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Abstract. Let G be a finite group andA be a normal subgroup ofG. We denote
by ncc(A) the number ofG-conjugacy classes ofA andA is calledn-decomposable,
if ncc(A) = n. SetKG = {ncc(A)|A CG}. Let X be a non-empty subset of positive
integers. A groupG is calledX-decomposable, ifKG = X.

Ashrafi and his co-authors [1–5] have characterized theX-decomposable non-perfect
finite groups forX = {1, n} and n ≤ 10. In this paper, we continue this problem
and investigate the structure ofX-decomposable non-perfect finite groups, forX =
{1, 2, 3}. We prove that such a group is isomorphic toZ6, D8, Q8, S4, SmallGroup(20,
3), SmallGroup(24, 3), where SmallGroup(m, n) denotes themth group of ordern in
the small group library of GAP [11].

Keywords. Finite group;n-decomposable subgroup; conjugacy class;X-decompo-
sable group.

1. Introduction and preliminaries

LetG be a finite group and letNG be the set of proper normal subgroups ofG. An element
K of NG is said to ben-decomposable ifK is a union ofn distinct conjugacy classes of
G. In this case we denoten byncc(K). SupposeKG = {ncc(A)|A ∈ NG} andX is a non-
empty subset of positive integers. A groupG is calledX-decomposable, ifKG = X. For
simplicity, if X = {1, n} andG isX-decomposable, then we say thatG isn-decomposable.

In [14], Wujie Shi defined the notion of a complete normal subgroup of a finite group,
which we call 2-decomposable. He proved that ifG is a group andN a complete normal
subgroup ofG, thenN is a minimal normal subgroup ofG and it is an elementary abelian
p-group. Moreover,N ⊆ Z(Op(G)), whereOp(G) is a maximal normalp-subgroup of
G, and|N |(|N | − 1) divides|G| and in particular,|G| is even.

Shi [14] proved some deep results about finite groupG of orderpaqb containing a 2-
decomposable normal subgroupN . He proved that for such a group|N | = 2, 3, 2b1 or
2a1+1, where 2b1−1 is a Mersenne prime and 2a1+1 is a Fermat prime. Moreover, we have
(i) if |N | = 2, thenN ⊆ Z(G), (ii) if |N | = 3, thenG has order 2a3b, (iii) if |N | = 2b1,
thenG has order(2b1 − 1)2b and (iv) if |N | = 2a1 + 1, thenG has order 2a(2a1 + 1)b.

Next, Wang Jing [15], continued Wujie Shi’s work and defined the notion of a sub-
complete normal subgroup of a groupG, which we call 3-decomposable. She proved that if
N is a sub-complete normal subgroup of a finite groupG, thenN is a group in which every
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element has prime power order. Moreover, ifN is a minimal normal subgroup ofG, then
N ⊆ Z(Op(G)), wherep is a prime factor of|G|. If N is not a minimal normal subgroup
of G, thenN contains a complete normal subgroupN1, whereN1 is an elementary abelian
group with orderpa and we have:

(a) N = N1Q has orderpaq and every element ofN has prime power order,|Q| = q,
q 6= p, q is a prime andG = MN1, M ∩ N1 = 1, whereM = NG(Q),

(b) N is an abelianp-group with exponent≤ p2 or a special group; ifN is not elementary
abelian, thenN1 ≤ 8(G), where8(G) denotes the Frattini subgroup ofG.

Shahryari and Shahabi [12,13] investigated the structure of finite groups which con-
tain a 2- or 3-decomposable subgroup. Riese and Shahabi [8] continued this theme by
investigating the structure of finite groups with a 4-decomposable subgroup. Using these
works in [1] and [2], Ashrafi and Sahraei characterized the finite non-perfectX-groups,
for X = {1, n}, n ≤ 4. They also obtained the structure of solvablen-decomposable non-
perfect finite groups. Finally, Ashrafi and Zhao [3] and Ashrafi and Shi [4,5] characterized
the finite non-perfectX-groups, forX = {1, n}, where 5≤ n ≤ 10.

In this paper we continue this problem and characterize the non-perfectX-decomposable
finite groups, forX = {1, 2, 3}. We prove that such a group is solvable and determine the
structure of these groups. In fact, we prove the following theorem:

Theorem. LetG be a non-perfect{1, 2, 3}-decomposable finite group. ThenG is isomor-
phic toZ6, D8, Q8, S4, SmallGroup(20, 3) or SmallGroup(24, 3).

Throughout this paper, as usual,G′ denotes the derived subgroup ofG, Zn denotes the
cyclic group of ordern, E(pn) denotes an elementary abelianp-group of orderpn, for a
primep andZ(G) is the center ofG. We denote byπ(G), the set of all prime divisors of
|G| andπe(G) is the set of all orders of elements ofG. A groupG is called non-perfect,
if G′ 6= G. Also, d(n) denotes the set of positive divisors ofn and SmallGroup(n, i) is
theith group of ordern in the small group library of GAP [11]. All groups considered are
assumed to be finite. Our notation is standard and is taken mainly from [6,7,9,10].

2. Examples

In this section we present some examples ofX-decomposable finite groups and consider
some open questions. We begin with the finite abelian groups.

Lemma1. LetG be an abelian finite group. SetX = d(n) − {n}, wheren = |G|. ThenG
is X-decomposable.

Proof. The proof is straightforward. 2

By the previous lemma a cyclic group of ordern is (d(n) − {n})-decomposable. In the
following examples we investigate the normal subgroups of some non-abelian finite groups.

Example1. Suppose thatG is a non-abelian group of orderpq, in whichp andq are primes
andp > q. It is a well-known fact thatq|p − 1 andG has exactly one normal subgroup.
Suppose thatH is the normal subgroup ofG. ThenH is (1 + p−1

q
)-decomposable. Set

X = {1, 1 + p−1
q

}. ThenG is X-decomposable.
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Example2. LetD2n be the dihedral group of order 2n, n ≥ 3. This group can be presented
by

D2n = 〈a, b|an = b2 = 1, b−1ab = a−1〉.

We first assume thatn is odd andX = { d+1
2 |d|n}. In this case every proper normal

subgroup ofD2n is contained in〈a〉 and soD2n is X-decomposable. Next we assume that
n is even andY = { d+1

2 |d|n : 26 |d} ∪ { d+2
2 |d|n; 2|d}. In this case, we can see thatD2n

has exactly two other normal subgroupsH = 〈a2, b〉 andK = 〈a2, ab〉. To complete
the example, we must computencc(H) andncc(K). Obviously,ncc(H) = ncc(K). If
4|n, thenncc(H) = n

4 + 2 and if 46 |n, thenncc(H) = n+6
4 . SetA = Y ∪ {n

4 + 2} and
B = Y ∪ {n+6

4 }. Our calculations show that if 4|n, thenD2n is A-decomposable and if
46 |n, then dihedral groupD2n is B-decomposable.

Example3. LetQ4n be the generalized quaternion group of order 4n, n ≥ 2. This group
can be presented by

Q4n = 〈a, b|a2n = 1, b2 = an, b−1ab = a−1〉.

SetX = { d+1
2 |d|n and 26 |d} ⋃{ d+2

2 |d|2n and 2|d} andY = X∪{n+4
2 }. It is a well-known

fact thatQ4n hasn + 3 conjugacy classes, as follows:

{1}; {an}; {ar , a−r}(1 ≤ r ≤ n − 1);
{a2j b|0 ≤ j ≤ n − 1}; {a2j+1b|0 ≤ j ≤ n − 1}.

We consider two separate cases thatn is odd or even. Ifn is odd then every normal subgroup
of Q4n is contained in the cyclic subgroup〈a〉. Thus, in this caseQ4n is X-decomposable.
If n is even, we have two other normal subgroups〈a2, b〉 and 〈a2, ab〉 which are both
n+4

2 -decomposable. Therefore,Q4n is Y -decomposable.

Now it is natural to generally ask about the setKG = {ncc(A)|A CG}. We end this
section with the following question:

Question1. SupposeX is a finite subset of positive integers containing 1. Is there a finite
groupG which isX-decomposable?

3. Main theorem

Throughout this sectionX = {1, 2, 3}. The aim of this section is to prove the main theo-
rem of the paper. We will consider two separate cases in whichG′ is 2- or 3-decompos-
able. In the following simple lemma, we classify theX-decomposable finite abelian
groups.

Lemma2. Let G be an abelianX-decomposable finite group. ThenG ∼= Z6, the cyclic
group of order6.

Proof. Apply Lemma 1. 2
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For the sake of completeness, we now define two groupsU andV which we will use later.
These groups can be presented by

U = 〈x, y, z|x3 = y4 = 1, y2 = z2, z−1yz = y−1,

x−1yx = y−1z−1, x−1zx = y−1〉,
V = 〈x, y|x4 = y5 = 1, x−1yx = y2〉.

We can see thatU and V are groups of orders 24 and 20 which are isomorphic to
SmallGroup(24, 3) and SmallGroup(20, 3), respectively. Also, these groups areX-
decomposable.

To prove the main result of the paper, we need to determine all ofX-decomposable
groups of order 8, 12, 18, 20, 24, 36 and 42. The following GAP program determines all
theX-decomposable groups of the mentioned orders.

AppendTo("x.txt","Begining the Program"," \n");
E:=[8,12,18,20,24,36,42];
for m in E do

n:=NrSmallGroups(m);
F:=Set([1,2,3]);

for i in [1,2..n] do
G1:=[];
G:=[];
g:=SmallGroup(m,i);
h:=NormalSubgroups(g);
d1:=Size(h);d:=d1-1;

for j in [1,2..d] do
s:=FusionConjugacyClasses(h[j],g);
s1:=Set(s);
Add(G,s1);

od;
for k in G do

a:=Size(k);
Add(G1,a);

od;
G2:=Set(G1);
if G2=F then AppendTo("x.txt","S(",m,",",i, ")",
" ");fi;

od;
od;

PROPOSITION 1

Let G be a non-perfect and non-abelianX-decomposable finite group such thatG′ is 2-
decomposable. ThenG is isomorphic toD8, Q8 or SmallGroup(20, 3).

Proof. SetG′ = 1 ∪ ClG(a). Then it is an easy fact thatG′ is an elementary abelianr-
subgroup ofG, for a primer. First of all, we assume that|G′| = 2. Then one can see that
G′ = Z(G). If G is not a 2-group then there exists an elementx ∈ G of an odd prime
orderq. SupposeH = G′〈x〉. SinceH is a cyclic group of order 2q, ncc(H) ≥ 4 which
is impossible. HenceG is a 2-group. We show that|G| = 8. Suppose|G| ≥ 16. Since
|G′| = 2 and every subgroup containingG′ is normal, we can find a chainG′ < H <
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K < G of normal subgroups ofG, a contradiction. SoG ∼= D8 or Q8 and by Examples 2
and 3, these groups areX-decomposable.

We next assume that|G′| ≥ 3. If Z(G) 6= 1 then it is easy to see that|Z(G)| = 2
or 3. Suppose|Z(G)| = 3. ThenG′Z(G) = G or G′. If G′Z(G) = G, thenG ∼=
G′ ×Z(G). This implies thatG is abelian, a contradiction. ThusZ(G) ≤ G′. This leads to
a contradiction, sinceG is non-perfect andG′ is 2-decomposable. Thus|Z(G)| = 2. But
in this caseH = Z(G)G′ is 3-decomposable, which is impossible. Therefore,Z(G) = 1
and by Theorem 2.1 of [12], we have|G| = |G′|(|G′|−1) andG is a Frobenius group with
kernelG′ and its complement is abelian. Suppose|G′| = rn, then|G| = rn(rn − 1). Take
K to be any proper non-trivial subgroup ofT , whereT is a Frobenius complement ofG′.
ThenKG′ is 3-decomposable and for anyx 6= 1 inK we have|ClG(x)| = |G|/|T | = |G′|.
So |KG′| = 2|G′| and therefore we get|K| = 2. SinceT is abelian, this forces 2 to
be the only proper divisor of|T | and hence|T | = 4. So |G| = 20 and clearlyG is a
semidirect product ofZ5 by T . Further,Z(G) = 1 forcesT ≤ Aut(Z5) ∼= Z4. Hence
T = Aut(Z5). ThereforeG ∼= Aut(Z5) ∝ Z5. To complete the proof, we show that
G ∼= SmallGroup(20, 3) and it isX-decomposable. Letx andy be elements ofG with
o(x) = 4 ando(y) = 5. SinceG is a centerless group containing five involutions, it has
exactly two non-trivial, proper normal subgroupsA = 〈y〉 andB = A〈x2〉 of orders 5 and
10, respectively. ClearlyB is non-abelian and so it is isomorphic to the dihedral group of
order 10. This shows that the elements ofB − A are conjugate inB. But x−1yx = yi ,
i = 2, 3, 4. Supposei = 4. SinceB ∼= D10, we have thatx2yx−2 = y−1. Thus we get
thatxyx−1 = x−1y−1x. Consequently ifi = 4 then we have thatx−1y−1x = y−1 and
thenG would be abelian, a contradiction. Also the two groups constructed byi = 2 and
i = 3 will be isomorphic. Hence without loss of generality, we can assume thati = 2
and soG ∼= V ∼= SmallGroup(20, 3). This shows that non-identity elements ofA will be
conjugate inG and soA is 2-decomposable andB is 3-decomposable. This completes the
proof. 2

PROPOSITION 2

Let G be a non-perfect and non-abelianX-decomposable finite group such thatG′ is 3-
decomposable. ThenG is isomorphic toS4 or SmallGroup(24, 3).

Proof. Set G′ = 1 ∪ ClG(a) ∪ ClG(b). Our main proof will consider three separate
cases.

Case1. a−1 6∈ ClG(a). In this caseClG(b) = ClG(a−1) and by Proposition 1 of [13],
G′ is an elementary abelianp-subgroup ofG, for some odd primep. SupposeH is a 2-
decomposable subgroup ofG. Then by Corollary 1.7 of [12], we can see thatH = Z(G)

has order two. ThusG ∼= Z(G) × G′, which is a contradiction.

Case2. a−1 ∈ ClG(a), b−1 ∈ ClG(b) and (o(a), o(b)) = 1. In this case, by ([13],
Lemma 6),|G′| = pqn, for some distinct primesp, q, and by Lemma 4 of [13],Z(G′) = 1.
Also, by Lemma 5 of [13],G′′ = 1 ∪ ClG(a) has orderqn. SinceG′ is 3-decomposable,
|G : G′| = r, r is prime. Thus|G| = prqn and|π(G)| = 2 or 3. Suppose|π(G)| = 2.
Then by Shi’s result [14], mentioned in the introduction,|G′′| = 2, 3, 2b1 or 2a1 +1, where
2b1 −1 is a Mersenne prime and 2a1 +1 is a Fermat prime. If|G′′| = 2, thenG′ is a cyclic
group of order 2p, a contradiction. If|G′′| = 3, thenG′ is a cyclic group of order 3p or
isomorphic to the symmetric group on three symbols. SinceG′ is centerless,G′ ∼= S3.
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This shows that|G| = 12 or 18 and by our program in GAP language, there is noX-
decomposable group of order 12 or 18. We now assume that|G′′| = 2b1. Hence by Shi’s
result, mentioned before,|G| = 2b(2b1 −1) and|G′| = 2b1(2b1 −1). Supposex ∈ G′−G′′
andy ∈ G′′. Then we can see that|ClG(x)| = 2b1(2b1 − 2) and |ClG(y)| = 2b1 − 1.
Since|ClG(x)| is a divisor of|G|, 2b1−1 −1|2b1 −1, which implies thatb1 = 2. Therefore
|G′| = 12 and|G| = 24 or 36. Again using our GAP program, we can see that|G| = 24
and sinceG′ is centerless,G ∼= S4. Next we suppose that|G′′| = 2a1 + 1. Apply Shi’s
result again to obtain|G| = 2a(2a1 +1)b. SoG′ is a dihedral group of order 2(2a1 +1) and
|G| = 2(2a1+1)2 or 4(2a1+1). If |G| = 2(2a1+1)2 thenGhas a 3-decomposable subgroup
of order(2a1 +1)2. This subgroup has aG-conjugacy class of lengthq2−q = 2a1(2a1 +1)

and soa1 = 1 and|G| = 18, a contradiction. If|G| = 4(2a1 +1), thenq(q −1)|4(2a1 +1)

and soa1 = 1, 2. This implies that|G| = 12, 20, which is impossible.
Therefore it is enough to assume that|G| = prqn, for distinct primesp, q andr. Since

G′′ is a 2-decomposable subgroup of orderqn, qn(qn − 1)||G|. Thusqn − 1|pr. Suppose
n = 1. Then|G| = pqr, |G′| = pq andG′ has twoG-conjugacy classes of lengthsq − 1
andq(p − 1). Hencep − 1|r andq − 1|pr. If p = 2, thenG has a 3-decomposable
subgroupH of orderqr. SinceH has aG-conjugacy class of lengthq(r − 1), r = 3.
Thusq − 1|6. This shows thatq = 7 and|G| = 42. But by our GAP program, there
is noX-decomposable group of order 42, a contradiction. Ifp 6= 2, thenp = 3, r = 2
and a similar argument shows that|G| = 42, which is impossible. Thusn 6= 1. We now
assume thatq 6= 2. Sinceqn − 1|pr, q − 1 = p or r. This shows thatq = 3 and one
of p or r is equal to 2. Ifp or r take the value 2, using arguments similar to the case
n = 1, we getr or p equals 3 respectively. This is a contradiction asq = 3. Finally, we
assume thatq = 2. Then|G′| = 2np and|G| = 2npr. SinceG′ has aG-conjugacy class
of length 2n(p − 1), p − 1|r. Therefore,p = 2 or r = 2 which is our final contradic-
tion.

Case3. a−1 ∈ ClG(a), b−1 ∈ ClG(b) and(o(a), o(b)) 6= 1. In this case by Proposition 2
of [13], we have thatG′ is a metabelianp-group. SinceG′ is a maximal subgroup ofG, we
have that|G : G′| = q, whereq is prime. Ifq = p thenG is p-group and soG′ ≤ 8(G).
This shows thatG is cyclic, a contradiction. Thus|G| = pnq, for distinct primesp and
q. SupposeH is a 2-decomposable subgroup ofG. If H is central thenH = Z(G). We
first assume thatZ(G) 6≤ G′. ThenG ∼= G′ × Z(G) which implies thatZ(G′) = 1, a
contradiction. Next, suppose thatZ(G) ≤ G′. ThenG′ has aG-conjugacy class of length
2n − 2 and sop = 2 andq = 2n−1 − 1. Without loss of generality we can assume that
|ClG(a)| = 1 and|ClG(b)| = 2n − 2. This shows that|CG(b)| = |G|/|ClG(b)| = 2n−1

andG′ cannot be abelian because ifG′ is abelian we would getG′ ≤ CG(b). SinceG′ is
non-abelian,o(b) = 4 andG′ has a unique subgroup of order 2. ThusG′ ∼= Q8 andG

is a semidirect product ofQ8 by Z3. Assume thatH = 〈x〉 is the cyclic group of order
3 andN = Q8. Then Aut(N) has a unique conjugacy type of automorphism of order 3.
ThereforeG = H ∝θ N , whereθ(x) is an automorphism of order 3 of the groupQ8.
We now show thatG is X-decomposable and it is isomorphic to SmallGroup(24, 3). The
possible orders for a non-trivial proper normal subgroups ofG are 2, 4, 6, 8, 12. Clearly
Z(G) = Z(N) andG/Z(G) ∼= A4. But A4 does not have normal subgroups of order 2, 3
and 6, so every normal subgroup ofG has order 2 or 8 and these are unique. On the other
hand, using Example 3, we can assume thatN = 〈y, z|y4 = 1, y2 = z2, z−1yz = y−1〉.
ThusG is isomorphic to a group which has the same presentation as the groupV , which
we defined before. This shows thatG ∼= SmallGroup(24, 3) and alsoN is 3-decompos-
able.
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Now it remains to investigate the case thatH is not central. ThusH ≤ G′ andG′ has a
G-conjugacy class of lengthpi−1, for some 1≤ i ≤ n−1. Thuspi−1 = q. If p = 3, then
i = 1, q = 2 and we can show that|G| = 18. Thus|G′| = 9 and soG′ is abelian. Further
|H | = 3, so assuming without loss of generality thatb ∈ G′\H , we get|ClG(b)| = 6.
Hence|CG(b)| = 3 which is a contradiction as it must be at least 9. Hencep = 2, i is
prime and|G| = 22i (2i − 1) or 21+i (2i − 1). Suppose|G| = 21+i (2i − 1), Q is a Sylow
q-subgroup ofG andN = HQ. SinceG/N is abelian,G′ ≤ N , which is impossible
as|G′| does not divide|N |. Finally, we assume that|G| = 22i (2i − 1). We may assume
without loss of generality thatH = 1 ∪ ClG(a). Then we get that|ClG(a)| = 2i − 1 and
so|CG(a)| = 22i . ThusCG(a) = G′. Hence we getH ≤ Z(G′) and soH ≤ CG(b). But
|CG(b)| = 2i = |H | and soH = CG(b). Thusb ∈ H , which is our final contradiction.
This completes the proof. 2

Now we are ready to prove our main result.

Theorem. LetG be a non-perfectX-decomposable finite group. ThenG is isomorphic to
Z6, D8, Q8, S4, SmallGroup(20, 3) or SmallGroup(24, 3).

Proof. The proof is straightforward and follows from Lemma 2, Proposition 1 and Propo-
sition 2. 2

We end this paper with the following question:

Question2. Is there any classification of perfectX-decomposable finite groups?
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