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Abstract.  Assuming certain forms of the stream function inverse solutions of an
incompressible viscoelastic fluid for a porous medium channel in the presence of Hall
currents are obtained. Expressions for streamlines, velocity components and pressure
fields are described in each case and are compared with the known viscous and second-
grade cases.
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1. Introduction

In recent years the theoretical study of MHD channel flows has been a subject of great
interest due to its widespread applications in designing cooling systems with liquid metals,
petroleum industry, purification of crude oil, polymer technology, centrifugal separation
of matter from fluid, MHD generators, pumps, accelerators and flow meters. The results
of these investigations are not applicable to the flow of ionized gases. In an ionized gas
where the density is low and/or the magnetic field is very strong, the conductivity normal
to the free spiraling of electrons and ions about the magnetic lines of force before suffering
collisions; also, a currentis induced in a direction normal to both the electric and magnetic
fields. The phenomena, well-known in the literature, is called the Hall effect. The study
of magnetohydrodynamic flows with Hall currents has important engineering applications
in problems of magnetohydrodynamics generators and of Hall accelerators as well as in
flight magnetohydrodynamics [9-11,18,20,21,23,24].

An understanding of the dynamics of fluids in porous media has practical interest in
such disparate fields as petroleum engineering and ground water hydrology, with applica-
tions ranging from hydrocarbon migration in reservoirs via packed-bed chemical reactors
to agricultural drainage and irrigation. In the widely used continuum approach to trans-
port processes in porous media, the differential equation governing the macroscopic fluid
motion is based on the experimentally established Darcy’s law [2], which accounts for the
drag exerted by the porous medium. Brinkman [5] studied Darcy’s law by adding to it a
viscous term in order to account for the vorticity diffusion caused by the boundary resis-
tance, whereas the combined influence of inertia and viscous effects on the flow and heat
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transfer in the vicinity of an impermeable plane surface was discussed by Vafai and Tien
[28] and Kaviany [13]. Kaviany’s analysis was for steady-state flow, the oscillatory motion
was studied by Khodadadi [14,15] and transient fluid motion in a porous medium channel
was discussed by Anderson and Holmedal [1].

The governing equations that describe the flow of a Newtonian fluid is the Navier—Stokes
equations. These equations are non-linear partial differential equations and known exact
solutions are few in number. Exact solutions are very important not only because they are
solutions of some fundamental flows but also because they serve as accuracy checks for
experimental, numerical and asymptotic methods. Since the equations of motion of non-
Newtonian fluids are more complicated and non-linear than the Navier—Stokes equations,
so the inverse methods described by Nemenyi [17] have become attractive. In these meth-
ods, solutions are found by assuming certain physical or geometrical properties of the flow
field. Kaloni and Huschilt [12], Siddiqui and Kaloni [25], Siddiqui [26], Benharbit and
Siddiqui [3], Labropulu [16] and Siddiquét al [27] used this method to study the flow
problems of a second-grade fluid.

In this work, we discuss the effects of Hall currents on the steady flow of an electrically
conducting second-grade fluid in a porous medium channel. For such a fluid equations are
modeled for a grade of fluid two and are solved by assuming certain form of the stream
function. The graphs are plotted explicitly in the functional form to see the behaviour of
the flow field.

The paper is arranged in the following fashion: In 82, governing equations and formu-
lation of the problem are given. Section 3 consists of two parts. First part is the generaliza-
tion of Siddiqui’s [26] work and the second part deals with some special flows called as
Riabounchinsky type flows and finally, concluding remarks are given in 84. Stream func-
tion, velocity components and the pressure fields are derived in each case. Moreover, the
streamlines are plotted in each case to see the flow behaviour.

2. Governing equations
The constitutive equation of an incompressible fluid of second-grade is of the form [22]
T = —pl + pA1 + a1A2 + a2A%, (2.1)

whereT is the Cauchy stress tenserpl denotes the indeterminate spherical stress and

u, a1 andap are measurable material constants. They denote, respectively, the viscosity,
elasticity and cross-viscosity. These material constants can be determined from viscometric
flows for any real fluid A1 and A, are Rivlin—Ericksen tensors [22] and they denote,
respectively, the rate of strain and acceleratfdnandA; are defined by

A1 = (gradV) + (gradv) ", (2.2)
dA T
Ao = e + Aj(gradv) + (gradv) ' Aj. (2.3)

HereV is the velocity, grad the gradient operatdrthe transpose, and/ds the material
time derivative.
The basic equations governing the motion of an incompressible fluid are

V.V =0 (2.4)

dv . 7
pg =IxBHdVT — V. (2.5)
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V.B=0, VxB=punl, VxE=0, (2.6)

wherep is the density,) the current densityB the total magnetic fieldy,, the magnetic
permeabilityE the total electric field current arid the permeability of the porous medium.
Making reference to Cowling [6], when the strength of the magnetic field is very large, the
generalized Ohm’s law is modified to include the Hall current so that

J+wete(JxB)=a|:E+VxB+ 1Vpe] 2.7)
Bo en,
in whichw, is the cyclotron frequency, the electron collision timey the electrical con-
ductivity, e the electron charge ang the electron pressure. The ion-slip and thermoelec-
tric effects are notincluded in (2.7). Further, itis assumeddhat ~ O1 andw; 7; < 1,
wherew; andz; are the cyclotron frequency and collision time for ions respectively.
Inserting (2.1) in (2.5) and making use of (2.2), (2.3), (2.6) and (2.7) we obtain the
following vector equation

1 1
grad[§p|V|2 +p—a1 <V V2V + Z|Al|2>:| + p[V: — Vx(V x V)]

= uV2V + a1[V?V, + V2(V x V) x V]

. oB2(1+ip) p
+ (o1 + ) div AZ — 2—}-—(,02 -2V (2.8)

in which V2 is the Laplacian operatoy,, = 9V /dt, and|A1]| is the usual norm of matrix
A1. If this model is required to be compatible with thermodynamics, then the material
constants must meet the restrictions [7,8]

w>0, a1>0, ag+a2=0. (2.9)

On the other hand, experimental results of tested fluids of second-grade showed that
a1 < 0 anda + a2 # 0 which contradicts the above conditions and imply that such fluids
are unstable. This controversy is discussed in detail in [19]. However, in this paper we will
discuss both cases; > 0 andw; < O.

The velocity field for the problem under consideration is of the following form

Vix,y, 1) =[ulx, y, 1), vix,y,1), 0], (2.10)

whereu andv are velocity components in theandy directions, respectively.
Inserting (2.10) in (2.4) and (2.8) and making use of the assumption (2.9) we obtain the
following equations

0 d

u v _g (2.11)
dx  Jy

op a 0

e B (R R

B3(1+i
_ Mu _ ﬁu, (2.12)
1+ ¢? K
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L L +ar ) VP04 aguv?
-_— —_— uw | = o1 — v o1u w
ay Pl PP .

B2(1+i
— Mv — ﬁv’ (2.13)
1+ ¢? K
wherep = w, 1, is the Hall parameter and
w= 8_v — a—u, (2.14)
dx  dy
-~ 1 5 2 2 2 1.5
p:p~|—§,o(u +v9) —a1 uVu+vVv+Z|A1| , (2.15)
2 2 2
ou v ou ov
Al <8x> " <8y> - <8y+ax> (219

Remarkl. On settingx; = 0, K — oo and neglecting Hall effects in (2.12) and (2.13)
we recover the equations for viscous fluid, on takkhg> oo and neglecting Hall effects
we obtain the case [26] and on taking = 0 andg = 0 in Hall effects we obtain the
Brinkman model for porous medium.

Equations (2.11)—(2.13) are three partial differential equations for three unknown func-
tionsu, v andp of the variablegx, y). Once the velocity field is determined, the pressure
field (2.15) can be calculated by integrating (2.12) and (2.13). Note that the equation for
the component is identically zero.

Eliminating pressure in (2.12) and (2.13), by applying the integrability condition
82p/0xdy = 9°p/dydx, we get the compatibility equation

dw 9 9 9 oB2(1+iyp)
- — =z — vy O T 7
'O|:8t +(M8x+v8y>w:| (“+“1at> T T @

0 d
— %w + a1 [(ua + v5> Vzw] .

(2.17)
Let us consider the Stokes stream function:

9 9
W (2.18)
dy ox

whereyr (x, y) is the stream function. We see that the continuity equation (2.11) is satisfied
identically and (2.18) in (2.17) yields the following equation

0 d
P [ﬁzw — (v, vzw}] = (u + alg) VA% — o[y, VA

oBiL+ip) o p
- VY — =V, 2.19
172 "V (2.19)

in which

VA=V2.V2 w=-V% (2.20)
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and

By (VAY) Ay A(VAY)
dx  dy dy  ox

is the Poisson bracket.

¥, V2y} = (2.21)

Remark2. The equation (2.19), fak — oo and in the absence of Hall effects reduces
to [26].

3. Solutions of some special types

3.1 Solution of the typ&/ (x, y) = £(x) + n(y)

We consider the plane steady flow and examine the solution of (2.19) of the form

Yx,y) =§&x) +n), (3.1.1)
where& andn are arbitrary functions of the variablesand y respectively. Substituting
(3.1.1) in (2.19) we obtain the following equation

pln' ME" (x) — €' m" (] = ulg™ ) + 0" (]

+aa[n (&Y (x) — £ mY ()]

oB2(1+ip) uw\.., B
(§+—¢2+? [5" ) + 1" W],

(3.1.2)

in which IV and V in the superscript indicates the fourth and fifth derivatives.
We see that (3.1.2) is highly non-linear and its solution in the present form is not easy
to obtain. In order to find its solution we assume the following

£(x) = Ax + Be™, (3.1.3)

n(y) = Cy + D&” (3.1.4)
and obtain the following equation

p[—ABDE + a3BCE™ — ab3BDE ™ 4 o3h B D)

—Ab°DeE” + a®BCe™
= pla*Be™ 4+ b* D + a1 |:

—ab®BDe* by 4 g5p B Defr by

~ (aB%(l—i— i) u

Ll 2 X 2 y
1142 + K)[a Be™ + b?DeM], (3.1.5)

whereA, B, C, D, a andb are arbitrary constants.
The following three equations are obtained from (3.1.5)

paC = pa® + a1a°C — H — %, (3.1.6)
— pbA = ub? — a1b3A — H — % (3.1.7)

(b% — a®[p — a1(a®> + b%)] = 0. (3.1.8)
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From (3.1.6) and (3.1.7) we easily obtain the valued @indC, i.e.

1 H %
A=————S|ub————|, 3.1.9
p — a1b? [“ b Kb} (3.19)
1 H "
C— _aA_ Ry 3.1.10
p — aia? |:lw a Ka] ( )
where
_ oBi(1+ip)
=g

and (3.1.8) is satisfied if either
b>—a’=0 (3.1.11)
or
o = a1(a® + b?). (3.1.12)
We have three different cases which we discuss separately as follows:

Casel. b =a, p # a1(a? + b?)
The stream function given by (3.1.1), after using (3.1.3), (3.1.4), (3.1.9), and (3.1.10)
becomes

— H
W,y)zu[ 1"

s [na= 5 - 2|+ et D (3.1.13)
p —aia a

and from (2.18) the velocity components take the following form

1 H

=y [ﬂ e KL] + Dag?, (3114
1 H

i [M i KL] - Baet (3:419)

In order to find the pressure field (2.15) we substitute the velocity components (3.1.14)
and (3.1.15) in (2.12) and (2.13) and then integrate the resulting equations to obtain

p = po— pa® — nBa®ye™ + (p — a1a®)[a’Bye™ + a’DBe Y]

+ a1[B%a*e®™ + D%a*e® — DB e, (3.1.16)
where
_ 1 H pu
“=m[’“7‘x—a]
whereas the streamline fgr = Q1 is given by the following functional form
y= B A xe L b guct Log [&e“(‘Beﬂxﬂ”Ql)“] :
& a &

(3.1.17)
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0 1 2 3 4 5
x

Figure 1. Streamline flow pattern fog (x, y) = % [a — 2 — L]+ Be™
+Dev,

where

1 [ X v]
E=———— - ==,
1- A2 " 4 Ka

with v = u/p as the kinematic viscosityh = «1/p is the second-grade parameter
x=NA+ig)/(1+¢?, N = aBS/p is the MHD parameter angd = w, . is the Hall
parameter.

Streamlines are shown in figure 1 f8r= D = a = 1, u/p = 0.5, a1/p = 0.1,
K =01,N =0,w.t, = 0.1 andy = 15, 20, 25, 30, 40.

Case2. b = —a, p # a1(a® + b?)
The expressions fap, u, v, andp are

1 H .
Vx,y) = o —aga? [ua - L] (y +x) + B + De™,

Ka
(3.1.18)
1 H
U=—- |:;La - — = Li| — Dae %, (3.1.19)
p —o1a a Ka
1 H
v=— 5 |:/La - = L] — Ba€e™, (3.1.20)
0 —o1a a Ka
p = po— pa? — uBa®ye™ + (p — a1a®)[a®Bye™ + a®?DBe" )]
+ a1[ B2a*€®™ + D?a*e % — DBa*e" V)] (3.1.21)
and the functional form of streamline fgr = Q5 is given by
y= —BeT mxet @ 1 poduct Log [—%e‘lweﬂx*”_m)/s] :
& a &
(3.1.22)

Streamlines are drawn in figure 2fBr= D =a =1,u/p = 0.5,a1/p = 0.1, K = 0.1,
N =05, w.7. = 1 andy = 15, 20, 25, 30, 40.
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Figure 2. Streamline flow pattern fap (x, y) = ~—2— [na — £ — £](y +x)

+Be™ + De™ %,

Case3. b2 —a?+#0
We must have

p = ai(a®+b?

and the expressions fgr, u, v, andp are of the following form

X H "
M= up - = L
Ve = [“ b Kb]
H
ﬁ [,w - - Kia} + Be™ + DE”, (3.1.23)
— 01
1 H |
uzm[ﬂa_z_%}—FDbeb}, (3.1.24)
1 H

1 5, 2
P = po— E,O[a2 +b7]— /LBasye‘”
+ (p — a1a®)[a®’Bye™ + a® DB ]
+ a1[B%a*e®™ + D%a*e®” — DBa*b?e™ ], (3.1.26)

where

whereas the functional form in this case for= Q3 is

y = _w — % Product Log [D_be_h(Bélx_xa_QS)/s} ,
&

&
(3.1.27)
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where

1 X v
6:—[19————].
1-a02"" " b " kb

Streamlines foB = D = a = 1, u/p = 05,b = —05,K = 2,21, a1/p = 0.5,
—0.7, N = 05,w0.7. = 1L andyr = 15, 20, 25, 30, 40 are depicted in figures 3, 4, whereas
figure 5 is given fowy/p = —0.5.
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1F

0

= dr=15 v
-1 =20
A F Yr=25
2 dr=30
3t dr=40
-4 F
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X

Figure 5. Streamline flow pattern for negative second-grade parameter.
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The alternate forms of (3.1.23) may be written as

Yy = —— fup - L2
=T T M T T kb
H ‘
H pu
llf(x,y)———z[ﬂ —E_E}
H
T [W - %} + B + DEP. (3.1.29)

Remarlk3. The solution (3.1.16) wittH = 0, K — oo anda1 = O gives the Berker's
solution [4] and the Siddiqui’s solutions [26] can readily be recovered as a special case by
taking H = 0 andK — oo.

We now consideRiabounchinsky type flovits order to solve (2.15).

3.2 Solution of the typ& (x, y) = y&(x)
In order to obtain another class of solution of (2.19) we substitute

V(x,y) = y§(x) (3.2.1)
into (2.19) and get the following equation

pleg” —€'5" = peV +aalgs¥ —g'eV] - (H+ ) 8", (3.2.2)

whereg (x) is an arbitrary function of, primes denote the derivative with respeckto
Integrating (3.2.2) once and equating the constant of integration equal to zero we obtain

ue" + pl(e? — 66" +aal(66" — 266" + 63 - (H + )& = 0.
(3.2.3)

For the solution of the above equation we write
E(x) =3(1+21e™) (3.2.4)

inwhiché, o anda are arbitrary real constants. Making use of (3.2.4) into (3.2.3) we have

b= — T [,w - % (H + ﬂ)} (3.2.5)

p— 102 K
and thus from (3.2.1)

__ 1 1 " ox
Vix,y) = m |:MU - (H + E)] 14 2re’). (3.2.6)
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Figure 6. Streamline flow patternfap (x, y) = s=— [no — 7 (H + &)] y(1+
AE7Y).

The velocity components (2.18) and the pressure field (2.15) become

w= p——ilaZ [,w _ ; (H n %)} (1+2€75), (3.2.7)
v= p__—(j)wz |:;ur — ; <H + %)i| ore”r, (3.2.8)
p=p1+uoa <1 — %) re7¥ — E,o [@2(1 — 22e%)]

+ o1 [ o2re"* +alo?)? (3 + ) ez‘”i| (3.2.9)

wherep1 is the reference pressure and

" e ()]

The streamline flow fofy = Q4 is given by the functional form

Q4

YT A+ re)e’

(3.2.10)
where

t= i [o 5 (v )]

Figure 6 shows the streamlines for= A =1, u/p = 0.5,01/p = 0.1, K = 15 N =
0, v = 15, 20, 25, 30, 40.

3.3 Solutions of the typé (x, y) = y&(x) + n(x)
Inserting

V(x,y) = y§(x) +n(x) (3.3.1)
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in (2.19) we obtain the following equation
—plyE'E" — ") + (" —&n™)]
= nGEY +0V) —ailyEEY —£8Y) + gV —&n")]

—(H+ ) 08"+, (33.2)

From the above equation, we have

ple's" — 6”1+ ug" —anlg's" —g6¥] - (H+ L)e"=0 (333
and

plfs" = en"1 + un" — ealn'e" — en¥] — (H + %) n"=0, (3.34)

whereg (x) andn(x) are arbitrary functions of its arguments. Integrating (3.3.3) and (3.3.4)
and then taking the constants of integration equal to zero we have

ue" + ple? — ") —anl(—68" +2¢'8" — 2] — (H+ ) &' =0,
(3.3.5)

5/77/// _ EnIV I
un" + pln's" —&n"] —ea |:+77/§/// —'E" | (H + E) =0 (336)

We note that (3.3.5) is similar to (3.2.3). Its solution is given in (3.2.4). Substituting
(3.2.4) into (3.3.6) we have

1AL+ 1) n"Y + (u — 01AL € )" + Al(a10”% — p)A€" — pln”

=— [(p — 0102 Aro€F — (H + %)] ', (3.3.7)

where

A= T 1(H+“)
C p—a102 o= 5 K/|

We note that it is not easy to obtain the general solution of (3.3.7). In order to find its
solution we consider the following special cases:

Casel. 1 #0,0 =1, 1. =0
Equation (3.3.7) reduces to

arAn"Y + un” — pAwn” — (H + %) n =0. (3.3.8)

We see that (3.3.8) is of fifth order and in order to solve it we reduce its order by putting
n' = A(x) such that (3.3.8) becomes

a1 A" + A’ — pAA — (H + %) A=0. (3.3.9)
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On substitutingA (x) = ﬁ(x)ex, (3.3.9) takes the form

a1 (3P + 3P" + P"ye" + Ai(zﬁ’ + P")e" — pPle’ = 0. (3.3.10)
1

Finally, ﬁ’(x) = R(x) converts (3.3.10) into a second-order differential equation

a1R” + (11/ A1+ 3a)R + (B — p + 21/ ADR = O, (3:3.11)

The solution of the above equation is
—Cc — 2 _4Ad _ /c2 — Ad
R(x) = A3 eXD(%) X+ Ag exp(%) X,
(3.3.12)

whereAz and A4 are arbitrary constants and
~ BonA1+p de (Bay — p)A1 + 21
o1A1

a1A1

e ialble-2) ]

In order to findn(x) we make backward substitutions and finally obtain the form

A3 e(l+n11)x + Ag e(1+m2)x + ASex + Agx,

nx)=——7——
m1(1+my) m2(1+ m2)
(3.3.13)
whereA; (i =5, 6) are constants of integration and
—c—+c?—4d —c++c?—4d
mi = f’ my = f

From (3.2.4), (3.3.1) and (3.3.13) we get
1
> [M(l——) —H} + Ase" + A
1 K

vx,y) =
p—a
A3 a+m A4 1
+ gtmir = __glHmar, 3.3.14
m1(1+ mq) ma(14 m2) ( )
The velocity components and pressure field are
1 1
. [M (1 - _) - H} , (3.3.15)
p— o1 K

A A
v =— |:—3e(1+’"1))‘ 4 DA etma)x 4 Asex} , (3.3.16)

my m2

1
p=p2— Ep[f@]

A% (14+m1)x 2A3A4 N(2+my+ma)x Ai (1+m2)x 2
m—%e2 + e + m—ge2 + AZe*

’

+ o1
2445232 m) (2o

2A3A5(2+3m1+mi) (2+m1)x
e+ —rmz
(3.3.17)

(2+m1)my

whereps is the reference pressure.
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60
40 $=15
y=32
U=
20 i /
- Yr=40
= (0] ’_,f/
-40
il -0.5 0 0.5 1
3
Figure 7. Streamline flow pattern fop (x, y) = 2 [ (1~ L) — H] + Ase"
_ A3 o(myx Az o(T4mo)x
+A6 + m1(1+m1)e U+ m2(l+m2)e 2

The streamline fofy = Qs is given by the functional form

_ A3 (4ma)x
5 + 1+ Ze
y=—= ) , (3.3.18)

& _Ar (A+mo)x
! +m2(1+m2)ze 27+ Ase€” + Aex

- 5 -2))

Streamline pattern is plotted in figure 7tor= 1 = 1, u/p = 0.5,a21/p = 0.1, K = 0.5,
N =0,90=005,A3=A4=A5=A6=1, v = 15,20, 25, 30, 40.

where

Case2. w1 #0,0=1, A #0
Equation (3.3.7) reduces to

a1A1(1+ 1€V + (u — a1 A1re)n"” + Agl(@1 — p)re’ — p]n”

_ _ _ KN,
_ [(p ar)Apre’ (H n K)] 7. (3.3.19)

To obtain the solution of (3.3.19) we try to reduce its order. For this purpose we put
n" = A(x) which leaves (3.3.19) into a form which is one order less, that is

a1(1+ A€HA” + (u/A1 — arre)A” + [(a1 — p)re’ — p]A’

1 uy | ~
__ |:(,0 e~ - (H n E)} A=o (3.3.20)

Now substitutingA(x) = P(x)e" in (3.3.20) and the® (x) = R(x) into the resulting
expression, we get

Vi KM(I() —Oll) ’
a1(1+ Ae")R" + [—K(u rre— +a1(3+ Zkex)] R
2K u(p — ay) }
= — 2001 — 1+ 1€ | R, 3.3.21
| e g )1+ (3:321)

where we have taken the constant of integration equal to zero.
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Subcasd. The solution of (3.3.21) fax = 0 is given by

—X1— /X2 -4x;
R(x) = Crexp 5 X

—X1+ /X% - 4X;
+ Crexp ! x, (3.3.22)

2

whereC1 andC» are arbitrary constants and

K — 2K — 30y —

Xi— wip —ar) 13 Xp— u(p — a1) 1—p
a1[K(u — H) — pu] a1[K(u — H) — pu] Oll( )
3.3.23

The backward substitution gives the valueyof) as
C1 (1-+7m1) €2 (1-+i72)
=—7————=¢€ mlx+— MY+ C3e" + Cy,

1= At ma(L+ 1) T e .
3.3.24

whereC; (i =1, 2, 3, 4) are constants of integration and

—X1—/X2-4X, X1+ ,/X2-4X

’ m2 =

2 2 2

The stream function, the velocity components and the pressure field in this case are
respectively given as

mi1 =

1
Yix,y) = — [M(l——>—H]+C3eX+C4
— a1 K
C1 (L+7m1) C2 Ltm
N ey €2 s 3.3.25
(L +m7) ma(1+ ) ( )
1 1
o [M (1 B _> B H} 7 (3.3.26)
p—a1 K
C C 7
v — |:m1 gtmx 4 n_1_ze(1+mz)x + Csex] , (3.3.27)
1 2

p=p3— —p[A ]

r%ezumm + ZiCog@mims . E_zze2<1+m2>x +C2e
+ag | :
2C1C3(2+T1+m1) e(2+ml)x + 2C2C3(2+T2+m2) (2+m2)x
(2+m1)m1 (2+m2)m>
(3.3.28)

whereps is the reference pressure and the streamling fer Qg is given by the functional
form

_ _ G (1+m)x
1 Q6 + a2

y=—= . (3.3.29)

€1 +me(l+m2)x + C3e* + Cqy
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[inl=Tt]

1 0.8 -0.6 -0.4 -0.2 0 0.2
P
Figure 8. Streamline flow pattern foy (x, y) = ——[u(1— +) — H] + C3e'+

pP—a1
C1 (1+7m11)x C2 (14-m2)x
Cot smmom® " a0

Streamline pattern is plotted in figure 8for=1 = 1, u/p = 0.5,01/p = 0.1, K = 1.8,
N=1¢=1,C1=Cr=C3=Cs=1, ¢y =15, 20, 25, 30, 40.

Subcas 2 (Generacase) Wenow try to obtanthesolution of (3.3.2 for A # 0. Equation
(3.3.21) may be written as

14+ 1e)R" +[X1+ 20" ]1R +[X2 + X3r€]R = 0. (3.3.30)
In order to solve (3.3.30) we pdt= €* to get the following equation
(1+20)0%R" + (1+ X1+ 200)0R + (X2 + X3A0)R = 0, (3.3.31)

where differentiation is with respect tb The solution for (3.3.31) is obtained through
Mathematicaand is given by

R(0) = 61/2 <—X1 —JX2 - 4X2)

2
CsoV X1 22F1 {%cpl, 1oy, 14 /X3 - 4x,, —ek}
+C12F1{%<I>3, 1d4,1— /X2 - 4X>, —ex}

1 =2 X1+ /X2 —4X2 — 2\/1— X3,
¢2=2—X1+\/Xf—4X2+2\/1—7X3,
©3=2—X1—\/m—2m,
Pgp=2— X1 — /X2~ 4X2+2,/1 - X3,

andF; is the hypergeometric function defined in Appendix A. The stream function,

velocity components and the pressure field can be obtained through the definitions of
2F1[a, b, ¢, z].

X

where
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4. Concluding remarks

In this paper, the exact solutions of non-linear equations governing the flow for a second-
grade fluid in a porous medium are obtained by assuming different forms of the stream
function (already used by various authors in different situations), in presence of a strong
magnetic field. The expressions for velocity profile, streamline and pressure distribution
are constructed in each case. Our resultindicates that velocity, stream function and pressure
are strongly dependent upon the material parametesf the second-grade fluid. It is
shown through graphs that increasevinleads to decrease in velocity and decrease in

leads to increase in velocity (see figures 4 and 5). Also, the present analysis is more general
and several results of various authors (as already mentioned in the text) can be recovered
in the limiting cases.

Appendix A

Hypergeometrie Fi[a, b, ¢, 7] is the hypergeometric functiopFi[a, b; c; z] and is the
special case of the generalized hypergeometric fungtiofia; b; z] for p = 1andg = 1.
Hypergeometric function has the following properties:

1. TheyF; function has the series expansigfi[a, b; c; z] = Y22, %i—f
2. Hypergeometrig Fi[a, b, c, z] has a branch cut discontinuity in the compleplane

running from 1 tooco.
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