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Abstract. Let G be a finite group andi be a normal subgroup af. We denote
by ncc(A) the number oiG-conjugacy classes of and A is calledn-decomposable,
if ncc(A) = n. SetKs = {ncc(A)|A <1 G}. Let X be a non-empty subset of positive
integers. A grouf is calledX-decomposable, ks = X.

Ashrafi and his co-authors [1-5] have characterizedtttoecomposable non-perfect
finite groups forX = {1,n} andn < 10. In this paper, we continue this problem
and investigate the structure af-decomposable non-perfect finite groups, for=
{1, 2, 3}. We prove that such a group is isomorphic4g Dg, Qs, S4, SmallGroup(20,
3), SmallGroup(24, 3), where SmallGraup n) denotes thenth group of ordem in
the small group library of GAP [11].

Keywords. Finite group;z-decomposable subgroup; conjugacy claésjecompo-
sable group.

1. Introduction and preliminaries

Let G be afinite group and le¥; be the set of proper normal subgroupgofAn element
K of N is said to be:-decomposable iK is a union ofn distinct conjugacy classes of
G. Inthis case we denoteby ncc(K). SupposeéCs = {ncc(A)|A € Ng} andX is anon-
empty subset of positive integers. A groGgs calledX-decomposable, K = X. For
simplicity, if X = {1, n} andG is X-decomposable, then we say tlaais n-decomposable.

In [14], Wujie Shi defined the notion of a complete normal subgroup of a finite group,
which we call 2-decomposable. He proved thatifs a group andv a complete normal
subgroup ofG, thenN is a minimal normal subgroup @ and it is an elementary abelian
p-group. MoreoverN € Z(0,(G)), whereO,(G) is a maximal normap-subgroup of
G, and|N|(|N| — 1) divides|G| and in particular|G| is even.

Shi [14] proved some deep results about finite gréupf order p“4” containing a 2-
decomposable normal subgrop He proved that for such a groupy| = 2, 3, 22 or
27141, where 21 —1is a Mersenne prime ané2- 1 is a Fermat prime. Moreover, we have
(i) if IN| = 2, thenN C Z(G), (ii) if |N| = 3, thenG has order 23°, (iii) if |N| = 21,
thenG has order21 — 1)2? and (iv) if [N| = 21 + 1, thenG has order 2(21 + 1)°.

Next, Wang Jing [15], continued Wujie Shi's work and defined the notion of a sub-
complete normal subgroup of a groGpwhich we call 3-decomposable. She proved that if
N is a sub-complete normal subgroup of a finite gréypheny is a group in which every
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element has prime power order. Moreoveltyifs a minimal normal subgroup @, then
N € Z(0,(G)), wherep is a prime factor ofG|. If N is not a minimal normal subgroup
of G, thenN contains a complete normal subgraMp whereN; is an elementary abelian
group with orderp® and we have:

(&) N = N1Q has orderp“q and every element a¥ has prime power ordefrQ| = ¢,
g # p,qisaprimeands; = MN1, M N N1 = 1, whereM = Ng(Q),

(b) N is an abeliarp-group with exponent p2 or a special group; iV is not elementary
abelian, thenvy < ®(G), whered (G) denotes the Frattini subgroup 6f

Shahryari and Shahabi [12,13] investigated the structure of finite groups which con-
tain a 2- or 3-decomposable subgroup. Riese and Shahabi [8] continued this theme by
investigating the structure of finite groups with a 4-decomposable subgroup. Using these
works in [1] and [2], Ashrafi and Sahraei characterized the finite non-pekfegroups,
for X = {1, n}, n < 4. They also obtained the structure of solvabldecomposable non-
perfect finite groups. Finally, Ashrafi and Zhao [3] and Ashrafi and Shi [4,5] characterized
the finite non-perfeck -groups, forX = {1, n}, where 5< n < 10.

Inthis paper we continue this problem and characterize the non-p&Hgetomposable
finite groups, forX = {1, 2, 3}. We prove that such a group is solvable and determine the
structure of these groups. In fact, we prove the following theorem:

Theorem. LetG be a non-perfecfl, 2, 3}-decomposable finite group. Théhis isomor-
phic to Zg, Dsg, Qs, S4, SmallGroug20, 3) or SmallGroug24, 3).

Throughout this paper, as usual, denotes the derived subgroup®f Z,, denotes the
cyclic group of ordewn, E(p™) denotes an elementary abeliargroup of orderp”, for a
prime p andZ(G) is the center o&G. We denote byr (G), the set of all prime divisors of
|G| andr,(G) is the set of all orders of elements Gf A groupG is called non-perfect,
if G’ # G. Also, d(n) denotes the set of positive divisorsmofand SmallGroug, i) is
theith group of order in the small group library of GAP [11]. All groups considered are
assumed to be finite. Our notation is standard and is taken mainly from [6,7,9,10].

2. Examples

In this section we present some exampleXedecomposable finite groups and consider
some open questions. We begin with the finite abelian groups.

Lemmal. LetG be an abelian finite group. S&t = d(n) — {n}, wheren = |G|. ThenG
is X-decomposable.

Proof. The proof is straightforward. a

By the previous lemma a cyclic group of ordeis (d(n) — {n})-decomposable. In the
following examples we investigate the normal subgroups of some non-abelian finite groups.

Examplel. Suppose that is a non-abelian group of ordgg, in which p andg are primes
andp > gq. Itis a well-known fact thaiy| p — 1 andG has exactly one normal subgroup.
Suppose thaH is the normal subgroup a. ThenH is (1 + ”T_l)—decomposable. Set

X={11+ ”T’l}. ThenG is X-decomposable.



On finite groups of conjugacy classes 219

Example2. LetDy, be the dihedral group of orden2: > 3. This group can be presented
by

Do, = (a,bla" =b?>=1,b"Yab=a"1).

We first assume that is odd andX = {d—J2F1|d|n}. In this case every proper normal
subgroup ofDy, is contained ina) and soDy, is X-decomposable. Next we assume that
nis even and¥ = {‘17*1|d|n :2)d}u {d7+2|d|n; 2|d}. In this case, we can see thag,
has exactly two other normal subgrouis= (a2, b) andK = (a?, ab). To complete
the example, we must computec(H) andncc(K). Obviously,ncc(H) = nce(K). If
4in, thenncc(H) = % + 2 and if 4fn, thenncc(H) = "+2. SetA = Y U {4 + 2} and
B=YU {"%;6}. Our calculations show that ifj4, then Dy, is A-decomposable and if
4 n, then dihedral grou,, is B-decomposable.

Example3. Let Q4, be the generalized quaternion group of orderit> 2. This group
can be presented by

Q4 = {a, bIaZ" =1,b>=d", b tab = a_l).

SetX = {H|d|n and 2/d} | {9F2|d|2n and 3d} andY = X U {"F2}. Itis a well-known
fact thatQ4, hasn + 3 conjugacy classes, as follows:

{1 {a"}; {a", a7} A <r <n -1

{@®pl0<j<n—1; {a®h0<j<n-1).

We consider two separate cases thigtodd or even. If: is odd then every normal subgroup
of Q4, is contained in the cyclic subgroup). Thus, in this cas@4, is X-decomposable.
If n is even, we have two other normal subgroups$, b) and (a2, ab) which are both
#—decomposable. Therefor@y, is Y-decomposable.

Now it is natural to generally ask about the &t = {ncc(A)|A <G}. We end this
section with the following question:

Questionl. Suppos« is a finite subset of positive integers containing 1. Is there a finite
groupG which is X-decomposable?

3. Main theorem

Throughout this sectio = {1, 2, 3}. The aim of this section is to prove the main theo-
rem of the paper. We will consider two separate cases in whids 2- or 3-decompos-
able. In the following simple lemma, we classify th&decomposable finite abelian
groups.

Lemma2. Let G be an abelianX-decomposable finite group. Théh= Zg, the cyclic
group of ordere.

Proof. Apply Lemma 1. ]
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For the sake of completeness, we now define two gréupadV which we will use later.
These groups can be presented by

U=y zx¥=y'=1y" =271z =y",

x_lyx = y_lz_l, xlax = y_l)

V ={(x, y|x4 = y5 =1, xilyx = yz).

We can see that/ and V are groups of orders 24 and 20 which are isomorphic to
SmallGroug24, 3) and SmallGrouf®0, 3), respectively. Also, these groups ame
decomposable.

To prove the main result of the paper, we need to determine atl-decomposable
groups of order 8, 12, 18, 20, 24, 36 and 42. The following GAP program determines all
the X-decomposable groups of the mentioned orders.

AppendTo("x.txt","Begining the Program"," \n");
E:=[8,12,18,20,24,36,42];
for m in E do
n:=NrSmallGroups(m);
F:=Set([1,2,3]);
for i in [1,2..n] do
GL:=[);
G:=[I;
g:=SmallGroup(m,i);
h:=NormalSubgroups(g);
d1:=Size(h);d:=d1-1;
for j in [1,2..d] do
s:=FusionConjugacyClasses(h[j],9);
sl:=Set(s);
Add(G,s1);
od;
for k in G do
a:=Size(k);
Add(G1,a);
od;
G2:=Set(Gl);
if G2=F then AppendTo("x.txt","S(",m,",",i, ")",
DA
od;
od;

PROPOSITION 1

Let G be a non-perfect and non-abeligfrdecomposable finite group such that is 2-
decomposable. Thef is isomorphic toDg, Qg or SmallGroup (20, 3).

Proof. SetG’ = 1U Cig(a). Then it is an easy fact th&’ is an elementary abelian
subgroup ofG, for a primer. First of all, we assume tha6’| = 2. Then one can see that
G’ = Z(G). If G is not a 2-group then there exists an elemert G of an odd prime
orderq. Supposeéd = G’{x). SinceH is a cyclic group of order@, ncc(H) > 4 which

is impossible. Henc& is a 2-group. We show thaG| = 8. SupposeG| > 16. Since
|G’| = 2 and every subgroup containiitg is normal, we can find a chai@’ < H <



On finite groups of conjugacy classes 221

K < G of normal subgroups df7, a contradiction. S6; = Dg or Qg and by Examples 2
and 3, these groups aie-decomposable.

We next assume thaG’| > 3. If Z(G) # 1 then it is easy to see thiZ (G)| = 2
or 3. SupposeZ(G)| = 3. ThenG’'Z(G) = G or G'. If G'Z(G) = G, thenG =
G’ x Z(G). This implies that is abelian, a contradiction. Th&G) < G’. This leads to
a contradiction, sincé& is non-perfect and;’ is 2-decomposable. Thug(G)| = 2. But
in this case = Z(G)G’ is 3-decomposable, which is impossible. Therefa@rg;) = 1
and by Theorem 2.1 of [12], we hai@€| = |G’|(|G’| — 1) andG is a Frobenius group with
kernelG’ and its complement is abelian. Supppsd = r", then|G| = r* (r" — 1). Take
K to be any proper non-trivial subgroup Bf whereT is a Frobenius complement 6f.
ThenK G’ is 3-decomposable and for any£ 1in K we havgClg (x)| = |G|/|T| = |G'|.
So |KG’'| = 2|G’| and therefore we getk| = 2. SinceT is abelian, this forces 2 to
be the only proper divisor off'| and hencgdT| = 4. So|G| = 20 and clearlyG is a
semidirect product of5 by T. Further,Z(G) = 1 forcesT < Aut(Zs) = Z4. Hence
T = Aut(Zs). ThereforeG = Aut(Zs) « Zs. To complete the proof, we show that
G = SmallGroup(20, 3) and it iX-decomposable. Let andy be elements of; with
o(x) = 4 ando(y) = 5. SinceG is a centerless group containing five involutions, it has
exactly two non-trivial, proper normal subgroups= (y) andB = A(x?) of orders 5 and
10, respectively. Clearl is non-abelian and so it is isomorphic to the dihedral group of
order 10. This shows that the elementskof- A are conjugate irB. But x " 1yx = y?,
i = 2,3,4. Supposé = 4. SinceB = D1, we have thak?yx—2 = y~1. Thus we get
thatxyx~1 = x~1y~1x. Consequently if = 4 then we have that—1y~1x = y~1 and
thenG would be abelian, a contradiction. Also the two groups constructed=by. and
i = 3 will be isomorphic. Hence without loss of generality, we can assume tha@
and soG = V = SmallGroup(20, 3). This shows that non-identity elementa @fill be
conjugate inG and soA is 2-decomposable arglis 3-decomposable. This completes the
proof. ]

PROPOSITION 2

Let G be a non-perfect and non-abeligfrdecomposable finite group such that is 3-
decomposable. Thef is isomorphic taS, or SmallGroug24, 3).

Proof. SetG’ = 1U Clg(a) U Clg(b). Our main proof will consider three separate
cases.

Casel. a1 & Clg(a). Inthis caseClg(b) = Clg(a~1) and by Proposition 1 of [13],
G’ is an elementary abelign-subgroup ofG, for some odd primg. SupposeH is a 2-
decomposable subgroup 6f Then by Corollary 1.7 of [12], we can see that= Z(G)
has order two. Thu& = Z(G) x G’, which is a contradiction.

Case2. a1 € Clg(a), b1 € Clg(b) and (o(a), o(b)) = 1. In this case, by ([13],
Lemma®)|G’| = pq", for somedistinct primeg, ¢, and by Lemma4 of [13K(G’) = 1.
Also, by Lemma 5 of [13]G” = 1 U Clg(a) has ordeg”. SinceG’ is 3-decomposable,
|G : G'| = r, risprime. ThugG| = prqg" and|7(G)| = 2 or 3. Supposer(G)| = 2.
Then by Shi's result [14], mentioned in the introductit@!| = 2, 3, 21 or 22 41, where
2b1 — 1 is a Mersenne prime and2+ 1 is a Fermat prime. IfG”| = 2, thenG’ is a cyclic
group of order 2, a contradiction. {G”| = 3, thenG’ is a cyclic group of order g or
isomorphic to the symmetric group on three symbols. Siités centerlessG’ = Ss.
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This shows thatG| = 12 or 18 and by our program in GAP language, there isxno
decomposable group of order 12 or 18. We now assume@at= 2°1. Hence by Shi’s
result, mentioned beforg; | = 22 (21 —1) and|G’| = 21(2°1—1). Suppose € G'—G”
andy € G”. Then we can see thaflg(x)| = 2°1(2%2 — 2) and|Clg(y)| = 22 — 1.
Since|Clg (x)| is adivisor of|G|, 2'1~1 — 1]2b1 — 1, which implies thab, = 2. Therefore
|G’| = 12 and|G| = 24 or 36. Again using our GAP program, we can see fiat= 24
and sinceG’ is centerlessG = S4. Next we suppose thaG”| = 272 + 1. Apply Shi's
result again to obtaifG| = 2?(21 4+ 1)*. SoG’ is a dihedral group of order2¢ +1) and
|G| = 221 +1)2 or 4241 +1). If |G| = 2(2724-1)? thenG has a 3-decomposable subgroup
of order(2%1 4 1)2. This subgroup has@-conjugacy class of lengy? —g = 21 (21 +1)
and saz; = 1 and|G| = 18, a contradiction. IfG| = 4(271 + 1), theng (¢ — 1)|4(2"1 + 1)
and saz1 = 1, 2. This implies thatG| = 12, 20, which is impossible.

Therefore it is enough to assume that = prq”, for distinct primesp, ¢ andr. Since
G" is a 2-decomposable subgroup of orgérg” (¢" — 1)||G|. Thusg™ — 1| pr. Suppose
n = 1. Then|G| = pqr, |G'| = pg andG’ has twoG-conjugacy classes of lengths- 1
andg(p — 1). Hencep — 1|r andg — 1|pr. If p = 2, thenG has a 3-decomposable
subgroupH of ordergr. Since H has aG-conjugacy class of length(r — 1), r = 3.
Thusg — 1|6. This shows thay = 7 and|G| = 42. But by our GAP program, there
is no X-decomposable group of order 42, a contradictiom ¥ 2, thenp = 3,r = 2
and a similar argument shows thét| = 42, which is impossible. Thus # 1. We now
assume thag # 2. Sinceq" — 1|pr,q — 1 = p orr. This shows thay = 3 and one
of p orr is equal to 2. Ifp or r take the value 2, using arguments similar to the case
n = 1, we getr or p equals 3 respectively. This is a contradictioryas 3. Finally, we
assume thag = 2. Then|G’'| = 2"p and|G| = 2" pr. SinceG’ has aG-conjugacy class
of length 2(p — 1), p — 1jr. Therefore,p = 2 orr = 2 which is our final contradic-
tion.

Case3. a~1 e Clg(a), bt € Clg(b) and(o(a), o(b)) # 1. Inthis case by Proposition 2
of [13], we have that’ is a metabeliap-group. Sinces’ is a maximal subgroup af, we
have thalG : G’| = ¢, whereg is prime. If¢ = p thenG is p-group and s@’ < ®(G).
This shows that is cyclic, a contradiction. Thugs| = p"gq, for distinct primesp and

q. SupposeH is a 2-decomposable subgroup®@f If H is central therHd = Z(G). We
first assume thaZ (G) £ G'. ThenG = G’ x Z(G) which implies thatZ(G") = 1, a
contradiction. Next, suppose thatG) < G’. ThenG’ has aG-conjugacy class of length
2" — 2 and sop = 2 andg = 2"~ — 1. Without loss of generality we can assume that
|Clg(a)| = 1 and|Clg(b)| = 2" — 2. This shows thatCgs (b)| = |G|/|Clg(b)| = 2"~
andG’ cannot be abelian becausdif is abelian we would ge&’ < Cg (b). SinceG’ is
non-abelianp(b) = 4 andG’ has a unique subgroup of order 2. THe5= Qg andG

is a semidirect product aPg by Z3. Assume thatd = (x) is the cyclic group of order

3 andN = Qg. Then Au{N) has a unique conjugacy type of automorphism of order 3.
ThereforeG = H «y N, wheref(x) is an automorphism of order 3 of the grogz.

We now show thaG is X-decomposable and it is isomorphic to SmallGr@4 3). The
possible orders for a non-trivial proper normal subgroupé afre 2, 4, 6, 8, 12. Clearly
Z(G) = Z(N) andG/Z(G) = A4. But A4 does not have normal subgroups of order 2, 3
and 6, so every normal subgroup@thas order 2 or 8 and these are unique. On the other
hand, using Example 3, we can assume at (y, z|y* = 1, y? = 22,z 1yz = y~1).
ThusG is isomorphic to a group which has the same presentation as the graubpich

we defined before. This shows th@t= SmallGroug24, 3) and alsoN is 3-decompos-
able.
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Now it remains to investigate the case tliats not central. Thug/ < G’ andG’ has a
G-conjugacy class of lengthi — 1, forsome 1< i < n—1.Thusp’ —1 = ¢.If p = 3,then
i = 1, ¢ = 2 and we can show thaf| = 18. Thus|G’| = 9 and saG’ is abelian. Further
|H| = 3, so assuming without loss of generality that G'\ H, we get|Cls(b)| = 6.
Hence|Cg(b)| = 3 which is a contradiction as it must be at least 9. Hepce 2, is
prime and G| = 2% (2 — 1) or 211 (2! — 1). SupposeG| = 21 (2! — 1), Q is a Sylow
g-subgroup ofG andN = HQ. SinceG/N is abelian,G’ < N, which is impossible
as|G’| does not divide N |. Finally, we assume tha&| = 2% (2 — 1). We may assume
without loss of generality tha/ = 1 U Clg(a). Then we get thaiClg (a)| = 2' — 1 and
S0|Cg(a)| = 2%. ThusCg(a) = G'. Hence we geHl < Z(G') and soH < Cg(b). But
|Cq(b)| = 28 = |H| and soH = Cg(b). Thusb € H, which is our final contradiction.
This completes the proof. O

Now we are ready to prove our main result.

Theorem. LetG be a non-perfeck -decomposable finite group. Théhis isomorphic to
Zs, Dg, Os, S4, SmallGroug20, 3) or SmallGroug24, 3).

Proof. The proof is straightforward and follows from Lemma 2, Proposition 1 and Propo-

sition 2. O
We end this paper with the following question:

Question2. Is there any classification of perfeXxtdecomposable finite groups?
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