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Cobordism independence of Grassmann manifolds
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Abstract. This note proves that, faF = R, C or H, the bordism classes of all non-
bounding Grassmannian manifoldg(F"**), with k < n and having real dimensiafy
constitute a linearly independent set in the unoriented bordism gfiguegarded as a
Z,-vector space.
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1. Introduction

This paper is a continuation of the ongoing study of cobordism of Grassmann manifolds. Let
F denote one of the division rindg® of reals,C of complex numbers, dil of quaternions.

Let r = dimgF. Then the Grassmannian manifal# (F"**) is defined to be the set

of all k-dimensional (left) subspaces &*t%. G, (F"**) is a closed manifold of real
dimensiomkz. Using the orthogonal complement of a subspace one identifieg” *)

with G,, (F"t%).

In [8], Sankaran has proved that, féf = R, C or H, the Grassmannian manifold
G (F"™*) bounds if and only ii»(n + k) > v(k), where, given a positive integer, v(m)
denotes the largest integer such that’2 dividesm.

Given a positive integet, letG(d) denote the set of bordism classes of all non-bounding
Grassmannian manifoldsy (F"+*) having real dimensiod such thak < n. The restric-
tionk < nisimposed becausg, (F"t%) ~ G, (F"**) and, fork = n, G (F"+%) bounds.
Thus,G(d) = {[Gx(F"t*)] € N, | nkt =d, k < n, andv(n + k) < v(k)} C Ny.

The purpose of this paper is to prove the following:

Theorem 1.1. G(d) is a linearly independent set in tt#&-vector spacéi,.

Similar results for Dold and Milnor manifolds can be found in [6] and [1] respectively.

2. The real Grassmanniars — a Brief review

The real Grassmannian manifolg, (R"**) is annk-dimensional closed manifold @t
planes inR"**. It is well-known (see [3]) that the mod-2 cohomology @f (R"+F) is
given by
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wherew = 14+ w1 +wa+---+wi andw = 1+ w1+ w2+ - - - +w, are the total Stiefel—
Whitney classes of the univerdgablane bundle; and the corresponding complementary
bundley;", both overG, (R"*), respectively.

For computational convenience in this cohomology one uses the flag manifold
Flag[R"**) consisting of all orderedn + k)-tuples (V1, Vz, ..., V,4x) of mutually
orthogonal one-dimensional subspace®®f* with respect to the ‘standard’ inner prod-
uct onR"**_ Itis standard (see [4]) that the mod-2 cohomology of BRig*) is given by

n+k
H*(FlaanHc); Zo) = Zolex, ez, ..., €n+k]/ {l_[(l +e¢) = 1} ,
i=1

wherees, ep, .. ., e, are one-dimensional classes. In fact eachs the first Stiefel—
Whitney class of the line bundle over FlagR"*¥) whose total space consists of pairs,
aflag(Vi, Vo, ..., V,4) and a vector irv;.

Thereisamap, ;1 : FlagR" %) — Gy (R*tX)whichassignstovi, Vo, ..., Viix),
thek-dimensional subspadg @ Vo ®- - -@ Vi. Inthe cohomologyz;;k : H*(Gy(R"y;
7o) — H*(FlagR"*); Z») is injective and is described by

k n+k
i) =[]A+e), m) =[] A+e.
i=1 i=k+1

In [9], Stong has observed, among others, the following facts:

Fact2.1. The value of the class € H*(G(R"**); Z,) on the fundamental class of
G (R"1%) is the same as the value of

* k—1 k—2 n—1 n—2
Top(w)e] “es “.. €k—1€} 1€} 5 - - Entk—1

on the fundamental class of FI&) ).

Fact2.2. In H*(FlagR"**); Z5) one has

;_1+k*(r*1)e(l+k*(r*1) o e{1+k72e(z+k71 -0
1 2 lr—1 lr

ifl <r <n+kandthesetii,io,...,i,} C{1,2,...,n+k}. In particulare;’“‘ =0
foreachi ,1<i <n-+k.

Fact2.3. In the top dimensional cohomology of Fi&§**), a monomiale"lleé2 . .e;’i}i

represents the non-zero classifand only ifthdieto, . .., i,+x} = {0, 1, ..., n+k—1}.
The tangent bundle over G, (R"*¥) is given (see [5]) by
TOV Y = M+ k).

In particular, the total Stifel-Whitney clas# (G (R"*%)) of the tangent bundle over

Gr(R"*) maps underr, , to

1_[ (14 )", l_[ A+e +€j)_2-

1<i<k 1<i<j<k
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Choosing a positive integesrsuch that 2 > n + k, we have, using Fact 2.2,

T WGR™ ) = [T A+e)™ . J] A+et+ep™2

1<i<k 1<i<j<k

Thus, thenth Stiefel-Whitney clas#,, = W,, (G (R"1*)) maps underr,j+k to themth
elementary symmetric polynomialén, 1 < i < k, each with multiplicityn+k, ande; +-¢;,

1 <i < j <k, each with multiplicity 2 — 2. Therefore, ifS, (01, 02, ..., 0,) denotes
the expression of the power sui? . v/ as a polynomial in elementary symmetric

m=1

polynomialsoy,,’s in g ‘unknowns'’ys, yo, ..., y4, ¢ = p, we have (see [8])

Sp(r kW), T (Wa). i (W) = D (n+ kel

1<i<k
Thus we have a polynomial
Sp(GrR™5)) = S, (W1, Wa, ..., Wp) € HP(Gr(R"™); Zo)
of Stiefel-Whitney classes @ (R"*%) such that

) > e, ifn+kisoddandy <n+k
Tk (Sp(Gr(R'™))) = { 1=i=k (2.4)
0, otherwise.

3. Proof of Theorem 1.1
Itis shown in [2] that

[Got(R¥ 2] = [GL(R"]*  in M.
From this, we have, in particular,

[GL(F")] = [GRR"O]" in Ny

For this one has to simply observe that the mod-2 cohomology df{Beassmannian is
isomorphic as ring to that of the corresponding real Grassmannian by an obvious isomor-
phism that multiplies the degree byOn the other hand, sin¢g, is a polynomial ring

over the fieldZ,, we have the following:

Remarlk3.1. A set{[M1], [M2], ...,[My]} is linearly independent it if and only if
the set[M1]?, [M2]? . ..., [M]?} is linearly independent itit; 55, B > O.

Therefore, noting that= 1, 2, or 4, itis enough to prove Theorem 1.1 for real Grassman-
nians only. Thus, from now onwards, we shall take

G(d) = {[Gk@R"™)] | nk=d, k <n, andv(n + k) < v(k)}.

If Gx(R"**) is an odd-dimensional real Grassmannian manifold then/batidk must
be odd, and so(n + k) > v(k). This means that (R"1¥) bounds and so it follows that
G(d) = ¢ if d is odd. Therefore we assume tlaais even.
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Lemma3.2. In H*(FlagR"*X); 7Z,) one hasfor1 < j <k,

n+k—(2j-1) k—1 k-2 J j-1 n+k—(j—1) n+k—1
(Zei € € € i€ _(i_1) Ch—(j—2) -

1<i<k

_ k=1 k-2 j n+k—j n+k—(j—1) n+k—1
=€) € .. € (i 1) Ch(j-2) -k .

Proof. Note that
(@) ifi # k — (j — 1) then the exponent a@f in the product

k—1 k—2 j j-1 n+k—(j—1) n+k—1
€ "€ TG (j—1)  Ck—(j—2) %k

is greater than or equal tg and
b){n+k—Q2j—-D}+j=n+k—( —1D.
Therefore, invoking Fact 2.2, the lemma follows. ]
PROPOSITICN 3.3

Let O(d) = {[Gk(R™*)] € G(d) | n + kis odd}. ThenO(d) is linearly independent
in Ny.

Proof. Arrange the members @(d) in descending order of the valuesof+ k, so that
O(d) =[Gy, R, [Gr,(R"™ZT2)], .., [Gy, R},

wherenq + k1 > no +kp > --- > ng + kg. Note thatn; = d andky = 1.
For ad-dimensional Grassmannian manifag (R”+%), consider the polynomials

feGr@®™)) = [T Swtk—@i-n(Ge®") € HY(GrR"™™); Zy)
1<j<ke

of Stiefel-Whitney classes @ (R"*¥), where 1< ¢ < 5. Then, foreach, 1 < ¢ <,
we have, using (2.4),

k ke—1 ko—2 ne—1 ny—2
Tk, (fe(Gry (RO el ™ ey ™ ep, el 1€ 5 - - enprkp—1

_ ng+ke—(2j—1) ke—1 k¢—2 ng—1 nyg—2
_< 1l (Z ¥ I T Wi

1<j<ke \1<i<k,
< Cnptke—1
_ ng ne+l ne+ke—1 ng—1 ng—2
=ej'e T..g, €y 1€y 42 - - - Cnothe—1s

applying Lemma 3.2 repeatedly for successive values of
Thus, in view of Facts 2.1 and 2.3, the Stiefel-Whitney number

(fe(Gr, (R"HK)), [Gy, (R"H)]) # O
for eacht¢, 1 < ¢ < s. On the other hand, using (2.4), it is clear that

(fe (G R"FRny) [Gy, R™TEm)]y = 0
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for eachh > ¢, sinceny +k; — 1 > ny + k. Therefore, it follows that the x s matrix

is non-singular; being lower triangular with 1's in the diagonal. This completes the
proof. |

Now we shall complete the proof of Theorem 1.1 using inductiod .dfirst note that
G2 = ([G1(®R*™)]} = {[RP?]),

G4 = ([G1R* D]} = ([RPY),

and so both are linearly independentitz, 914 respectively. Assume that the theorem
holds for all dimensions less thaln
We haveG(d) = £(d)|JO(d), where

Ed) = {[GkR"™)] € G(d)|n+k is even
and
O(d) = {[Gk@®R"™)] € G(d)In + k is odd.
Observe that if 7; (R"T*)] € £(d) then bottw andk are even withy (k) # v(n). On the

other hand,d;;z(R%sz)] € £(d) ifd =0 (mod 8. Thus,E(d) # @ifand only ifd = 0

(mod 8.
In view of Proposition 3.3, we may assume without any loss &td) # ¢. Then,
by the above observation and by Theorem 2.2 of [8] every memh&idbfis of the form

[G%(R%Jr%)]“, where BE(R%’L%)] € G(%). By induction hypothesisg(%) is linearly
independent im%.
So, by Remark 3.1,

£(d) is linearly independent ifit,. (3.4)

Again note that if G (R"%)] e £(d), then, by (2.4), the polynomialp(Gk(R"+k))
=0, V p > 1. So, for each of the polynomialg, 1 < ¢ < s, considered in Proposition
3.3, we have

(fe(GrR"H)), [GrR"H)]) = O.
Therefore, writing
E(d) = {[Gr,y R, [y, RS2 [Gy,, RPsHHra)]),

whereng1+ksi1 > ngio+ksy2 > -+ > noyg +koyq, We see that thex (s +¢) matrix

=SL=S8, A==

is of the form

100 0O 000--0
« 10 0O 000--0
b0 000000 35)
*x *x * 1 00O 0

OW) @)
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Thus, no non-trivial linear combination of member<®fd) can be expressed as a linear
combination of the members 6{d). This, together with (3.4) and Proposition 3.3, proves
that the seti(d) = &£(d)|JO() is linearly independent iit,;. Hence, by induction,
Theorem 1.1 is completely proved.

Remark3.6. Using the decomposition of the member£af), and the polynomialgy,

in the lower dimensions together with ti@ubling homomorphisrdefined by Milnor

[7], one can obtain a set of polynomials of Stiefel-Whitney classes which yield, as in
Proposition 3.3, a lower triangular matrix f6Kd) with 1's in the diagonal. Thus using
(3.5) we have a lower triangular matrix, with 1's in the diagonal, for the whol§ &ét.
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