-smooth critical point theory.
We prove existence and multiplicity results under general growth conditions on the
potential function. Then we establish the existence of non-trivial homoclinic (to zero)
solutions. Our theorem appears to be the first such result (even for smooth problems) for
systems monitored by the-Laplacian. In the last section of the paper we examine the
scalar non-linear and semilinear problem. Our approach uses a generalized Landesman—
Lazer type condition which generalizes previous ones used in the literature. Also for the
semilinear case the problem is at resonance at any eigenvalue.

Keywords. Ordinary vectomp-Laplacian; non-smooth critical point theory; locally
Lipschitz function; Clarke subdifferential; non-smooth Palais—Smale condition; homo-
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1. Introduction

In a recent paper [28], we proved existence and multiplicity results for non-linear second-
order periodic systems driven by the one-dimensignélaplacian and having a non-
smooth potential. Our results there extended to the recent works of Tang [31,32], who
examined semilinear (i.@. = 2) systems with smooth potential. In this paper we continue
the study of non-linear, non-smooth periodic systems. We prove new existence theorems
under more general growth conditions on the non-smooth potential. In [28] all the results
assumed a strict sup-growth (i.e. strictly sublinear potential in the semilinear-£ 2)

case). Here the growth conditions are more general. Also we obtain new multiplicity results
and we also establish the existence of non-trivial homoclinic solutions. Our approach is
variational and it is based on the non-smooth critical point theory of Chang [4]. Extensions
of this theory were obtained recently by Kourogenis and Papageorgiou [17] and Kourogenis
et al[18].

Problems with non-differentiable potential which is only locally Lipschitz in the state
variablex € R", are known as ‘hemivariational inequalities’ and have applications in
mechanics and engineering. For details in this direction we refer to the book of Naniewicz
and Panagiotopoulos [27].

In the last decade there has been an increasing interest for problems involving the one-
dimensionalp-Laplacian or generalizations of it. We refer to the works of Dang and
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Oppenheimer [6], Del Pinet al [7], Fabry and Fayyad [8], Gasinski and Papageorgiou
[9], Guo [11], Halidias and Papageorgiou [12], Kyrigsial[19], Manasevich and Mawhin
[21], Mawhin [22,23] and the references therein.

2. Mathematical preliminaries

As we have already mentioned our approach is variational, based on the non-smooth critical
point theory. For the convenience of the reader, in this section we recall the basic facts from
this theory. It is based on the Clarke subdifferential theory for locally Lipschitz functions.
Let X be a Banach space apd X — R. We say tha is locally Lipschitz, if for every
bounded open sdf C X, there exists a constakt; > 0 such thaip(y) — ¢(2)| <

kylly — z|| forall y, z € U. It is a well-known fact from convex analysis that a proper,
convex and lower semicontinuous functign X — R = R U {+o0} is locally Lipschitz

in the interior of its effective domain dom = {x € X: ¥ (x) < +o0}. In particular an
R-valued, convex and lower semicontinuous function is locally Lipschitz. In analogy with
the directional derivative of a convex function, for a locally Lipschitz functioX — R,

we define the generalized directional at derivative X in the directiom: € X, by

o(x" + Ah) — @(x')

@°(x; h) = lim sup .

x'—>x
210

Itis easy to check that the functian— ¢°(y; k) is sublinear, continuous and so by the
Hahn—-Banach theorem it is the support function of a non-empty, convex'aedmpact
set

dp(x) = {x* € X* (x*, h) < ¢%%x; h) for all h e X}.

The setdp(x) is known as the generalized (or Clarke) subdifferentiap@ft x € X.

If ¢, ¥: X — R are both locally Lipschitz functions, then for alle X and all» € R
we haved(¢ + ¥)(x) C dp(x) + dy¥(x) andd(rle)(x) = Ade(x). Moreover, ifg is
also convex, then the subdifferentiat coincides with the subdifferential in the sense of
convex analysis. Recall that the convex subdifferentiag &f defined bydgp(x) = {x* €
X*: (x*, y—x) < o(y)—oe(x) for all y € X}.Alsoifg € C1(X), thendop(x) = {¢'(x)}
forallx € X.

Given a locally Lipschitz functiorp : X — R, a pointx € X is said to be a ‘critical
point’ of g, if0 € dp(x). If ¢ € CL(X), then as we saw abovéy(x) = {¢’(x)} and so this
definition of critical point coincides with the classical (smooth) one. It is easy to see that if
x € Xisalocal extremum gp (i.e. alocal minimum or a local maximum), there® ¢ (x).

From the smooth critical point theory, we know that a basic tool is a compactness-type
condition, known as the ‘Palais—Smale condition’ (PS-condition for short). In the present
non-smooth setting this condition takes the following form: ‘A locally Lipschitz function

¢: X — R satisfies the non-smooth PS-condition, if every sequéngg>1 € X such
that{¢(x,)},>1 is bounded aneh (x,) = inf[||x}||: x) € d¢(x,)] = 0 asn — oo, has

a strongly convergent subsequence’. A version of the theory based on a weaker condition
known as the ‘non-smoot&-condition’ can be found in Kourogenis and Papageorgiou
[17].
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A ) € Ris said to be an ‘eigenvalue’ of minus tpelaplacian with periodic boundary
conditions, if the problem

’

—(lK'OIP~2x' @) = AllxO[IP7x(r) a.e onT = [0, 5]
x(0) =x(b),x’0)=x'b), l<p<o

has a non-trivial solutiom € C(T, RY), known as corresponding fo‘eigenfunction’.

Let S denote the set of these eigenvalues. Evidently ® and if > ¢ S, then for every

h e LY(T, RN) the periodic problem

’

—(IXOIP2x" (1)) = AMlx(O)|IP~2x(t) + h(t) a.eonT = [0, b]
x(0) = x(b), x'(0) =x'(b)

has at least one solution. Each elemen§ a$ non-negative and 0 is the smallest (first)
eigenvalue. IfN = 1 (scalar case), by direct integration of the equation we obtain all the
eigenvalues which are

(/p)
sin(z/p)’

Whenp = 2 (semilinear case), ther» = = and we recover the well-known eigenvalues
of the ‘scalar periodic negative Laplacian’ which are= (nw)? with @ = 27 /b. In the
caseN > 1 (vector case)}i,},>1 € S butS contains more elements (see [22]).

2n p
- ( ;”) ., wherer, =2(p —1V"

3. Existence theorem

In this section we prove an existence theorem for non-smooth periodic systems driven by
the ordinary vectop-Laplacian, which will be used in our investigation of homoclinic
orbits in 85. It concerns the following non-linear and non-smooth periodic system:

{ — (X" OP~2x" (1)) + gD Ix(OP~2x(t) € 3j (1, x(1)) a.e onT = [0, b] } )

x(0) = x(b),x'(0) =x"(b), L < p <00 1)

Our hypotheses on the data of (1) are the following:
H(g): g € C(T),g(0) =g()andforallt € T, g(t) > ¢c > 0.
H(j)1: j: T x RN — Ris a functional such that(-, 0) € L>(T), fé’j(r, 0)dr > 0and

(i) forallx e RN, t — j(z, x) is measurable;
(i) for almostallr € T, the functionx — j (¢, x) is locally Lipschitz;
(iii) foralmostallt e T, allx € RN and allu € 9j (¢, x), we have

lull < a1(t) + ca(t)llx|" 2,

1<r < +4oowithazy, c1 € L®(T);
(iv) there existsM > 0 such that for almost all € T and allx € RV with
lx|| > M we have

wj(t,x) < —jo%%, x; —x)  with > p;
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(v) lim sup2.%2 < o uniformly for almost alk € T;

x||P
x> 00 flxl

(vi) there existsc, € RV, |lx4|| > M such thatfé’j(t,x*)dt > 0.

Theorem 1. If hypothesesi(g), H(j); hold, then problem(1) has at least one non-trivial
solutionx € CL(T, RY) with ||lx’ () [|1”~2x'(-) € W' (T, RV).

Proof. Let ¢: W&é‘r’(T, RY) — R be the locally Lipschitz function defined by

1 1 b b
p(x) = =|x"lIp + —/ g llx@|7det —/ J(t, x(1))dr.
p P Jo 0

First we show thap satisfies the non-smooth PS-condition. To this endxgl,>1 <

Wr}é‘?(T, RY) be a sequence such thaix,)| < My for alln > 1 and some; > 0 and
m(x,) — 0.
Since dp(x,;) < W&é’r’(T, RM)* is w-compact, the norm functional in a Banach

space is weakly lower semicontinuous aﬂ(ﬁé’r’(T, RM) is embedded compactly in
Cper(T, RM), from the Weierstrass theorem we know that we can fijde dp(x,)
such thatm(x,) = |x}|l,n > 1. We havex® = A(x,) + glxu|P"2%x, — u, with
A: W&é’r’(T, RNy — Wéé’,’(T, RY)* being the non-linear operator defined by

b
(A(x), y) =/ IO~ (1), ¥ (@)gv e, Torall x,y € Woel (T, RY)
0

andu, € L" (T, RN), u,(t) € dj(t, x, (1)) a.e. onT (see [5], pp- 47 and 83). It is easy to
check thatA is monotone, demicontinuous; thus maximal monotone (see [14], p. 309).

Combining hypothesis )1 (iii) with the Lebourg mean value theorem (see [20] or p. 41
of [5]), we see that for almost alle 7 and allx € R,

lj(t, )] < @1(t) + @) llxll”  with &1, é1 € L%(T) 4.
From the choice of the sequenpg },>1 € W&é’,’(T, RYM), we have

e (xp) + (x;:’ _xn> < uMi+epllxall with &, | O

b
(ﬁ - 1>||x,;||£ + (E - 1) / (1) |lxa (1) P cl
p p 0

b
- /o [ (1), = () + 167 1, X0 (1))]

< uMy+ &y llxql

M b
= (— = 1>(||x,;||§ + f g(r)nxn(t)npdt)
P 0

b
+/o [— 0, X0 (0); =24 () — wj (2, %, (£))]dt

< UM+ eqllxall.
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Using hypotheses )1 (iii) and (iv), we obtain
/O T 00 0 0): — ) — 120, )]l
= /{ ”WM}[—J'%, X (1) =0 (1)) = 14 (2, 2 (£))]clt

+ f [— 70, % (1); —xn (1)) — p1j (£, x5 (£))]dt
{llxall=M}

> —cp forsomecy >0 andalln > 1.

Therefore it follows that
b
"
<; - 1) (IIxZ,IIZ + fo g(t)llxn(t)ll"dt> < uMa+ gpllxa |l + c2

forsomecy > 0 andeg, | 0,

I
= (; - 1) (IIX,@II? + CllxnI|§> < c3+ &nllxnll

with ¢3 = uM1+¢2 > 0,
= |xuI” < ca+e,lx,| forsomecs >0 ande), | O.

From the last inequality it follows thdt, },~1 W,;,léf(T, RM) is bounded and so by

passing to a subsequence if necessary, we may assumg thatr in W&é’r’(T, RM) and
Xp — x in Cper(T, RY). We have

|(x,";, Xn _x>| = [{A(xp), Xn — x)

b
—/0 g0 [1xn (1172 (xa (1), X0 (1) — x (1)) dl

b
_ /0 (1 (6, 20 () — x (D)) ] < el — ]

=lim (A(x,), x, —x) =0.

Because&t is maximal monotone, it is a generalized pseudomonotone (see [14], p. 365)
and so we havéA(x,), x,) — (A(x),x) = |x.ll, — [x'll,. Because, > x’in
LP(T,RN) and the latter is uniformly convex, from the Kadec—Klee property (see [14],
p. 28), we have, — x’in L”(T,R"), hencex, — x in W&é’r’(T, RYM). Sog satisfies the
non-smooth PS-condition.

Because of hypothesis(H1(v), givene > 0 we can findd > 0 such that for almost
allt € T and allx € RY with ||x|| < § we havej(t, x) < %||x||”. On the other hand,
hypothesis H(j)(iii) and the Lebourg mean value theorem, imply that for almost allT
and allx € RN with ||lx|| > § we havej(z, x) < cs|lx||” for somecs > 0. So finally for
almost allt € T and allx € RY we can write thatj (¢, x) < %||x||P + cgllx||* for some

cg > 0 and withs > max{r, p}. Therefore for every ¢ Wplé’,’(T, RM) we have
1 1 b b
o0 =15+ [ gwnxwira - [ xon
p P Jo 0

c €
> = x'llp + ;lellﬁ - ;IIXIIﬁ —c7llx|l%, for somec7 > 0.

1
p
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Becausdvplé{’(T, RY) is embedded continuously &(7, R"), we have
1 mp P N
Px) = ;(IIX lp + (c —&)llxllp) — csllx]|* for somecg > 0.

Takinge < ¢ we obtain that

o(x) > col|x||? — cgllx||* for somecg > 0.
Recall thats > p. So we can fingp > 0 small so that infp(x): ||x|| = p] = & > 0.
OnR, \ {0}, the functionr — 1/r* is continuous convex, thus it is locally Lipschitz.

From ([5], p. 48) we have that — (1/r*)j(¢, rx) is locally Lipschitz onR \ {0} for
almost allr € T (hypothesis H(jj(ii)) and we have

1 woo, 1 .
oy (ﬁ](t’ rx)) - —mj(f» rx) + ﬁ(axj(f, rX), X)RN-.
Using Lebourg’s mean value theorem, we can find (1, r) such that

1 1
St =t x) € (—%j(nAx>+k—u<axj(z,xx>,x>m> (r=1).

1. . r—1 ) .
= r_lt](t’ rx) — j(t, x) = YS! (—pj(t, Ax) + (85 j (£, Ax), AX)pN)
r—1 ) 0 . .
= o+l (=pj(t, Ax) — j (¢, Ax; —Ax)) >

(see hypothesis )1(iv))

= r*j(t,x) < j(t,rx) foralmostallz e T, all||x|| > M andallr > 1.

Choosingr, € R" as postulated by hypothesis H(i), for » > 1 large we have
b b
P(Axy) = fo g lIAx,||Pdr — /0 J (@, Ax,)dt

b
< Mlgllocllxll?b — k"/ J(t, x,)dt
0
= @(Axy) > —00 as A — +oo (recall thatu > p).

Thus we can find. > 0 large so thatjix.| > p ande(ix,) < &. Also note that
¢(0) < 0 (recall thatf(f j(t,0)dr > 0). Therefore we can apply the non-smooth mountain

pass theorem (see [4] or [17]) and obtair W&é’?(T, RM), x # 0 such that Qs d¢(x).
We have Oc d¢p(x) € A(x) — d/;(x) and so

Ax)=u — g||x||p_2x withu € Lr/(T, RY), u(t) € dj(t, x(¢)) a.e.onT.
(2
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Letd € C5°((0, b), RN). We have

b
(A(x), ) =/
0

b b
=>/0 ||x/(t)I|P72(X’(l),9’(¢))Rth=/0 (u(t), 6(1))pydr

b

(M(t)»e(t))Rth_/(; g x(@)[1P72(x (1), 0(1)gu it

- /Obg(t)IIX(I)II”_Z(X(I), 6(t))gvat.
Since(||x'|?~2x") € W—L4(T, RV) (see [1], p. 50), we have
(—(IxIP2x"Y, 0)0 = (u — gllx[I”~%x, 0)o
with (-, -)o denoting the duality brackets for the paiv,” (T, RN), w=14(T, RN) =
Wa'P (T, RN)*). SinceCg((0, b), RY) is dense i, ” (T, RY), it follows that
—(IX @OIP72x' @) + O lx )P~ 2x(t) = u(t) ae.onT,
ue L'(T,RY). (3)

From (3) it follows that(||lx’(-)[|”?~2x/(:)) € WL (T, RV). Because the map —
lz|IP~2z is a homeomorphism dR” onto itself andw "' (T, RY) C C(T, RY), we infer
thatx’ € C(T,RY), hencex € C1(T, RV).

Nextif y € Wr}é’r’(T, RY), from Green’s inequality (integration by parts), we have

b
(Ax), y) = fo " OIIP 2" (1), ¥ (1)) g dlt
= X' D)IP2(X (B), y(B)gn — X' ©O) 1P 72(x' (0), y(0)gw

b
—/0 ((llx" O~ (1)), y (1)) .
Using (2) and (3), we obtain
X" ()17 ~2(x"(0), y(O))gw = [IX' B IP~2(x" (), y(B))gew
forall y € Wpel (T, RY),
=[1x"(0)|772x(0) = |Ix"(B)IP~2x (b),
=x'(0) = x'(b).
Also sincex e Wplé’,’(T, RM), x(0) = x(b). Thereforex € CX(T, RY) is the desired
solution of (1). QED

Remark The following function is a hon-smooth potential satisfying hypotheses H(j)
(and does not satisfy the conditions imposed by Tang [31,32p(fer2) and Papageorgiou
and Papageorgiou [28]). Again for simplicity we drop théependence. We have

=lxll, if <1 —u—-1
(x) = 1||x|| ! llx]l < p<p and c= n -0
Sl = lx x4+ ¢, if ] > 1 w
=lixll, if <1
L Oy = [ it <1
[l = fxff Inflx = flxell, i Jlxll > 1
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Sincec < 0, we have—j%(x, —x) — 11j (x) > (w =D x| In x| — x| = Oif x| > 1.
Thus hypotheses Hgjhold.

4. Multiplicity theorems

In this section we prove a multiplicity result. It concerns an eigenvalue version of prob-
lem (1).
= OIP22' @) + gOIIx [P ~2x (1) € 2/ (¢, x(1)) a.e onT = [0, 1]
x(0) = x(b), x'(0) = x'(b), . € R. '
4)
We prove a multiplicity result for a whole semiaxis of values of the paranieteiR.
Our hypotheses on the non-smooth potential are the following:

H(@)2: j: T x RY — Ris afunctional such that(-, 0) € L>(T) and

(i) forall x e RN, r —> j(t, x) is measurable;
(i) for almostallz € T, the functionx — j (¢, x) is locally Lipschitz;
(iii) foralmostallt e T, allx € RY and allu € 3j (¢, x), we have

lull < er(@+ [Ix]"™h,

1<r < pwithc1 € L*®(T),

(iv) fé’ j(t,0)dt = 0Oandthereexistgy € L' (T, RN)suchthayé’ j(t, xo(t))dt >
0; _

(v) lim sup 22 0 uniformly for almost alk € T

]| 00 lxl?

Theorem 2. If hypotheses$i(g) andH(j), hold, then there exists, > 0 such that for all
A > A4 problem(4) has at least two non-trivial solutions, x2 € ci(r, RY) such that
X (1P ~2x(() € W (T RY), k =1, 2.

Proof. For everyr € R we consider the locally Lipschitz functiong: Wéé’r’(T, RY) —
R defined by

1 1 b b
o) = S8+ = / cOlx)1Pdr — 2 / J (6 x(e)dr.
p P Jo 0

Firstwe show thap, satisfies the PS-condition. For this purpose, we consider a sequence
{xpln=1 C W&é’r’(T, RY) such thatg; (x,)| < M; for all» > 1 and someV; > 0 and
m(x,) — 0. As before we can find)’ € 9¢; (x,) such thatn(x,) = ||x;;|| foralln > 1.

For everyn > 1 we havex, = A(x,) + gllxullP~%x, — Au, whereA : Wpléi’(T, RN) -
Wr}é’,’(T, RV)* is as in the proof of Theorem 1 ang € L™ (T, RN), u,(t) € 3j (, xn (1))

a.e. onT. From hypothesis H(§Yiii) and the Lebourg mean value theorem, we obtain that
foralmost allr € T and allx € RY, |j(r, x)| < c2(t)(L + ||x||") with ¢, € L>®(T). For
everyn > 1, we have

1 1 b b
or(xn) = =[x, |15 + ;/0 g lx, ()17 dt — )»/0 J (@, xn(2))dt

c
—|

p p
a1 + » Ixnllp = Mle2lloob — Aesllxall),,

NS

=

for somecsz > 0.
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Using Young’s inequality witke > 0, we obtaincs||x, |I’, < Ma2(e, A) + Ap—g||xn||§ for
someMa(e, 1) > 0 (recall thatr < p). Therefore we obtain

1 1
;nx,;ui - ;(c —2&) Xl — cale, 1) < @3 (xn) < M1 (5)

foralln > 1 and somey(e, ) > 0.

Chooses > 0 so thathe < c¢. From (5) it follows that{x,},>1 C W&é’r’(T, RM) is
bounded. Arguing as in the last part of the proof of Theorem 1, we concludethat
satisfies the non-smooth PS-condition. In fact from (5) we inferghas coercive. Also
exploiting the compact embedding Wr}é’r’(T, RY) into C(T, RY) (Sobolev embedding
theorem), we can check easily that is sequentially weakly lower semicontinuous. So
from the Weierstrass theorem it follows that there exigtse Wplé’,’ (T, RN) such that

@y (x1) = inf [7Z8 and Oe d¢; (x1). R
Next, let v : L"(T,RY) — R be the integral functional defined by (x) =

fé’j(r,x(r))dt. By virtue of hypothesis H(p(iv), we have@(xo) > 0. The Sobolev
spaceWr}é’,’(T, RY) is dense inL” (T, RY). So we can findy € W&é’,’(T, R¥) such that
@(y) > 0. Therefore there exists, > 0 large enough such that for all> i, we have
o (y) = %Ily/llﬁJrfé’g(t)lly(t)ll”dt—)@(y) < 0. Hencep; (x1) < A (y) < 0= ¢,(0),
i.e. x1 # 0. Since Oe 3¢, (x1) we verify thatx; € CH(T,RV), ||x’l(-)||1’*2x’1(-) €
w2l (T, RV) and that it is a non-trivial solution of (4).

Because of hypothesis Hf{\) we can findd > 0 ands > 0 such that for almost all
t € T and all|x| < &8, we havej(t,x) < —%IIpr. Combining this with the growth
condition onj, we obtain that for aimost alle 7 and allx € RY, j(r, x) < —%||x||P +
csllx||® for somecs > 0 and withs > p. So we can write that

1 c 0
@.(x) = =[Ix"I + =lxlly + =lx|I} — cellx]|} for somece > 0
p p p
> c7llx|I” — cgllx||* for somecz, cg > O.
Thus if we choose & p < min{1, ||x1|} small enough, we can have that
inflg; (x): [lx]l = p] =y > 0.

Sincep(0) = 0,x1 # 0and O< p < |x1/, we can apply the non-smooth mountain pass
theorem and obtaim, € Wplé’,’(T, RM) such that 0= ¢(0) < y < ¢y (x2), hencexp # 0,

x2 # x1 and Oe d¢;(x2). As before fork = 1, 2 we can check that, € C1(T, RY),
lxx (1P~ 2xk(-) € W' (T, RY) and it solves (4). QED

Remark The following non-smooth potential satisfies hypothesesH§yain we drop
thez-dependence):

l .
= lx1?, if x|l <1 1 1
P r<p and ¢c=-—>-—cosl

j =1, | ,
L) + coslxl +¢, if ] > 1 por
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Note that
—lx [P 2x, if x|l <1
9j(x) = Jconf—x,x — (sinDx}, if|x]|=1
x]"=2x — 2o sinlx|l, i x| > 1.

[lx1l

5. Homoclinic solutions

In this section we turn our attention to the question of existence of homoclinic solutions
(to 0), for the homoclinic problem iiR" corresponding to (1). Namely, we consider the
problem:

—([Ix"OIP~2x" (1)) + g Ix(OP~2x(t) € 3j (¢, x(1)) a.e onR
lx(®)] = 0, |x'(t)]] > 0 as|tf|] - o0, L < p < 0 ’

(6)

So far the ‘homoclinic problem’ for second order systems has been studied only in the
context of semilinear equations, primarily with smooth potential. We refer to the works
of Grossinhecet al [10], Korman and Lazer [16], Rabinowitz [29],Yanheng [34] and the
references therein. Non-smooth semilinear systems were studied only recently by Adly and
Goeleven [2] and Hu [13], using different methods. To our knowledge our result is the first
one (even in the context of smooth systems) on the existence of homoclinic (to 0) orbits
for quasilinear systems. Our approach is based on that of Rabinowitz [29] (see also [10]).

Our hypotheses on the non-smooth potential are the following:

H()s: j: R x RN — Ris a functional such that(z, 0) = 0 a.e. oriR and
(i) forallx e RN, r — j(t, x) is measurable andh2periodic;

(iiy for almost allz € R, the functionx — j (¢, x) is locally Lipschitz;
(iii) foralmostallz € R, allx € RY and allu € 3j (¢, x), we have

lull < a1 ()L + [lx [P,
with a1 € L*°(R);
(iv) there existsM > 0 such that for almost all € R and allx € R with

x| > M, we have

wi(t, x) < —jO4, x; —x) with u > p;

(v) | Ii”m 0 pﬂ;tl";‘) < 0 uniformly for almost alk € R;
X||—

(vi) there existscg € RY such thatfi’b j(t, xo)dt > 0.

Remark Hypothesis H(j3(v) is equivalent to the following one:

(v) lim @Xgy < 0 uniformly for alImost alk € R and allu € 3 (¢, x).

-0 IxI”
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First we show thatv) = (v)’. From the Lebourg mean value theorem, we know that
for almost allz € R and allx € R \ {0}, we have

(%) —j(t, %) - (u %)RN with u € ;) (t,)%),
A € (1, 2) (depending orr),

J,x) .5 | (u H)py
llx]I” [lx]1” llx]1”

VLG ) I N (TR T

2205 1 L [
1 p=1(y, 2X
=0>(1—-=—) | J . ) > lim LM
2 J x>0 [Ix[I? T xl—0 2P || & p
As ||x|| — 0, we have\ | 1 and so we conclude thl?t\l Ii(r)n(% < 0 uniformly for
X||—

almost allr € R, i.e. (v)’ holds.
Next we show thafv)’ = (v). From the previous argument for almostat R and all
x € RN\ {0} we have

Jx) ja ) B)pe
Ixll? 22502 20 | &p

Jj(t, x)

lxll—oo |lx|IP

1
<0 <since 1- > >0andx | 1 as|x| — O),

and the convergence is uniform for almostzraét R. So (v) holds. Thus we have proved
that(v) & (v)'.
Also the hypothesis on the coefficient functigitakes the following form:

H(9)1: g € C(R), g is 2b-periodic and for alt € [—b, b], g(¢) > ¢ > 0.

Theorem 3. If hypothesesl(g); and H(j) 5 hold, then there exists a non-trivial homoclinic
solutionx € C(R, RV) n wtP (R, RV) for problem(6).

Proof. We consider the following auxiliary periodic problem:
(I ONP72x' @) + gD Ix @) [P ~2x (1) € 8 (1, x(1))
a.e onT[—nb, nb], . (7)
x(—nb) = x(nb), x'(—nb) = x'(nb), 1 < p < o0
From Theorem 2, we know that problem (7) has a non-trivial solutign €

Wplé’r’(T,,, RM). Let g, : W&éf(T,,, RY) — R be the locally Lipschitz energy functional
corresponding to problem (7), i.e.

1 1 nb nb
ou(x) = =X + —/ g®llx®7de —/ J @, x(@))dr.
p P J—nb —nb

Hereafter byL? we shall denote the Lebesgue spde&T,, RY) and by W, the
Sobolev spac& 17 (T;,, RV).
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Consider the integral functionat : Li’ — R defined byy (x) = [fbj(t,x(t))dt.
By virtue of hypothesis H(B(vi) we have thaty (xg) > 0. Because) is continuous
and W&”’(Tl, RY) is dense inL?, we can findx e Wol”’(Tl, RM) such thaty (x) =

ffbj(t,)_c(t))dt > 0. Then recalling that for almost alle T, all |x|| > 1 and allx > 1,
we haver” j(t, x) < j(t, Ax) we can easily see that

R Y YA _
0108 = 2D we + 2 / cOIEO) P
p P J-b

b
—/ j(t, Ax(t))dt - —o0 asi — +oo.
—b

(Recalluy > p.) So we can find.,g > 1 such that for alh > 1o we havep;(Ax) < O.
Definex e W&”’(Tn, R¥) as follows:

S0 = {)E(t), ifren

0, ifteT,\Tx
Then we have, (Ax) = ¢1(Ax) < 0 for all A > Ag (recall thatj (z, 0) = 0 a.e. orR).

From the proof of Theorem 1 we know that the solutigre W,}é?(Tn, RY) of problem
(7) is obtained via the non-smooth mountain pass theorem and so it satisfies (see [17])

cn = inf sup (v (@) = ¢n(xy) > inf[‘pn(x): lx]l = pn] =§>0
yel,tel0,1]

and Oe€ 3¢, (x,),
wherel', = {y € C([0, 1], Wnl""): y(0) = 0, y(1) = Ax} with A > Ag. By continuous
extension by constant, we see thatfdgr< n, we have
Wr:ll-l’p - Wr:zl-z,ps Fnl - Fnz and SOCpy, = Cpy-

Therefore we have produced a decreasing sequepnkg 1 of critical values. For every
n > 1 we have

1 . 1 nb »
Cn = @n(Xp) = ;lenlng + » g@)llx, ()| dt

—nb
nb
—/ J (@, x,(1))dt < cy. (8)
—nb
Since Oe 3¢, (x,), we can findy," € 3¢, (x,) such thats = 0. So we have

A(xn) + gllxnll?~2xy = un,  with u, € L°,
u,(t) € 9j(t, x,(t)) a.e.onT,. 9)

We take the duality brackets (for the paW,{”, (Wr")*)) of (9) with —x,.. We obtain

1 nb nb
—IIX,/,HZ;; - ;/ bg(t)llxn(t)llpdt 2/ h(un(t), —Xp (1)) dt

—n —n

nb
< / O, xn(0): —xa ). (10)

—nb
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Multiply (8) with . > p and then add to (10). We obtain

nb
(ﬁ - 1) 17, + (ﬁ - 1) / g0l ()| e
P n P —nb

nb
+ | 0 X (1) —xa (1) — it xa (1)) < per. (11)

Using hypothesis H((iv), for everyn > 1 we have

nb
/ (— 70t X (£); —xn (1)) — j (2, X, (£)) 0t

—nb

=/ (=700, xn (1) =X (1) — j (1, X (D)l
Ta{llxn ()| <M}

+/ (=7, X (1) =2 (D) = j (1, 3 (D)0 = =&,
Ta0{llxn ()12 M)

for someg; > 0 independent of > 1. Using this lower bound in (11), we obtain

w w nb
<; - 1> ”xn”ZI; + <; - 1) / g(t)”xn(t)”pdt <a+é& =58

—nb

with & > 0 independent of > 1. So it follows that

Il 2. < &3, (12)
with &3 > 0 independent of > 1. Moreover, as in ([29], p. 36), we can have that
X0l oo < &a, (13)

with &4 > 0 independent of > 1. We extend by periodicity,, andu, to all of R. From
(12) and sinceml”’ is embedded compactly ii, = C(7,,, RV), by passing to a subse-
quence if necessary, we may assume that> x in Cioc(R, RY), hencex € C(R, RY).
Also because of hypothesis H{fjjii), we have

lun @] < lazlloo @+ [ O™ < llazlleo(1+ &7 = £s
a.e.onR forall n > 1 (see eq(13)),

with &5 > 0 independent of > 1. So we may assume that
w, 5w in L°®R.RY) and u, % u in LI(T,. RV)

1 1
forallmzl<—+—=1).
14 q

Evidentlyu € L®(R,RY) N L{ (R, RY) and using Proposition VI1.3.13, p. 694, of
[14], we haveu(t) € 3j (z, x(r)) a.e. onT, for all n > 1, henceau(r) € 3j (¢, x(¢)) a.e. on
R (recall that the multifunction — 3; (7, x(z)) is upper semicontinuous, see [5], p. 29).

For everyr > 0 we have that

T
/ lx, () —x(@®)||’dt - 0 asn — oo,

-7

T T
= lim / llxn () 1|7 dit :/ llx (@) 117 dr.
n—od T

—-T
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We can findng > 1 such that for alk > ng we have |-, t] € T,,, and then using (13)
we have

T nob
/||xn(l)||pdf§/ lxa (D17t < £5,

-7 —nob

T

= | lIx@)Pd <&5.

-7

Because > 0 was arbitrary it follows that € L” (R, RV).
Next leto € C3°(R, RM). Then sup@ C T, = [—nb, nb] for somen > 1. Integrating
by parts we have [ (x,, (), (1) gndt| = | [ (x;, (1), 6(1))gndt], hence we have

nb
‘/R(xn(t), 0'(1)gndr| = V b(xr/,(t),G(t))Rth <l lizr 1€l < &30101 Lo rY)

(see (12) and recall thate C°(R, RY)). Note that(x, (¢), 0’ (t)gy — (x (1), 0'(t))pn
uniformly on compact sets (i.e. the convergence &R, RY)) and| (x, (1), 0’ (1)) gy | <
llxnllee 16" (D] < €all6’ ()| a.€. onT;, (see (13)).
Set
£4110'(1)|l, if r € suppd
n) = _ )
0, otherwise

Thenn e LY(R) and we havé(x, (1), 6'(1))gv| < n(z) a.e. onR. By the dominated
convergence theorem we have

f(xn(t),e/(t))Rth — /(x(t),e/(t))Rth
R R

< 831101l La®,RrY)-

= V (x(1), 0’ (t))pndt
R

From Proposition IX.3, p. 153 of [3], we obtain thate W7 (R, R"). Also since

Uy X uin Lﬁjc(R’ RM), we have thafR(un(t), 0(t))ry — fR(u(t), 0(t))gn, While from

the fact thatc, — x in Coc(R, RY) it follows that

/R O (1P 2 (1), 0(1) g dr — /R gOIIx@) P ~2(x (1), 6(1)) g .

Also from integration by parts we have
/R (U OIP~2x,(1), 0 ()t = — /R ((x, O 1P ~2x,, (1)), (1)) gl
Becausex, is a solution of (7), we see thaﬂx,’l(~)||1"2x,’1(-))’ e LI foraln > 1.

From this we obtain tha[tx;,(~)||f’—2x,’,(~) € Wnl’q for all n > 1. Also by passing to a
subsequence if necessary, we may assume|tat)[|”~2x/ () — v in WI%)’C’I (R, RM),
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hencellx; () [P~2x),(-) — vin LL (R, RY) (and inCioc(R, RY) to0). If o: RN — RV
is defined byo (x) = ||x|”~2x, we haveo ~1(||x/ () |P~x/ (1)) = x/,(-) = o~ (v) in
LL (R, RY) and soo ~1(v) = x, hencev(-) = [x’(-)|”~2x’(-). Therefore we have

/R(IIX,’,(I)II‘”*ZX,’,(I),9’(t))1Rth - /R(le/(t)IIP*ZX’(t),9’(t))1Rth

= —/((||x’(t)||”_2x’(t))’,9’(t))Rth (by integration by parts
R

Since for alln > 1 large we have
/R(le,’,(t)ll”_zx,’,(t), 6 (1)) dr

+/Rg(l)llxn(t)llpfz(xn(t),9(t))RNdl=/R(M(t),9(l))RNdf

by passing to the limit as — oo and using the convergences established above, we obtain
—/R((le’(t)llp‘z)c’(t))/,9(t))Rth

+[l;g(t)llx(t)ll”_z(X(t),9(t))Rth=A(u(t),9(t))RNdf-

Because € C°(R, RY) is arbitrary, it follows that
—(IX @OIP72 @) + g0 x ()P 2x (1) = u(r) a.e.onR
andu € LL (R, RY), u(r) € 3j(t, x(t)) a.e. onR.

Next we show thak (+00) = x'(+o00) = 0. Recall that from previous arguments we
havex € WP (R, RV). So from Corollary VII.8, p. 130 of [3], we have(r) — 0 as
|t| = oo. Hence we have (+o0) = 0.

Sinceu(t) € 9j(t,x(t)) a.e. onR, from hypothesis H(p(iii) we have |u(?)| <
a1(t)(L + |x@)||P~1) a.e. onR. Becausex € W17 (R, RY), we have|lx(-)[|?~2x() €
L?(R,RY) and sau € L4(R, RV). Therefore)x’ (1) |IP~2x/(-) € W4 (R, RY) and once
again from p. 130 of [3], we have that’(r)||?~! — 0 as|t| — oo, hencex'(r) — 0
as|t| — oo. Thereforex’'(+o0) = 0 and we have proved thatis a homoclinic (to 0)
solution.

It remains to show that is non-trivial. For every: > 1, we have

A(xn) + gllxnllP~2x, = uy
nb
= cllxalll, < | @a(®), X0 (0)pucr.
n b

—n

Set

(U (1) () gy

hn(t) = {W if (0 # 0
0, if x,(1) = 0
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We have

nb nb
cllxll?, < / (Un (1), X (1)) dlr = / R (D)1 (1) [Pt < €88 SUfhy | xn 17 -
n —nb n

—nb T,

By virtue of hypothesis H(g(v) (see the remark following H(3), givene > 0 we can
find§ = 8(¢) > 0 such that for almost alle R, all ||x|| < § and allu € 3j (¢, x) we have

(M,.X)RN <
llx[1”

(14)

If x = 0, thenx, — 0 in Coc(R, RY) and so we can findg > 1 such that for all
n > no and allz € T, we have|x,(t)|| < §. Therefore for all > ng and almost all
t € Ty, we haveh,(t) < ¢ (see (14)) and so < esssup, h, = €ssSUp h, < ¢ for all
n > ng (recall thatx,,, u,, were extended by periodicity to all @&). Lete | O to obtain
0 < ¢ < 0, a contradiction. This proves that# 0.
Thereforex € C(R, RV) n wLP(R, RV) is the desired non-trivial, homoclinic (to 0)
solution of the non-smooth non-linear periodic system. QED

6. Scalar equations

In this last part of the paper we study the scalar (Ve= 1) problem. We approach the
problem using a generalized Landesmann—Lazer type condition, which is more general
than the one used by Tang [33] in the context of smooth semilinear periodic equations. So
our work is a two-fold generalization of the work of Tang.

First we examine the following non-linear scalar periodic problem:

{ —(IX'(1)P~2x (1)) € 8j(t,x(1)) a.eonT = [0, b] } (15)
x(0) =x(b), x'0)=x'(b), 1l<p<oo )

The conditions on the non-smooth potentiare the following:
H(@)s: j: T x R — Ris a functional such that(-, 0) € L1(T) and

(i) forall x € R, —> j(z, x) is measurable;
(iiy for almostallz € T, the functionx — j (¢, x) is locally Lipschitz;
(i) foralmostallt € T, allx € Rand allu € 9 (¢, x), we have

lu| < ax(t) + c1(r)|x|" 7L,

1§r<+ooWitha1,c1€L’,(T),%—l—,—l/:l;
u

(iv) | Ilim © = O uniformly for almost alk € 7 and allu € 9/ (¢, x);
X[—> 00
v) there exist functions., j- € L(T) such thatj.(r) = liminf {&X and
v) S+, ]+ ! "
X—>+00

j—(0) =limsupL%2 a.e onT and [y j_(1)dr <0 < [ j.(r)dr.

X—>—00

We consider the locally Lipschitz functionai W&é’,’(T) — R defined by

1 b
o(x) = —|x'II} —/ J @, x(1)dr.
p 0



Periodic systems 285

PROPOSITION 4
If hypothesesl(j), hold, theng satisfies the non-smooth PS-condition.

Proof. We consider a sequen¢e, },>1 < Wplé’,’(T) such that
lo(x,)| < M1 forsomeM; >0 andallrn > 1 and m(x,) — O.
As before we choose! € dp(x,) such thain(x,) = |x}|, n > 1. We have
x¥=A(xy) —up With u, € L (T), u,(t) € 3j(t, x,(t)) a.e.onT.

We claim that{x,},>1 € W&er (T) is bounded. Suppose that this is not the case By
passing to a subsequence if necessary, we may assunjgthiat> co. Lety, = ”x T
n > 1. We may assume that

. 1, .
Yo =y in Wl (T) and y, — y in CpedT).

(Recall thawvgé’,’(T) is embedded compactly e(T).) From the choice of the sequence
{Xntn=1 C Ws_élr](T), we have

o (X)) _’3” ,”p_/bm,xn(t))d[‘ M
[, 1| P [l 1| = lxall?

(16)

By virtue of hypothesis H(iXv) we havey {22 q; _, 0. So from (16) and the

lxn 17
weak lower semicontinuity of the norm in a Banach space, we o%tmjhnﬁ = 0, hence

y =c € R. If ¢ =0, then we havgly’||, — 0, hencey, — 0in Wpl’e’r’(T). But for every

n > 1,|ly.I| = 1and sowe have a contradiction. Therefpre ¢ # 0 and without any loss

of generality we may assume that ¢ > 0 (the analysis is the same if instead we assume
thaty = ¢ < 0). Recall thaWpe! (T) = R@® V with V = {v € Wpel (T): [ v(t)dr = 0},

We havex, = x, + %, withx,, ¢ R, %, € V,n > 1. Theny, = y, + y, with y, = ”i:”,
Y = ”j“;:”, n > 1. From the choice of the sequenfe,},>1 < Wplé’r’(T), we have
—en < (X}, yn) < &, with g, | 0, hence
1 b
—&p = — |:|| /”p / Mn(t)xn(t)dti| = é&n. (17)
(B 0

Since we have assumed that= ¢ > 0, we have that for alt € T, x,(r) - +o0
asn — oo. We claim that this convergence is uniformsire T. Indeed lete > O be
such that 0< ¢ < c¢ (recall that we have assumed> 0). Sincey, — c in C(T),
we can findng > 1 such that for alk > ng and allz € 7, |y,(t) — c¢| < &, hence
0 < c¢c—¢ < |y,(t)]. Becausd|x,| — oo giveng > 0 we can findz1 > 1 such that for
all n > ny we have|lx,|| > B8 > 0. So for alln > no = maxX{ng, n1} and allt € T we
have'x”(’)‘ > 'fg}’" ()| >c—e=60> 0= |x,(1)] > B0 > 0. Becausg8 > 0 is
arbltrary and) > 6 we infer that mig |x, ()| — +o00. Then we have

b
/un(t)fn(t)dtz / un(t)xn(t))?n(t)dt.
0 Xn (1)
{xn (1) 0}
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Evidently|{x, = 0}| — 0, while by virtue of hypothesis Hfiv), givene > 0 we can
find ng > 1 such that for alk > n3 and almost alt € T we have|u,, (t)/x,(t)| < €. SO
for n > n3 we have

u,(t n n n
/ %xn(t)xn(t)dt < &l &all5 < ec2ll %] for somecy > 0.
n

{xn (1)7#0}

From (17) and the PoincasWirtinger inequality, we have

) ) ll?
[eall£all” — ecall£al”] = (c3 — eI — ¢ for some s > 0.

[l I lxall —

P
I

Chooses > 0 such thatcs < c3. Sinces, | 0 it follows that ”&” — 0, hence once

again by the PoincarWirtinger inequality, we have
2,117
———= >0 asn— oc. (18)
llxn I

Recall that fom > 1, we have
M _ 1yl _/”j(r,xn(r» _ M
lxall = p llxall 0 B B EA

(We assume without any loss of generality that|| > & > 0 for alln > 1; recall that
lx,]| = o0.) We can write that

b ; : ;
/ J(t’x"(t))dt+ / ](t’x”(t))yn(t)dt+ / J@.0 .
0

[l Xn (1) 12 I
{xn (170} {2 (1)=0)

(19)

By virtue of hypothesis H(j)XV), givene > 0 we can find = M (¢) > 0 such that for
almostallz € T and allx > M, we havej (¢, x)/x > j(t) — . Recall that, (1) — 400
uniformly in¢ € T (i.e. miny x, — +00). So we can findg > 1 such that for alk > ng
we have

J (@, xn (1))

J+() —¢e =< T a.e.onT
N / i () = )yn0) < / N%g;”)ynmdr
{xn (1)#£0} {xn ()70} "
b .
:>/ Jr(@)cdt < liminf Myn(t)dt
0 n—00 X, (1)

{xn ()70}
(sincee > 0 was arbitrary.

Also we havef{xn(t)zo} (j(t,0)/|lx,]Hdt — 0. So finally we have

b b
Cf J+(Hdr <lim inff Mdt.
0 n—o0 Jq 2l
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Using this and (18) in (19) we obtainfé’ jr(de <0, hencefé’ j+(0)dt < O (recallthat
We have assumed that> 0). This contradicts hypothesis H{{y). Therefore{x, },>1 <

per r(T) is bounded and then arguing as in the proof of Theorem 1 we conclude that
satisfies the non-smooth PS-condition. QED

PROPOSITION 5
If hypothesesi(j) , hold, thenlim || o ¢(§) = —oo (i.€. ¢|r is anticoercivé.
£eR

Proof. Suppose that the result of the proposition is not true. Then we catéfihd 1 <
R such that|¢,] — oo andy € R such thaty < ¢(§,) foralln > 1. Soy <

liminf,_ o0 (&) = liminf,,_ oo (— fé’j(z,gn)dt). First suppose tha}, — +o0o. We
may assume thdt, > 0 for alln > 1. We have

v <—/bf(”5")dt
Sn - 0 Sn '

b
—limsup [ (@, &) dr

n—oo 0 n

<0.

On the other hand as in the proof of Proposition 4, we obtain that

/ jr()de < I|m|nf/ UGL DN
0

which is a contradiction. Similarly if, — —oo, we obtainfé’ j—(®dt > 0, again a
contradiction. QED

Recall the direct sum decompositimﬁéi’(T) =R VwthV ={v e Wplé’r’(T):
f2 v()dr = 0.

PROPOSITION 6
If hypothesesi(j), hold, theng|y is coercive(i.e. p(v) — +oo as|lv| — oo, v € V).

Proof. For everyv € V we havep(v) = %||v’||§ — f(fj(t, v(¢))dt. From the Poincar—
Wirtinger inequality we know that o, |[v'||, is an equivalent norm. So

dr forsomecs > 0.

o) /”j(nv(t))
0

= C
vll? [vll?

Recall thatf0 (j (&, v@)/lvlP)de — 0. So liminfjj- e & (”) > ¢4 > 0, hence
veV
¢(v) > +oo as|v|| - oo, v e V. QED

These auxiliary results lead to the following existence theorem.

Theorem 7. If hypothese#(j), hold, then problem(15) has at least one solutiorn €
CH(T) with |x'()[P~2x/(-) € WE'(T).
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Proof. Propositions 4-6 permit the application of the non-smooth saddle point theorem.
So we obtainx e W&é’r’(T) such that Oc d¢(x), henceA(x) = u with u € L™ (T),

u(t) € 9j(r, x(t)) a.e. onT. As in the proof of Theorem 1 we show thate C1(T),
Ix’()|P~2x'(-) € W' (T) and it solves problem (15). QED

As we have already mentioned in the beginning of this section, our generalized
Landesmann—Lazer type condition (see hypothesig ftfj) generalizes the one used by
Tang [33] (for smooth potentials). In the next proposition we are going to show this. For
this purpose we introduce the following functions:

g1(t, x) =minfu: u € 9j(¢,x)} and go(t, x) = max{u: u € 9j (¢, x)},

2j(t,x) ;
S — g1t x), if x| #0
Gi(t, x) = . .
169 =1, if x| = O
and
2j(t,x) -
S —go(t,x), if x| #0
Go(t,x) = * . ,
2.0 = 1, if x| =0
G (1) =limsupGa(t,x) and GJ(r) = liminf G2, x).
X—>—00 x—>+00

The functionsG7, Gg are essentially the ones used by Tang [33] in the context of
smooth, semilinear (i.2 = 2) periodic problems. In that case, sinoe, -) € C1(R), we
havegi; = g2, and hencé&r1 = Go.

PROPOSITION 8
Forallt € T\ D with|D| =0,G5 (t) < ji(t) and j_(t) < G (¢).

Proof. Let D < T the Lebesgue-null set outside of which hypotheses,fiifj)— (v)
hold. Letr € T\ D and set; (1) = G;(t) — ¢. We can findM1 > 0 such that for all
x > My we have

Gy (1) —e =k (t) < Ga(t,x)

kKF@)  d o kF@) Ga(t, x)

= — | — < .
= x2 dx X - x2

For allu € 9j (¢, x), we have

Golt,x) _ 2j(t,x)  ga(t,x) _2j(t,x) u
2 - 2 -

X )C3 X x3 x3'

From p. 48 of [5], we know that — 2 (¢, x)/x2is locally Lipschitz on M1, +o0) and
P (j(t,X)) c aj(r, x) ZJ(I,X).

x2 - x2 x3

Therefore for alk € T, all x > My and allu € 35 (z, x), we have

t,x 2j(t, x 1
”ngiz ) ]ig )=—PGz(I,X)

+
e ().
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Since forr € T \ D, the functiory — j (¢, x)/x? is locally Lipschitz on My, +00), it
is differentiable at every € [M1, +00) \ D1(t), |D1(z)| = 0. We set

d jex)y
uo(t, x) = {E{;( 5), if x € [M1, +00) \ D1(1),
0, if x € D1(2).

We fixt € T \ D and choose € [M>, +00) \ D1(¢). Thenug(t, x) € 9(j (¢, x)/x?)
and so

d /jt x) d k()
w0 =g (M) 2@ €0

Lety < x andy € [M1, +00) \ D1(¢). We integrate (20) over the interval,[x] and
obtain

j6x iy k() (} _ %) (21)

x2 y2 x

By virtue of hypotheses H(jfiii), (iv) and the Lebourg mean value theorem, givern 0
forallz € T\ D and allx > 0, we have

—ex?—cix + j(t,0) < j(r, x) forsomecy > 0

o j(t, x
= —¢ < liminf J( 5 ),
X—+00 X
Jj(t, x)
5

= 0 < liminf

xX—>400 X

So if we go to (21) and pass to the limit as—> +oo, we obtain

k@) < 1y

Jj,y)

+ < . .
= 630 < i

= j+(0).

Similarly we obtain that foralt € 7 \ D, |[D| =0, we havej_(r) < G, (t). QED

Remark This proposition shows that our generalized Landesman—Lazer type condition
(hypothesis H(j)(v)) is more general than the one used by Tang [33]. Here is an example
of a non-smooth locally Lipschitz potential which satisfies k{{j) but does not satisfy

the condition of Tang. Again for simplicity we drop thalependence

j(x) = maxx3 x¥2) 4+ In(1 + |x|) + cosx + x.
A simple calculation shows thgt, = 1, j- = —1butG] = G5 =0.

When dealing with the semilinear (iye= 2) case, we can consider problems at reso-
nance in an eigenvalue of any order. Similar problems (but with smooth potential) were
studied by Mawhin and Ward [25], p. 67 of Mawhin and Willem [26], Mawhin and Schmitt
[24] (problems near resonance) and Tang [33] (who employed his more restrictive version
of the generalized Landesman—Lazer condition (see Proposition 8).
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The problem under consideration is the following:

(22)

—x"(t) —m2w®x(t) €dj(t,x(t)) —h(r) a.eonl =][0,b]
x(0) = x(b), x'(0) = x'(b), h € LY(T) '

Herem € Ngo = {0, 1, 2, ...} andw = 27 /b (see 8§2). Our hypotheses ¢f1r, x) are the
following:

H(@)s: j: T x R — Ris a functional such that(-, 0) € L1(T) and

(i) forall x € R, —> j(¢, x) is measurable;
(iiy for almost allr € T, the functionx — j (¢, x) is locally Lipschitz;
(i) foralmostallt € T, allx € Rand allu € 9 (¢, x), we have

lu| < ar(t)(L+ |x|”™h,

1<r<+4oowithay e L"(T), 2+ 1 =1;
u

(iv) | Ilim © = 0 uniformly for almost alk € 7 and allu € 9, (, x);
X[—> 00

(v) there exist functiongy € L*(T) such thatjy (1) = liminf o L&Y

andj_(1) = limsup,_, _, &2 a.e. onT and [} k(1) sin(mer + 0)dr <
fé’ jr (@) sin(mowt + 0)* — j_(¢) sin(mwt + )~ dt for all 6 € R.

In our analysis of problem (22) we shall use the following subspacasplgff(T):
H = sparisinkwt, coskwt: k = 0,1, ...,m — 1},
N,, = sparsinmwt, COSmwt},
H = (H + N,,)* = sparsinkwt, coskwt: k > m + 1}.
We haveWpléf(T) = H®N,, ® H and so ifx € Wpléf(T), we havexr = ¥ + x0+

with ¥ € H,x% € N,, ands € H. A
We start with an auxiliary result concerning the subspice

Lemma9. There exists > 0 such that for allx € A we havec||x||? < [|x"13 — A lIx|3.

Proof. Let ¢ (x) = ||x’||§ - Am||x||§ and suppose that the result is not true. We can find

{xn}n>1 C H such thai) (x,) | 0. Sety, = x,/||x,|l,n > 1. We may assume that = y
in Wez (T) andy, — yin L3(T). Thusin the limitas — oo, we obtain|y’[13 < i |yl3

and soy = 0. Hencel|y, |2 — 0 and soy, — 0 in Wéé%(T), a contradiction to the fact
that||y,|| = 1 foralln > 1. QED

We introduce the locally Lipschitz functional W&é?(T) — R defined by

m?w?

1 b b
o) = S 18~ " el - / Jx () + / h(Ox (1) dr.
0 0

PROPOSITION 10

If hypothese#li(j)s hold, theng satisfies the non-smooth PS-condition.
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Proof. Let {x,},>1 € Wéé%(T) be a sequence such that
lo(x,)| < M1 forall n > 1 and someM; > 0
and

m(x,) > 0 asn — oo.

Againwe findx € d¢(x,) suchthatn(x,) = ||x}|| andx* = A(x,) —m?w?x, —u, +h,
with u, € L(T), uy(t) € 3j(t, x,(1)) a.€. onT. Here A € L(Wpar(T), Wper(T)*) is
defined(A(x), y) = fé’ x'(t)y'()dr forall x, y € Wr}’ef(T). Of courseA is a maximal

monotone, bounded linear operator. We claim {ha},=1 € Wgef(T) is bounded. If this
is not the case, we may assume tfgt| — oco. We sety, = ” R 1 and we may
assume that

Yo =y in WaeH(T) and y, — y in CpedT) asn — oc.
From the choice of the sequenpg },>1 C W&é?(T) we have

v)| < &nflv]l forall v e Wod(T) with &, | 0,

b b
h
’/ yyv'dr — / ynvdt—/ tn vdt—i—/ vdt‘ggnm
o lxnll o lxall ll I

with A, = m2w?. (23)

By virtue of hypothesis H(gXiv), givene > 0 we can findM > 0 such that for almost
allt e T,all |x| > M and allu € 3j (¢, x), we havelu/x| < . So we can write that

b
u u u
/ a vdt’:'/ —”y,,vdt—i—/ z vdt‘
o lxall (lxn ()| =M} Xn (a1 <M} 1%l

ar(t)(1+ M"Y
ss||yn||oo||v||1+f aOd+ M
{lxa (1) <M1} ll |

(see hypothesis )5 iii )
b
/ v dr
o lxall
b u,

Sincee > 0 was arbitrary, we infer that lim, o fo 17
lim, fo mvdt = 0. So from (23) and it = y, — y, we obtain

b b
lim [/ Vo (yn — y)'dr — /\m/ Yn(Yn — y)dt} =0
n—oo 0 O

b
= lim / yu (v, — ¥)dr (recall thaty, — y in Cper(T)),

n—oo 0

= lim sup

n—oo

< elylloollvla.

—ydt = 0. Also we have

= lyullz = 1Y'l2.

Because,, — y'in L4(T), itfollowsthaty, — y'in L3(T)andsqy, — yin Wae(T).
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sincele (o)l/ 112 < M1/Ix, 112 and [ (j ¢, x4 1))/ 1 13)dt — O (see hypothesis
H(j)s(v)), if in (23) v = y, and we pass to the limit as — oo, we obtain that|y/||§ =
Am ||y||§, hencey(t) = &1 Sinmwt +&2 cosmwt With €1, &2 € Rand soy(¢) = r sin(mwt +
0) with r = (€2 + £2)2, tand = £1/&.
We write y, = ¥, + y2 + 3, with 3, € H, y0 € Ny, . € H,n > 1. Using
vV=—y, + y,? + I, € W&é%(T) as our test function, we obtain
b 0 b 0
’/(; 'x;l(_)_)n + Yyt )A’n)/dt - )‘m‘/o Xu(=Yn + ¥, + V)t
b b
—fo (= +y,?+ﬁn)dr+/0 h(=3n + Yy + $a)dr

< enll = Fn + Y0+ $ull <3e, with &, | O

b b
/ X, (—x, + x,?l + %,)dt — A f Xp (=X, + x,? + X,)dt
lxnll {Jo 0

b 0= h
/ (” > (—Fp + 0 + 2)dr
0 [l

wherex, = %, +x0 + %, with 3, € A, x% € N,,, &, € H. Becausea? € N,,, we have
x0 = glsinmot + g2 cosmwt and so for alle > 1 we have|x? 13 = 4,[1x2]13. Since

[{(x¥, v)] < eullv| forallv e W&é%(T), takingv = x,? and exploiting the orthogonality
relations, we have

’ ! U212 = 2 ||x°||%)—/b tn xodt—i—/h x| < ¢
m n
lxall " " o ™" o lxall™"
b
—h
= / I = 20 — 0. (25)
o lxal

Also from Lemma 3 of [33], we have that || %, 1> < Am x4 15— |53 foralln > 1and
someps > 0 while from Lemma 9, we havg: ||, (12 < [1£] 15 — A%, [15 for all n > 1.
Using the orthogonality relations among the three subspéces,, andH, we obtain

b
[O x5 (=5 4 xy + Ede = — 15,15 + 167 15 + 1515
and
b 0 2 02 2
o [ 5T+ 224 B = A3 — A 13213 — A 5,13
0
Thus finally we can write that

b b
/ x! (= + x0 +;2,;)dt—)\m/ X (=% + x0 4 £,)dr
0 0

= 12 =/ 2 12 512
= A ll%n |5 — 1,112 + 11X, 112 = Am 1 Xnll2

> Boll — Xn + £, forall n > 1 and somegy > O. (26)
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Moreover, recalling that for almost alle T, all |x| > M and allu € 9 (¢, x) we have
lu/x| < e and using also hypothesis Hyjii), we have

u_nxn (=X, + X,)dt

b
/ = (—=Xp + X,)dt =
0

B xnll Sxn @)1= My Xn
u .
+/ " (=%, + £,)dt
(a0 <M) Xl
1 _ 2 - 1 _
< e(llxnlls + l1xnll%) + B3l — Xxn + xnull
[l I [l
forsome Bz > 0
2 1
=< lw, |I* + Ballwy ||
[l I ll2 |
With wy = —%y + &, n > 1. 27)

Also for alln > 1, we have

<Nl | = ¥n + Inlloo < Ball = Yn + Iull
_ PBa
[EA]

Using (25)~(28) in (14), we obtain

1 2
(B2 — O)llwa|I” —
(b [l I

b
‘/ h(_)_’n + }A}n)dt
0

|lw,| forsomeps > O. (28)

/

Bsllwn|| < e, forsomeBs> 0 andwithe, | O.

Choosings < 82, we have

. 1
lim sup

n—oo |Xall

2
= lim supM (;36— Ps ) <0,

n—oo xnll lwy |

(Bollwall? — Bsllwall) <O with fg =2 —& >0

llwy |12

(B

— 0 (by passing to a subsequence if necessary

From the choice of the sequenpg },>1 C W&é%(T) we have

b

1 Am b
lo(x)| = ’§||x;,||%— 7||xn||§— /O J(t, xa(0))dt + fo h(t)x, (t)de| < My,

Divide by ||x,| and use the orthogonality of the subspaces and the eq\uaﬁtw% =
Aml1x0113 for all n > 1. We obtain

[ (xn)| —
[l

Llwpls o lwals /” GEAD)
2wl 2 Dl Jooo Dl

< .
[l

b
+/'Mﬂw0Mt (29)
0
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Recall thatWpe?(T) = R @ V with V = {v € Wpef (T): [y v()de = 0} = RL,
Sow, = & + v, With &, € R, v, € V,n > 1. We have|w, |3 = (1115 + [vall3 =
bénz + ”vn”%. n>1.50

5 lwall = =276 + Z-llvall3,
do N0nll3 _ o €26 A a3
2 ol 2 Il 2l T el T

Also we have

1 1 B7 .

Shwnlls =Sl i3 < 5 with g7 >0
(by the Poincas—Wirtinger inequality,

Lllwpl3 _ B lwal?

< — 0 asn — oo.
2 |lxull 2 |lxall

Moreover, we have

b . .
/ J(t’x"(t))dtzf ](t’x"(t))y,,(t)dt+/ Jj¢.0
0 {xn (1)70}

[l Xn =0y l1%n |l

Note thator{r € T: y(¢+) > 0} we havex, (1) - +ooandon{t € T: y(t) < 0} we have

i J(,0) ; )
thatx,(r) — —oo. In add|t|onf{xn(t):0} mdt — 0. So via Fatou’s lemma, we have
b . .
o t, X, (t . t, X, (2
lim inf wdt > liminf wyn(t)dt
n—oo Jg ll2 n=>00 Jio 20y Xn()

b b
> fo Jr®y*de — fo J-(@®)y~ (0)de.
Becausé% — 0, we have that € N,, and so

b o
lim inf J(t, xp (1))

=00 Jo o lxall

b
dr >/ j(Or sin(mot + 0)Tdt
0
b
—f Jj—(@)rsin(mwt + 60)"dt, 6 € R. (30)
0
From (29) and sincéﬁ”;Tll'lz — 0, we obtain
b b b
lim / Mdt = / h(t)y(t)de =/ h(t)r sin(mwt + 0)dt
n—o0 Jo [l 0 0
b b
< r</ j+(t)sin(ma)t+9)+dt—/ Jj—(t) Sin(ma)t+9)_dt>
0 0

(by hypothesis I)s(v)). (31)
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Comparing (30) and (31), we reach a contradiction. This proves that the sequence
{xn}n>1 C Wéé%(T) is bounded, hence we may assume that> x in Wpléf(T) and
xn — x In Cpe(T). As before (see the proof of Theorem 1) we can finish the proof and
conclude thap satisfies the non-smooth PS-condition. QED

Let H; = sparisinkwt, coskwt: k = 0,1, ..., m} and Hy = H1¢.
PROPOSITION 11
If hypothesesi(j)s hold, theng(x) — —oo as||x| — oo, x € Hi.

Proof. Suppose that the conclusion of the proposition was not true. Then we cgndiritl
and asequende, },>1 € Hi suchthaf/x,| — ocoandg(x,) > gandalln > 1. We have

1 ,2 Anm 2 b b
§||Xn||2 - 7||xn||2 — J@, x,@))dt + | h(t)x,(H)dr > B.
0 0

Lety, = ”j—”n > 1. We may assume that = yin Wplé%(T) andy, — yin Cped(T).

BecauséH; is finite dimensional angl, € Hj forall n > 1, we havey, — y in Waer ().
For alln > 1 we have

1, A b, xa () b h()
A M e PO
0 0

126112 [l I 1212

n>1

Clearly /7 %dt — 0 and é’%yn(t)dt — 0. So in the limit a1 — oo, we
obtain

Amy o 1.5

- < —

5 Iyl = I3

1 A .
= Eny/n% = gnynn% (sincey e Hy)
=y € Ny.

From the choice of the sequenpg },>1 € H1 we have

b b
—/ j(t,xn(t))dt+/ h()x,()dt > p(x,) = B
0 0

b - b
0 0

el T Il
Arguing as in the proof of Proposition 10, in the limitas> oo, we obtain

b b
r / j+ (@) sin(mot + 0)Tdt —r / j— (@) sin(mot + 6)~dt
0 0

b
Sr/ h(t) sin(mwt + 6)dt,
0

which contradicts hypothesis H{{)). This proves the proposition. QED
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PROPOSITICN 12
If hypothesesi(j)s hold, theng(x) — +oo as|x| — oo, x € Ha.

Proof. Forx € H», we have
1,0 Am o b b
(x) = Ellx 5 — 7|le|2 — | Jj, x@)de+ [ h(t)x(@)dt
0 0

b b
> c||x||2 —/ j(t, x(t))dt +/ h()x(t)dr (see Lemmap
0 0

b - b
:>@>c—/ —J(t’x(t))dwr/ MO | i
0 0

= y
1112 112 llx]]

Remark that/; %dt — 0and :%y(r)dt — 0 as|x|| — oo, x € Ha. SO we
have

iminf £&) 5

Ixl—o0 [lx[2 ~
erZ

c>0

= @(x) - +00 as ||x|| = oo, x € H>.
QED

Propositions 10-12, permit the use of the non-smooth saddle point theorem which gives
X € Wplé%(T) such that Oe d¢(x). As in the proof of Theorem 1, we can check that

x € CXT), x" e wWLL(T) and alsox solves (22). So we can state the following existence
theorem.

Theorem 13. If hypotheses (j)5 hold, then for everyh e L(T), problem(22) has a
solutionx e CX(T) withx’ € WL(T).

Remark Theorem 13 generalizes Theorems 2 and 3 of Tang [33]. The generalization is
two-fold. On the one hand we assume a more general Landesmann—Lazer type condition
(see hypothesis Hgjv) and Proposition 8) and on the other hand we have a hon-smooth
potential function. Moreover, in Tang the potential function is independent of the time-
variabler € T.
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