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Abstract. Let R be a commutative noetherianringafd. .. , f, € R. Inthis article

we give (cf. the Theorem in §2) a criterion fgy, ... , f, to be regular sequence for a
finitely generated module ove® which strengthens and generalises a result in [2]. As
an immediate consequence we deduce thatgt V... , g.) C V(f1,..., f,) in SpecR

and if f1, ..., f, is aregular sequence B, theng,, ... , g, is also a regular sequence
in R.
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1. Regular sequences

Asthere is no uniformity about the concept of regular sequence, we first recall the following
definitions that we shall use in this note.

DEFINITION 1

Let R be a commutative noetherian ring aifg ... , f, € R. We say thatfy, ..., f;
is astrongly regular sequenaen a R-moduleM, if for everyi = 1, ... ,r the element
fi is a non-zero divisor foM /(f1, ..., fi—1)M. The sequencdi, ..., f, is called a
regular sequencen aR-moduleM, if for everyp € SuppM/fi, ..., fr)M),the sequence
f1,..., fr inthe local ringRy, is a strongly regular sequence on thgmoduleM,,.

Note that, in contrast to most of the standard text books, we do not assume e
(f1,..., fr)M for a strongly regular sequengg, . .. , f,. For general notations in com-
mutative algebra we also refer to [1].

If the sequencé, ... , f, is strongly regular respectively regular on tRenoduleM,
then the same is true for the sequerfgels, . .. , f, - 1s ontheS-moduleS ® g M, where
S is an arbitrary flat noetheriaR-algebra.

Note that every sequence is a strongly regular as well as regular sequence on the zero
module. Further, it is clear that a strongly regular sequence is a regular sequence but not
conversely. For example:

Example.Let P := k[ X, Y, Z] be the polynomial ring in three indeterminates over a field
k,p:=P(X—-1)+4+PZ,q:= PYandletR := P/pNnq=P/PY(X—-1)+ PYZ.Then
Z, X is a regular sequence on tifemoduleR but not a strongly regular sequence.
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The difference between regular and strongly regular sequences is well-illustrated in the
following statement given in Chapter Il, 6.1 of [4].

PROPOSITION

Let M be a finitely generated module over a noetherian rihgnd letf1, ..., f» € R.
Then the following conditions are equivalent

@ fi,..., fr isastrongly regular sequence ai.
(i) Foreverys =1,...,rthe sequencé, ..., fsis aregular sequence oif.

It can be easily seen that (see the proof of Proposition 3, Chapter IV, A, 81 of [5]) a
sequencdsi, ... , f inacommutative noetherian rirgjis a regular sequence for a finitely
generatedR-module M if and only if the Koszul complexX, (f1, ..., fr; M) gives a
resolution ofM/( f1, ..., f;)M. In particular, if f1, ... , f, is a regular sequence o,
then for every permutation € &, the sequence,s, ..., f,» iS also regular forM.
Further, the above proposition implies that the sequéebge. .. , f5, is strongly regular
on M for everyo € &, if and only if all subsequences dii, ... , f, are regular on\.

For the sake of completeness let us recall Definition 2.

DEFINITION 2

Let (R, mg) be a noetherian local ring and et be a non-zer&-module. Then the length
of a maximal regular sequence o in the maximal ideainy is called the depth oM
over R and is denoted by depgtliM).

If M is finitely generated then depth can be (cf. [5], Proposition and Definition 3,
Chapter IV, A, 82) characterized by

€35) depthg (M) = min{i € N|Ext,(R/mg, M) # 0}.

A finitely generatedR-module is called aCohen—Macaulay moduld dimz(M) =
depth, (M).

2. Theorem

The following theorem is the main result of this note.

Theorem. Let R be a commutative noetherian ringi, ..., f, € R and letM be a
finitely generatedk-module. Then the following statements are equivalent

i fi,..., frisaregular sequence oM.
(i) depthg, (My) > r foreveryp € SuppM/(f1.... . fr)M).
(iii) deptth (My) = r foreveryp € ASSM/(f1, ..., fr)M).

Proof. The implications (i}= (ii) = (iii) are trivial.

(ii) = (i): We may assume that is local andfi, ... , f» € mg. Letp € AssS(M) and letq
be aminimal prime ideal in+Rf1+- - -+ Rf:). Thenq € SupagM/(f1, ..., fr)M) =
SuppM) NV (f1, ..., fr) and so depth Mq > r by (ii). Sincep € AsS(M), we have
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Homg, (k(p), My) # 0 and so E)(;gq (k(q), M) # 0 by Chapter 6, §18, Lemma 4 of [3],
whereh := htg/p(q/p). Thereforer < deptrquq < h (see(¥) in 81). But thenfi ¢ p,
since otherwisér < r — 1 by the (generalised) Krull's theorem (see [5], Corollary 4,
Chapter Ill, B, 82). This proves thgt is a non-zero divisor foM. Now, induction orr
completes the proof.

The implication (iii)= (i) is proved in the lemma which is given below. (In the proof
of the lemma we use the implication (i (i).) |

COROLLARY 1 ([2], Corollary 1)

Let R be a commutative noetherianring, . .. , f, € R and letM be afinitely generated
R-module. Thenfi, ..., f- is a regular sequence ol if and only if f1,..., f- is a
regular sequence oM, for everyp € AsSM/f1, ..., fr)M).

COROLLARY 2

Let R be a commutative noetherian ring and It ... , f, g1,..., & € R. Let M be
a finitely generatedk-module such thabuppgM/(g1, ..., g )M) C SupgM/(f1,...,
fr)M).Supposethafy, ... , f,isaregular sequence ov. Thengs, ... , g isalso areg-
ular sequence oM. In particular, if V(g1,...,¢) S V(f1,..., fryandif f1,..., f;
is a regular sequence iR, thengy, ... , g, is also a regular sequence R.

From the above equivalence we can also deduce the following well-known fact:

COROLLARY 3 (cf.[5], Theoren 2, Chapte 1V, B, §2)

If M is a finitely generated Cohen—Macaulay module over a noetherian locaRrjtigen
every system of parametersMfis a regular sequence oM. In particular, in a Cohen—
Macaulay local ring every system of parameters is a regular sequence.

Finally, we give a proof of the lemma which we have already used for the proof of the
implication (i) = (i) of the theorem.

Lemma. LeRR be a commutative noetherian ring, ... , f, € R and letM be a finitely
generatedR-module. Suppose thaiieptrkp (My) > r for everyp € AssM/(f1,...,
fr)M). Thenfi, ..., f is aregular sequence aif.

Proof. We shall prove by induction onthe following implication:

(%), If deptth (Mp) > r for everyp € AsSM/(f1,..., fi,)M), thenfy,..., f.isa
regular sequence a¥.

Proof of (x)1. Putf := f1andsuppose thatdepifiM,) > 1foreveryp € AsSM/f M).
Then AsgsM) N Ass(M/f M) = #. We shall show thayf is a non-zero divisor foM.
Suppose on the contrary thatis a zero divisor onV. By localising at a minimal prime
ideal in AsgsM) N V(Rf), we may assume tha is a local ring, depth(M) = 0 and
that AssM) = {p1,...,pm,. mg} Withp; ¢ V(Rf) foralli =1,...,m. Thenm > 1.
LetQ1,..., O, andQ be the primary components correspondingto. . . , p,, andmpg
respectively and let& Q1N ---N Q,, N O be an irredundant primary decomposition of
the zeromodule i. LetN := Q1N---N Q. ThenN # 0, ASSM/N) = {p1, ..., Pm}
and f is a non-zero divisor foM /N, sincef ¢ p; foralli = 1,...,m. This implies
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that the canonical homomorphisv/f N —> M/fM is injective. Further, sinc@ is
mg-primary in M, we havem, N € N Nm}M € N N Q = 0 for somen € N*, and
henceN has finite length. Therefor®' /f N has finite length. But depf(M/f M) > 1,
sincemy ¢ AsS(M/f M) and therefore cannot contain any submodules of finite length.
This proves thatv/f N = 0 and thenWw = 0 by Nakayama'’s lemma, which contradicts
N #0.

Proof of (x), = (x),+1. We may assume th&islocal, f1, ..., f,+1 € mg andM # 0.
Now, we shall prove this implication by induction on d{fR). Clearly the induction starts
atdim(R) = 0. PutM, := M/(f1, ..., f)MandM,,1 := M/(f1, ..., fr-1)M. Then
by induction hypothesis.

M f1,..., fry1is aregular sequence ay, for everyp e SupaM, 1) \{mg}.
In particular, we have:

(th depthy, (My) > r +1 foreveryp e SupgM,,1)\{mg}.

We consider two cases:

Casel.mg € AsS(M,,1). In this case, by assumption @), 1, depthy (M) > r + 1.
Now, use (ii)= (i) of the theorem to conclude that, ... , f,41 is a regular sequence
onM.

Case2.mg ¢ AsS(M,.1). Inthiscase AsSW,) NAsS(M, 1) = ¥, since depth, M,)p >

1 for everyp € AsS(M,1)\{mg} by (11). Therefore by(x)1, f,+1 is a non-zero divi-
sor onM,. Now, it remains to show that the sequenge. .. , f, is a regular sequence
on M. For this, letp € Ass(M,). Since f,,1 is a non-zero divisor foM,, there exists
q € As(M,,1) such thatp C q. Note thatq # mg and thatfi, ..., f. is a regular
sequence oW/, by (1) and hence in particular fav,,. This proves that depf)(M,) > r

for everyp € Ass(M,) and hencefi, ... , f, is a regular sequence a1 by (x),. |
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