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Abstract. Let R be a commutative noetherian ring andf1, . . . , fr ∈ R. In this article
we give (cf. the Theorem in §2) a criterion forf1, . . . , fr to be regular sequence for a
finitely generated module overR which strengthens and generalises a result in [2]. As
an immediate consequence we deduce that if V(g1, . . . , gr ) ⊆ V(f1, . . . , fr ) in SpecR
and iff1, . . . , fr is a regular sequence inR, theng1, . . . , gr is also a regular sequence
in R.
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1. Regular sequences

As there is no uniformity about the concept of regular sequence, we first recall the following
definitions that we shall use in this note.

DEFINITION 1

Let R be a commutative noetherian ring andf1, . . . , fr ∈ R. We say thatf1, . . . , fr

is astrongly regular sequenceon aR-moduleM, if for every i = 1, . . . , r the element
fi is a non-zero divisor forM/(f1, . . . , fi−1)M. The sequencef1, . . . , fr is called a
regular sequenceon aR-moduleM, if for everyp ∈ Supp(M/f1, . . . , fr )M), the sequence
f1, . . . , fr in the local ringRp is a strongly regular sequence on theRp-moduleMp.

Note that, in contrast to most of the standard text books, we do not assume theM 6=
(f1, . . . , fr )M for a strongly regular sequencef1, . . . , fr . For general notations in com-
mutative algebra we also refer to [1].

If the sequencef1, . . . , fr is strongly regular respectively regular on theR-moduleM,
then the same is true for the sequencef1 ·1S, . . . , fr ·1S on theS-moduleS ⊗R M, where
S is an arbitrary flat noetherianR-algebra.

Note that every sequence is a strongly regular as well as regular sequence on the zero
module. Further, it is clear that a strongly regular sequence is a regular sequence but not
conversely. For example:

Example.Let P := k[X, Y, Z] be the polynomial ring in three indeterminates over a field
k, p := P(X − 1) + PZ, q := PY and letR := P/p ∩ q = P/PY(X − 1) + PYZ. Then
Z, X is a regular sequence on theP -moduleR but not a strongly regular sequence.
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The difference between regular and strongly regular sequences is well-illustrated in the
following statement given in Chapter II, 6.1 of [4].

PROPOSITION

Let M be a finitely generated module over a noetherian ringR and letf1, . . . , fr ∈ R.
Then the following conditions are equivalent:

(i) f1, . . . , fr is a strongly regular sequence onM.

(ii) For everys = 1, . . . , r the sequencef1, . . . , fs is a regular sequence onM.

It can be easily seen that (see the proof of Proposition 3, Chapter IV, A, §1 of [5]) a
sequencef1, . . . , fr in a commutative noetherian ringR is a regular sequence for a finitely
generatedR-moduleM if and only if the Koszul complexK• (f1, . . . , fr ; M) gives a
resolution ofM/(f1, . . . , fr )M. In particular, iff1, . . . , fr is a regular sequence onM,
then for every permutationσ ∈ Sr the sequencefσ1, . . . , fσr is also regular forM.
Further, the above proposition implies that the sequencefσ1, . . . , fσr is strongly regular
on M for everyσ ∈ Sr if and only if all subsequences off1, . . . , fr are regular onM.
For the sake of completeness let us recall Definition 2.

DEFINITION 2

Let (R, mR) be a noetherian local ring and letM be a non-zeroR-module. Then the length
of a maximal regular sequence onM in the maximal idealmR is called the depth ofM
overR and is denoted by depthR(M).

If M is finitely generated then depth can be (cf. [5], Proposition and Definition 3,
Chapter IV, A, §2) characterized by

(‡) depthR(M) = min{i ∈ N|ExtiR(R/mR, M) 6= 0}.
A finitely generatedR-module is called aCohen–Macaulay moduleif dimR(M) =
depthR(M).

2. Theorem

The following theorem is the main result of this note.

Theorem. Let R be a commutative noetherian ring, f1, . . . , fr ∈ R and letM be a
finitely generatedR-module. Then the following statements are equivalent:

(i) f1, . . . , fr is a regular sequence onM.

(ii) depthRp
(Mp) ≥ r for everyp ∈ Supp(M/(f1, . . . , fr )M).

(iii) depthRp
(Mp) ≥ r for everyp ∈ Ass(M/(f1, . . . , fr )M).

Proof. The implications (i)⇒ (ii) ⇒ (iii) are trivial.

(ii) ⇒ (i): We may assume thatR is local andf1, . . . , fr ∈ mR. Letp ∈ Ass(M) and letq
be a minimal prime ideal in V(p+Rf1+· · ·+Rfr). Thenq ∈ Supp(M/(f1, . . . , fr )M) =
Supp(M) ∩ V(f1, . . . , fr ) and so depthRqMq ≥ r by (ii). Sincep ∈ Ass(M), we have
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HomRp(k(p), Mp) 6= 0 and so ExthRq
(k(q), Mq) 6= 0 by Chapter 6, §18, Lemma 4 of [3],

whereh := htR/p(q/p). Thereforer ≤ depthRq
Mq ≤ h (see(‡) in §1). But thenf1 /∈ p,

since otherwiseh ≤ r − 1 by the (generalised) Krull’s theorem (see [5], Corollary 4,
Chapter III, B, §2). This proves thatf1 is a non-zero divisor forM. Now, induction onr
completes the proof.

The implication (iii)⇒ (i) is proved in the lemma which is given below. (In the proof
of the lemma we use the implication (ii)⇒ (i).) ¥

COROLLARY 1   ([2], Corollary 1)

LetR be a commutative noetherian ring, f1, . . . , fr ∈ R and letM be a finitely generated
R-module. Thenf1, . . . , fr is a regular sequence onM if and only if f1, . . . , fr is a
regular sequence onMp for everyp ∈ Ass(M/f1, . . . , fr )M).

COROLLARY 2

Let R be a commutative noetherian ring and letf1, . . . , fr , g1, . . . , gr ∈ R. Let M be
a finitely generatedR-module such thatSupp(M/(g1, . . . , gr )M) ⊆ Supp(M/(f1, . . . ,

fr )M). Suppose thatf1, . . . , fr is a regular sequence onM. Theng1, . . . , gr is also a reg-
ular sequence onM. In particular, if V(g1, . . . , gr ) ⊆ V(f1, . . . , fr ) and iff1, . . . , fr

is a regular sequence inR, theng1, . . . , gr is also a regular sequence inR.

From the above equivalence we can also deduce the following well-known fact:

COROLLARY 3   (cf. [5], Theorem 2, Chapter IV, B, §2)

If M is a finitely generated Cohen–Macaulay module over a noetherian local ringR, then
every system of parameters ofM is a regular sequence onM. In particular, in a Cohen–
Macaulay local ring every system of parameters is a regular sequence.

Finally, we give a proof of the lemma which we have already used for the proof of the
implication (iii) ⇒ (i) of the theorem.

Lemma. LetR be a commutative noetherian ring, f1, . . . , fr ∈ R and letM be a finitely
generatedR-module. Suppose thatdepthRp

(Mp) ≥ r for everyp ∈ Ass(M/(f1, . . . ,

fr )M). Thenf1, . . . , fr is a regular sequence onM.

Proof. We shall prove by induction onr the following implication:

(∗)r : If depthRp
(Mp) ≥ r for everyp ∈ Ass(M/(f1, . . . , fr )M), thenf1, . . . , fr is a

regular sequence onM.

Proof of(∗)1. Putf := f1 and suppose that depthRp(Mp) ≥ 1 for everyp ∈ Ass(M/f M).
Then Ass(M) ∩ Ass(M/f M) = ∅. We shall show thatf is a non-zero divisor forM.
Suppose on the contrary thatf is a zero divisor onM. By localising at a minimal prime
ideal in Ass(M) ∩ V(Rf ), we may assume thatR is a local ring, depthR(M) = 0 and
that Ass(M) = {p1, . . . , pm, mR} with pi /∈ V(Rf ) for all i = 1, . . . , m. Thenm ≥ 1.
Let Q1, . . . , Qm andQ be the primary components corresponding top1, . . . , pm andmR

respectively and let 0= Q1 ∩ · · · ∩ Qm ∩ Q be an irredundant primary decomposition of
the zero module inM. LetN := Q1∩· · ·∩Qm. ThenN 6= 0, Ass(M/N) = {p1, . . . , pm}
andf is a non-zero divisor forM/N , sincef /∈ pi for all i = 1, . . . , m. This implies
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that the canonical homomorphismN/f N −→ M/f M is injective. Further, sinceQ is
mR-primary inM, we havemn

RN ⊆ N ∩ mn
RM ⊆ N ∩ Q = 0 for somen ∈ N

+, and
henceN has finite length. ThereforeN/f N has finite length. But depthR(M/f M) ≥ 1,
sincemR /∈ Ass(M/f M) and therefore cannot contain any submodules of finite length.
This proves thatN/f N = 0 and thenN = 0 by Nakayama’s lemma, which contradicts
N 6= 0.

Proof of(∗)r ⇒ (∗)r+1. We may assume thatR is local,f1, . . . , fr+1 ∈ mR andM 6= 0.
Now, we shall prove this implication by induction on dim(R). Clearly the induction starts
at dim(R) = 0. PutMr := M/(f1, . . . , fr )M andMr+1 := M/(f1, . . . , fr+1)M. Then
by induction hypothesis.

(†) f1, . . . , fr+1 is a regular sequence onMp for everyp ∈ Supp(Mr+1)\{mR}.
In particular, we have:

(††) depthRp
(Mp) ≥ r + 1 for every p ∈ Supp(Mr+1)\{mR}.

We consider two cases:

Case1.mR ∈ Ass(Mr+1). In this case, by assumption in(∗)r+1, depthR(M) ≥ r + 1.
Now, use (ii)⇒ (i) of the theorem to conclude thatf1, . . . , fr+1 is a regular sequence
onM.

Case2.mR /∈ Ass(Mr+1). In this case Ass(Mr)∩Ass(Mr+1) = ∅, since depthRp
(Mr)p ≥

1 for everyp ∈ Ass(Mr+1)\{mR} by (††). Therefore by(∗)1, fr+1 is a non-zero divi-
sor onMr . Now, it remains to show that the sequencef1, . . . , fr is a regular sequence
on M. For this, letp ∈ Ass(Mr). Sincefr+1 is a non-zero divisor forMr , there exists
q ∈ Ass(Mr+1) such thatp ⊆ q. Note thatq 6= mR and thatf1, . . . , fr is a regular
sequence onMq by (†) and hence in particular forMp. This proves that depthRp(Mp) ≥ r

for everyp ∈ Ass(Mr) and hencef1, . . . , fr is a regular sequence onM by (∗)r . ¥
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