Proc. Indian Acad. Sci. (Math. Sci.) Vol. 114, No. 1, February 2004, pp. 15-31.
© Printed in India

On the fundamental group of real toric varieties

V UMA

Institute of Mathematical Sciences, C.I.T. Campus, Chennai 600 113, India
E-mail: uma@imsc.res.in

MS received 25 March 2003; revised 10 October 2003

Abstract. Let X(A) be the real toric variety associated to a smoothAaThe main
purpose of this article is: (i) to determine the fundamental group and the universal cover
of X (A), (i) to give necessary and sufficient conditions Arunder whichr (X (A))

is abelian, (iii) to give necessary and sufficient conditionsdonnder whichX (A) is
aspherical, and whea is complete, (iv) to give necessary and sufficient conditions for
Ca to be akK (r, 1) space wheré€, is the complement of a real subspace arrangement
associated ta.

Keywords. Real toric varieties; fundamental group; asphericky:r, 1) subspace
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0. Notations

N =7",M = Hom(N, Z) and{(, ) = the dual pairing.

Nr = N @, R. A =smooth fan inVg; o andt denote cones in.

Letoc beaconeim. S, =" NM={uecM:{uv)>0vVvecol.

A(k) = cones of dimensiok. A(1) are the edges and¥1) = d.

A1) = {p1, p2, ..., pq}. Letv; be the primitive vector along; then, (v;,, ..., vi)
denotes the cone spanned{py, ... , v; }.

(Us)c = Homg, (Ss, C), Uy = HomM, (S5, R) and(Us )4 = Homy, (S, , RV o € A
whereR; = RT U{0}. Here, Hom, denotes the semigroup homomorphisms which sends
Oto 1.

X = smooth real toric variety of dimensienassociated ta\.

X¢ = the complex toric variety whose real partis

X, = the non-negative part of.

T> := Hom(M,Zp) — Tr = Upg = Hom(M,R*); Tz := Hom(M,C*); Ty =
Hom(M, RY).

For everyo € A, x, € U, is adistinguished pointlefined as:

w0 1 Vueot
Xogl) = .
7 0 otherwise

O, = orhit of x; under the action o’ ~ (R*)" andV (z) = O,.
Stalix,;) = stabilizer ofx, under the action of>.

(O7)+ = orbit of x; under the action ofR*)" andV (t)+ = (O-),..
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16 V Uma

W) =(s;:j=212...,d | sjz. 1< j <d, (sis;)®> whenever(v;, v;) € A).
Then, W (A) is aright-angled Coxeter groupssociated ta\. In many places when the
context is clear, we shall denot(A) simply by W.

Sy = (Nr—{0})/R.obethe sphere ik and letr : Nr —{0} — Sy be the projection.

1. Introduction

Let A be a smooth fan in the lattick = Z". Let X (A)¢ be the complex toric variety
associated ta. Let X (A)Rr be the real part ok (A)c which we call the real toric variety
associated ta\. We shall denoteX (A)r by X (A) for convenience, as it is going to be
our main object of study. For the definition and basic facts on real toric varieties (cf. ch. 4
of [10] and 82 of [11]). We mainly follow [10] for notations and background material on
toric varieties.

In this paper we describe the fundamental group and the universal coXerof We
were motivated by the paper [8] of Davis and Januszkiewicz (cf. Cor. 4.5, p. 415 of [8]),
where they prove the corresponding results for the real part of a toric manifold (now also
known as a quasitoric manifold). We show that the same results can be obtained for a real
toric variety X (A) associated to a smooth fannot necessarily complete, the basic tool
being the theory olevelopments of complexes of groirpshapter 11.12 of [2]. We further
give necessary and sufficient conditionsfifior X (A) to be aspherical, motivated by the
recent papers of Davis, Januszkiewicz and Scott (cf. Theorem 2.2.5, p. 27 of [9]), where
they again prove similar results for a small-cover. For this purpose, we too rely primarily
on the results of Davis [7], however in many places we give different proofs using the
technigue oflevelopmenwhich is consistent with the theme of this paper (cf. Theorem 6.1
in 86).

Besides generalizing the previous results to the setting of a smooth real toric variety
X (A), we give a presentation for the fundamental graypX (A)) completely in terms
of the fan; furthermore, we give necessary and sufficient conditions ander which
m1(X (A)) is abelian, and we also show that the torsion elements are always of order 2.

Finally in 87, whenA is complete, we relat& (A) to Ca which is the complement of
a real coordinate subspace arrangemeiitdrwhered is the number of edges in. We
could callCx the real toric subspace arrangement associated tt is nothing but the real
analogue of the complement of the complex subspace arranger@@nfar which X (A)c
is realized as the geometric quotient under the actio(Cdé§¢—" (cf. [1,6]). Moreover,
sinceC, is homotopically equivalent to a covering spaceXafA), we can describe its
fundamental group and give conditions arunder which it is aK (7, 1) space.

Finding K (7r, 1) arrangements seems to be an interesting problem in topology (cf. [15]
and [12]) and we get many such examples. Similar to the results of [12], in our case too
it turns out thatCx is K (r, 1) if and only if it is the complement of a union of precisely
codimension 2 subspaces (cf. [4,9] for other results related to real subspace arrangements).

Before we state the main theorems let us fix the following terminology:

Let A(1) denote the edges ak,d = #A(1), and let{vy, vo, ..., vy} denote the

primitive vectors along the edges. We assume tbatvo, ... , v,} form a basis for
the latticeN and let{u1, ... , u,} be the dual basis iM.
Let W(A) = (sjp, ..., 5j, | SJZ 1< j <d,(sis;)? whenever{v;, v;} spans a cone

in A) be the right-angled Coxeter group associated to
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We call the fanA flag-like if and only if the following condition holds for every
collection of primitive edge vector;,, ..., v; } in A:if for every 1 < k,1 < r,
{vi,. v;,} spans a cone in, then{v;,, ... , v;, } together spans a cone in

Let X (A) be a smooth and connected real toric variety.

We now state the main results in the paper.

Theorem 1.1. The fundamental group1 (X (A)) is abelian if and only if one of the fol-
lowing holds inA.

(i) Foreveryl <i, j <d,{v;, v;}spans acone ir. In this caser1(X) is isomorphic
d—
) toZ57". ' '
(i) Foreachl < j < dthereexistsatmostorie=i; withl <i; < nsuchthat{v;;, v;}
does not span a cone iv and(u;;, v;) = 1 mod 2 Further, foreachn +1 <k <d
such that #£ j we have<u,-‘,., vx) = 0 mod 2

Theorem 1.2. The real toric varietyX (A) is aspherical if and only iA is flag-like.

Theorem 1.3. LetCa be the complement of the subspace arrangement relatedge
above. Thenm1(Ca) is isomorphic to the commutator subgroupWf A). Further, Ca

is aspherical if and only if it is the complement of a union of precisely codimergsion
subspaces.

We prove Theorem 1.1 in 85, Theorem 1.2 in 86 and Theorem 1.3 in §7.
Inthis context, we also mention that the cohomology ring &itltoefficients of smooth,
complete real toric varieties arth (X (A), Z) has been studied by Jurkiewicz (cf. [11]).

2. The universal cover ofX(A)

In this section we shall determine the universal cover and the fundamental gr&upof
this purpose, we primarily apply the contents of pp. 367—386 of ch. 11.12 of [2].

We begin with the elementary topological description of a real toric variety in the
following proposition. The proof essentially follows from the proposition on p. 79, ch. 4
of [10] by replacingXc by X andS! by S N R ~ Z,. For details, also see p. 36, §3
of [11].

PROPOSITION 2.1 [10,11]

There is a retraction X ;. < ox L X, given by the absolute value map +— |x|
fromR; c R — R, which identifiesX with the quotient space of by the action
of the compact rea?-torus 7> = Hom(M, Z). Further, there is a canonical mapping
T> x X4 — X which realizesX as a quotient spacds x X/ ~ where (¢, x) ~ (t', x)

if and only ifx = x” andr - (')~! € Stal(x,) wherg x € (0,),. The retractionX — X,
mapsO- to (0;) andV (7)to V (r), and the fiber ovetO,) . isT; := Hom(t-NM, Z»)
which is a compact reé-torus of dimension — dim(r).

We now observe the following property &f, .

Lemma2.2. X is contractible.
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Proof. Recall thatxg, is the distinguished point ofUg))+ =~ (R™)". We first show
that for everyo € A, (Uy)+ = Homg, (S, Ry) is contractible to the pointg €
(U0p)+ S (Us)+. This is becausell — 1) - x + 1 - xj0p € Hom, (S, Ry) for every
t € I = [0, 1]. The only thing we need to check here is that, if both-u € S, then
(A—1)-x+1t-xopw) = A—1)-x@m) +1-x0m) > 0. This clearly holds since,
x(u) > 0 andR™ is convex. Thus the ma@l, : (Uy). x I — (U,)y defined as
H,(x,t) = (1—1)-x+1-xj0y is a strong deformation retraction @, ) 1 to the pointx;g;.
Furthermore, by definition, thél,’s for o € A are compatible with the inclusions
(Us)+ € (Us)s Wheneverr < o in A. Therefore, since . is the union of(U, ) 's for
o € A, we can glue together the mafi3, }, <A to get a strong deformation retractiéh
of X to xj;. Hence the lemma. O

PROPOSITICN 2.3
Let A be a smooth fan. We then have the following

1. (X4, (V(1)+)ren) is a stratified space with stratgV/ (7)4}:ca indexed by the poset
A.

2. Associated to this stratified space we have a simple complex of g@UAS =
(G+, ¥or) Where the local group at the stratui(z) . is G, = Stalix;) under the
action of 7, = Hom(M, Z,) andy,, : G; — G, (for T < o in A) are canonical
inclusions and we have a simple morphigre= (¢;) : G(A) — T2 >~ Zj injective at
the local groups.

3. For the above simple complex of grougsA) = (G, ¥,¢), the direct IimitG/(E)
is isomorphic toW (A). We therefore have a canonical simple morphise (i) :
G(A) —> W(A).

Proof.

Proof of(1). Since the orbit space decompositiorkaf under the action df’; is obtained
by restriction of scalars from that &f- under the action df, it follows that(X 1, V(t)4)
is a stratified space with strat&(r) ;. indexed byA.

Proof of(2). LetG, = Stalix;) C T». We then have canonical inclusiong,, : G; <—
G, whenever < ¢ in A and,p; : G; — Ty for everyt € A. ThenG(A) = (G¢, Vyr)

is a simple complex of groups ovéK ., V(r)+) whereG- is the local group along the
stratumV (). Furtherp = (¢;):ea : G(A) — Ty is a simple morphism injective at the
local groups.

Proof of (3). G/(Z) is by definition the free product af; with the relationsy, . (h) =

h Y h € Gy wheneverr < o in A. Thus,G/(Z) is simply the graph product of the vertex
groupsG,; =~ Z over the grapt$y N A(2) where the vertices of the graph correspond to

A(1) and the edges correspondAg?). Therefore,G/(X) ~ W(A) and (3) follows. 0O

Let G be a group for which there exists a simple morphismG(A) — G, injective
at the local groups. ThelG x X,/ ~={(g,x): g€ G, x € X4 : (g, x) ~ (g, x) &
x =x";g-(g)"1 e G;}, wherer is the unique cone such thate O,. Let D(A, ¢) =
U;c0G/G-. Then,D(A, ¢) is a poset consisting of paifg - G;, r) wherer € A and
g-G.isacosetof5; in G and,D(A, ¢) has the partial orde(g - G5, 0) < (g’ - G¢, 1)
ifand onlyifo < 7in A and(g)"1- g € G,.
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Lemma2.4. X is a stratified space oveb (A, ¢). Furthermore the T> action onX is
strata-preservingwith X as the strict fundamental domain.

Proof. By definition, (7> x X/ ~) is a stratified space ovér(A, ¢) such that, the action
of T, onT» x X4/ ~ is strata-preserving whereg 7> takes the straturty’, V(t)4) to
the stratum(z¢’, V(t)4). A strict fundamental domain for this action is the copy X |
corresponding to the identity elementel 7>. However, by Proposition 2.1, there is a
canonicall»-equivariantisomorphism frof¥> x X )/~ to X. ThusX gets a structure of
a stratified space ové¥ (A, ¢) in such a way that, the action & on X is strata-preserving
and the strict fundamental domain for this actioXis C X. O

Theorem 25

1. Let D(X4, ¢) and D(X, ) denote the developmentsXf with respect tap and.
respectively. ThemD (X1, ) >~ (To x X4 /~) = X andD (X, ) =~ (W x X4 /~) =!
X. There are strata-preserving actionséfon D(X 4, ¢) and of7> on D(X 4, ¢) with
strict fundamental domaii ..

2. X is connected if and only if the primitive vectors along the edgésspganN &7z, Z».
In particular, X is connected whenever the primitive vectors contdihtzsis forN.

3. X = W x X, /~isthe universal cover of andm1(X) >~ ker(@), whereg : W — T»
is the canonical homomorphism inducedgy

4. Leth: W — Wy >~ Z”z’ be the surjective group homomorphism obtained by abelian-
isation. Associated to the map we have a simple morphism: G(A) — Zg such
thate = h. Then D(X4, o) ~ Z‘21 x X4/ ~ is a covering space ovexr with deck
transformation grou;Z‘zif", itis a covering space of andm(D(X 4, «)) =[W, W].

Proof. To prove this theorem we use Prop. 12.20 of [2].

Proof of (1). By Prop. 2.3, the developmet( X, ¢) of X, with respect to the simple
morphismg from the simple complex of groups(A) over X, to 7>, is a stratified space
over D(A, ¢) and is isomorphic td» x X,/ ~ in such a way that, the induced action of

T, onTy x X4/ ~ isidentical to that in Lemma 2.4. Hence by Lemma 24X, ¢) is
isomorphic toX as a stratified space and further, the isomorphism is equivariant under the
strata-preserving action @p. Similarly, the developmen® (X, «) of X, with respect to

the canonical simple morphisnirom G(A) to W is isomorphic taW x X/ ~) which

is a stratified space over the pog&tA, ) and further, there is a strata-preserving action
of W on D(X, ¢) with strict fundamental domairk .

Proof of (2). From Lemma 2.2X is contractible, in particular it is connected. Hence,
D(X 4, @) is connected if and only i is surjective which is equivalent to the assumption
that the image of the primitive edge vectors spa®y, Z». This certainly happens if a part
of the primitive vectors along\ (1) form aZ-basis forN.

Proof of (3). From Lemma 2.2 it follows thatf, is simply connected and the strata of
X, are arcwise connected. Further, from Prop. 2.3 we know@) ~ W. Therefore,
(W x X1/ ~) >~ D(X4, ) is the universal cover o >~ D(X, ¢) and ke(g) ~ m1(X)
where, is the canonical surjective homomorphism inducedby
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Proof of (4). Sincea = h ot andT» being abeliarp factors throughW,;,. Therefore,
the simple morphismu is injective at the local groups and the developmeX , o) ~
Z‘Z’ x X4+/~. The remaining claims of (4) follow simply by the direct application of
Prop. 12.20 of [2]. O

Remak 2.6 (Connectednesof X). If the primitive edge vectos of A(1) do not span

N ®gz Z3, then X is not connected and the number of connected componentsisf
equalto NV ®z Z2 : ¢(W)]. In fact, A is supported on a smaller dimensional lattice and
therefore X is isomorphic toX' x (R*)*/2 wherek = [N ®z Z» : (W)] and X’ is a
connected toric variety of dimensian— k. For example, the real toric variety associated
to the fanA = {e1, —e1, {0}} In N = Ze1 & Zey is homeomorphic t®! x R* and
has two connected componeiits x R andS! x R~. Indeed, forX to be connected

it is not necessary that the primitive edge vectors should gpdar example the real
toric variety associated to the fah = {(2e1 + 3ep), (e1), {0}} IN N = Ze1 ® Zey,

is smooth and connected but the edge vect@es + 3ep, e1} do not form aZ-basis
for N.

3. A presentation for wt1(X)

Let X be smooth and connected. In this section we shall give a presentatian(f6y
with generators and relations defined purely from the combinatorial structure of

Let{vy, ..., v,} be primitive vectors along (1) which form a basis foN ®7,Z, and let
{u,...,u,} bethe dual basis. Let;; = (u;, v;) modZyforl < j <dand1<i <n.
Then,A = (a; ;) is thecharacteristic matrix oA with respect tquy, ... , v,}.

Fort = (t1,....t) € Z5, Ietb{ =t +a;;forl <i<nl<j<dandlet

" =1t +api+aqiforl <i <n; 1< pgq < d. We shall denote the vector

(b)i=1,... » by b/ and the vectote/*)i—1__, by ¢4,
In the following proposition we will give a presentation fei(X) using the above
data.

PROPOSITION 3.1
The fundamental group:(X) has a presentation with generators
jeil<j<d|t=(1,... 1) € Ly}

and relations

n 173 In
ul{yl,(o,... 0 Y2.00.00.0) " Vntr tn 1.0}
tely

Utne -y 11 <d)

n
teZs

U p = Yabr - Yp.era - Ygpe | (Vp,vg) € A}.

tely
Proof. We know from Theorem 2.5 that; (X) is isomorphic to the kernel of the surjective
homomorphisny : W — T ~ Z5, whereW has the presentatiof§ | R) for § =
{s1,52,...,s¢} andR = {s2, 53, ... ,52; (s;s;)> whenever{v;, v;} spans a cone in}.
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We further have the following commuting diagram:

1— F — F©) — 75 - 1

\2 Ly Il ,
1> H—- W —>Zg—>1

whereF (S) denotes the free group ¢h ¢ denotes the canonical surjection franis) to
W, H denotesri(X) andF = v 1(H).
SinceT = {sit-s2---sy' | (ta,t2, ... . ta) € ZB}is aSchreier transversdor F’ in
F(S), we can apply the Reidemeister—Schreier theorem (cf. [5,13]) to obtain a presentation
for 71(X) from that of W. Let

Su=1{yj.:1=<j=<d;tely, (3.1)
R}L] ={ag(u)VueT}, (3.2
Ri={a;(r)VreR; tely}, (3.3)
where 0= (0,0,...,0) € Z3, oy : F(S) — F(Sg) is defined recursively as follows:

o; (D) = 1; 4 (sj) = yj;- Suppose that by induction we have defingdw) for w e
F(S) then,ay(w - 57) 1= oy (w) - ar.5,(s;) wWhere,r -s; € Zj corresponds to the coset
representative(w’) € 7 of F' - w’, wherew’ = sil s - 8j.

Note that,V ¢ = (11, 12, ... , t,) € Z5 we have

(i) ao(stt-sZ -5 = (o(s1)™ - (€(11,00,....0/(52)2 - (@tg.15,... 11,0 (S2))™,
(i) @ (s?) = ay(s)) - @i (s)),

(iil) o ((sp 590D = ar(sp) - apr(sg) - aera(sy) - apa(s) V1< j <d.

It follows from definition (3.2) and from the identity (i) above that

1 t t ,
Ry = {aoGst - sZ--s0) | t=(t1,t2, ..., 1,) € Z3)}
n 7] ty
01000 " Y2.(0,0,..0) V(1,10 1y 1,0))
It = (1,12, ... . ty) € Zj

Also the definition (3.3) and the identities (ii) and (iii) above, imply that
R aL(sf),... ,(xL(sg);
L (o (s 54)?) whenever{v,, v,} spans a cone i

Y1zt yl,él, cee s Ydt yd,bd 5
=Vt Yq.bP)  Yp.ePd * Vg bt
whenever{v,, v,} spans a cone in

Here,b{ =ti+a;V1<j<di1l<i<nandc”? = ti+ap+a;V¥V1<ix<
n; 1<p,q=<d.

Let R2 = Urezs Ri. Then, from the Reidemeister—Schreier theorem it follows that,
m1(X) has the presentatiosy | Ry R%). O
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Lemma3.2. The presentation can be simplified with lesser number of generators and
relations by expressing thg;; € Sy as words inS and using the relations i if we
make further assumption o that, (v,, v;) € Aforall 1 < p,g < n.

Proof. o, (s;) = sf -~ sy -s;-@(sit - - - si' -5 ;) wherep(w) € 7 is the coset representative

of F/-wforw e W. NotlcefurtherthatirW,the{sl, ..., S} commute among themselves
. t + .

by our assumption offvy, vy, .. . , v,}. Hence we havegp(si--- sy - s;) = s -

+a; 1, i . . . .

s2Faz L (ntain w1 1) € 7. This implies that we have the followin

2 2

identities:

. t t 7 t t ti+1 1, .

() Via = st sg sy (s)) - ST -s22~-~sj’ sy =1foralll<j<nitelZ
(since,aj; = §;; forall 1< j <n),

(i) yjo = ao(s;)) = sj-57" 55775, forall n+1<j<d,

i) yi= asj) = siosZesy (s syt syt syt™) st s s for all
Vit 1S 1 %2 j s 2 192
n+1<j<d,

. n+aj1 thta;j, t 1 t 1 ajl aj,

(|V) y]bj _abj(sj)_s 5 ..snn ]n'(Sj)'Sll"'Snn =(S11...sn”.(sj.slj ...Sn]").

Sl nn) 1= = (yj)~ L

LetS; = s; si P g then from (ii) and (iii) above, we see that the generators of
71(X) are {sl 52 - ’“ -SjesitosEeseVn4+1< j <d; ¥t e Z3). Further, since
R1 consists of words |r{|y]  forl < j <nandt € Z3}, from (i) we see tharl = {1}
Furthermore (iv) implies that the first set of relat|0nsR|,rare of the form{y; «- (y; 1)~ 1,
therefore they trivially hold in the group1(X). Thus, finally, the number of generators
reduce tad — n) - 2" and they are{y;, forn + 1 < j < d; t € Z5} and the non-trivial
relations are of the formR; = {y,u() - Yger) - Ype(cra) - Ygpt) whenever{vp, vy} Spans
aconeinA} vVt e Z;. Therefore, the final presentation tof(X) is (Sy, Ry ), where

Sy ={y;; wheren + 1 < j < d andt € Z3},

Re = {¥p.o@) * Yg.p) * Yp.o(cr9) = Yg.pb)
whenever{v,, v,} spans a cone in} V¢ € Z5,

Ry = ULEZ'ERL'

Further,z1(X) is generated as a subgroupWi(A) by si---s; - S; - sit--- sy, where
teZbandS; =s; syt sy forn+1<j<d. 0

Remark3.3. By the classification of two-dimensional smooth complete fans (cf. p. 42 of
[10] and p. 57 of [11]) we observe that, except the t&hig S, all other smooth complete

real toric surfaces correspond bijectively to the two-dimensional compact non-orientable
manifolds. This is because, they are obtained by successively bIowiE’é ap 7 -fixed

points and are therefore homeomorphi@%#- . -#IP%R (d — 2 copies). However, the clas-
sical presentation for the fundamental group is apparently different from the presentation
we have obtained, especially because it has only one relation. In the cases witeand

4, where the spaces aPg, St x S or the Klein-bottle ~ P2#P2, the presentations we

give agrees with some of the classical ones. We hope to simplify the presentation given
above to reduce the number of generators and relations so that in general it agrees with the
classical cases.
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Remark3.4. Note that the fundamental gromp(X) and hence its presentation depends
only on the 2-skeletor\ (2) of A.

4. The coxeter groupW(A)

In this section we prove some general results on right-angled Coxeter groups and in par-
ticular for W(A). Let M = (m;;) denote the Coxeter matrix correspondingio

Lemmad.l. [W, W] is abelian if and only if for alll < j < d there exists at most orie
such that{v;, v;) ¢ A.

Proof. If there existi # k such thaf{v;, v;} and{v, v;} does not span a cone inthen,
[si,s;] - [sk, sj1 # [sk. 871 - [si, s;1in [W, W]

Conversely, ifforeach x j < d, there exists at most onesuch thafv;, v;) ¢ A then,
using the relations W, it is easy to see that for any wotd e W, w - [s;, 5;] - wt =
[si,s;]or[s;, s;]. (Itis [s;, s;] iff either one ofs; ors; but not both occurs in the reduced
expression ofv.) Now, [W, W]is the normal subgroup d¥ generated by the commutators
{[si, 5511 (vi, vj) ¢ A}. Therefore, underthe above assumptifn, s;] | (v, v;) ¢ A}in
fact generateW, W] as a subgroup di. Further, since they commute among themselves,
[W, W]is abelian. O

Lemmad.2. Awordw € W is of finite order if and only if it is of orde2. Moreover in
this casgw is a conjugate inW to a wordw’ which is of the formw’ = s, - - - 5;, with
Sjp *Sj, = Sj, " Sj, Vi<p,q <l

Proof. Supposay = v - w’ - v~ where,w’ is as above and € W. Thenw is clearly of
order 2. On the other hand,f is not of the above form then the reduced expression for
w is of the formw =s;, - - - 5;, wheres;, ands;, do not commute for some % p, g < k.
Indeed, by repeatedly using the relatign s; = s; - s; wheneverm;; = 2, we can
assume without loss of generality that, up to conjugatiois of the forms;, - s;, - - - s;,,
wheres;, ands;, do not commute. Then it follows that, for any positive integen” =

(Siy -+ 8ip) - (Sig -+ - 8i) -+ - (s34 - - - 83,) IS in fact a reduced expressionli. Hencew is of

infinite order. O
Lemma4.3. Letw = s, ---5;, € W, where(v;,,...,v;) € A andletw =5, ---s
where (v;,,v;,) € Aforalll < p,q <Ilbut(v,...,v;) ¢ A. Thenw ¢ Nw"),

whereN (w’) is the normal subgroup generated &yin W.

Proof. Suppose on the contraty = vy - w’ - vy - vz - w’ - vy 1+ v, - w’ - vt for some
v1, vo, ... v, € W. By Lemma 4.2 we know thatw’)? = 1. Hence, the above expression
can be rewritten as

1. w=[vg, w]-[w,vg] - [vs, w]---[w,v]if ris even,
2. w=[vy, w] [w,vy] - [v, w]-wif risodd.

This implies thatw e [W, W]if risevenandy - w’ = w - (w')~ € [W, W]if r is odd.
Now leth : W — Z4 be the abelianisation map which takego the coordinate vector
ej =(0,0,...,1,...,0) (with 1 at thejth position). Also, by our choice ab andw’



24 V Uma

we observe thats;,, ..., s; } and{s;,, ..., s;} pairwise commute i and the tuples
(i1, ... ,ix) and(j1, ..., j;) are distinct.

Thereforeji(w) = E’;:le,-p #(0,...,0) whenr is even andi(w - w') = Ef,zleip +
Eézlejq # (0,...,0) whenr is odd. This is a contradiction since on the other hand,

andw - (w)~1 € [W, W] whenr is even and is odd respectively. This proves the lemma.
U

Remarkd.4. Lemmad4.1if phrased differently willbé, W]is abelian ifand only if there
exists at most ongefor every j such thain; ; # 2, holds not just for right-angled Coxeter
groups, but for more general class of Coxeter groups wjth= 2 orm; ; > 5V i, j.

5. Criterion for w1(X) to be abelian

Let X be smooth and connected. In the following theorem we give conditiors wmder
which 71(X) is abelian. We shall follow the notations in 83 and further assume that
(vp,vy) € Aforevery 1< p,g <nasinlLemma 3.2.

Theorem 5.1. 71(X) is abelian if and only if one of the following holds in

1. Foreveryl <i, j <d, {v;, v;} spans a cone in\. In this casemr1(X) is isomorphic
toZ4™".

2. Foreachl < j < dthere exists at most orie= i; with1 < i; < n suchthat{v;,, v}
does not span a cone i and(u;;, v;) = 1 mod 2 Further, foreachn +1 <k <d
such that # j we have<u,-_/., vr) = 0mod 2

Proof. Recall that we have an exact sequence; IW, W] — m1(X) — Zg‘” — land
further, W, W] is generated as a normal subgroupfoy [s;,, si,] whenever{v; ,, v;, }
does not span a cone ix.

Stepl. Since WV, W] is a subgroup ofr1(X), if 71(X) is abelian then/, W] must be
abelian. By Lemma 4.1, W] is abelian if and only if for every; there exists at most
onev; such thafv;, v;} does not span a cone .

Further, W, W] = {1} if and only if any twofv;, v;} for 1 < i, j < d spans a cone in
A which implies thatW =~ Z$ and1(X) =~ Z5 .

Step2. On the other hand, iff, W] # {1} then there existfv;, v;} which does not span
acone inA. However, sincelV, W]is abelian, this = i; must be unique for every sugh
Thus, inW,s; andsi_,. do not commute but they both commute witHor every 1< k < n.

Step3. Suppose now that, for somet 1 < j <d we haven + 1 <i; < d, thenmi(X)
is non-abelian for ifs; denotes the wors; - s7"* - - - 5,”" in W then,

aj1 aj ai;1 di;.n
— .. Js Jjn J J
Sj.Sij_SJ.slj.Sl ...Sn .Sl ...Sn
) o a1 aj, il dijn ) )
#slj.s].sl ce eS8y .Sl ce eS8y —Slj'S]-

Hence ifr1(X) is abelian then, for evenry 4+ 1 < j < d there is a unique index such
that(v;, v;;) ¢ A and further, 1< i; < n.
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Step4. Now, ifforsomer+1 < k < dwithk # jwe havey ;; = (u;, v;;) modZz = 1,
thenm1(X) is non-abelian. This is becauseuif= [Sk, S;] € m1(X) thenw # 1 which
we can see by the following cases:

If Ak iy = 0 andaj,l-k =0, thenw = [Sl'/., Sj] 75 1.

Ifar;, =1 andaj,ik =1, thenw = [Sl'j, Sj] #* 1.

If a;, = 1landa;; =0, thenw = [sij, 51 - [sw, s, ] # 1.

If ax;, = 0anda;; = 1,thenw = [s;;, s;] - [sk, si.] # 1.

(Here we omit the proofs of the assertion that# 1 in each case, as it follows easily
from the relations irW).
Step5. Ifa;;; = 0, then againr1(X) is non-abelian since, the elemests- S; - 5;; and
Sj‘1 do not commute inr1(X). This is because, by Lemma 4.2j[ s;]is an element of
infinite order inW and hencegsl-j -S; 'Sij) . S;l = [Sij , Sj] #* [Sj, S,'j] = S;j“ (Sij -S; ~S,'j).

Step6. Therefore, ifr1(X) is abelian and W, W] # 1, then it is necessary that the
following conditions must hold:

For every 1< j < d, there exists a unique indéxwith 1 < i; < n such thafv;, v;;}
does not span a coneanda;,;; = 1. Further, forevery +1 < k < d such thak # j,
we haveak,,-j =0.

We shall now prove that these conditions are in fact sufficient{gX) to be abelian.

Claim.

(i) S; andS; commute fom + 1< j, k <d.
(i) w-S;-wtands; commute wherey = st --- s foreveryr = (11, ... ,t,) € Z3
andn+1<j <d.

Proof of the Claim.
ajn ag,1

0] S;-Sp=sj-sp-50 s 575 (sincea; ;, = O by assumptioh

aj aj - .
=Sk-Sj- slj’l cees sik’l cspknsincek # i}

= sk 57 s s sy s, " {sinceay.;, = O by assumption
=8 -S;.
(i) Letw = sit--- sy such thatry, 12, . ... , 1) € Z5.

-1 t aj1 aj, t t
ij cw :(Sll...s:l”).(sj 'Sl/ ...snj").(sll...sn")zz.

(@) Ift;; = 0,thenz = sj-sij’l syt = S; {sinces;-w = w-s;}. Thusw-S; w1 = ;.

(b) If ti; =1, thenz = Sij " Sj -sij’l . ~st"’ “Si; =8i; - Sj s Further,

J

-1
(woS]ww )~(Sj) =i ~Sj-s,'/. -Sj
=Si; " S .s]j'l...s/l\'j ...snj’" .Sj {sinceaj,ij =1}

=i -sjg-s,n =1
-1

This implies thatw - §; - w™* = §;
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Hencew - S; - w~1 commutes withs; for all n +1 < j, k < d, since we have either
w-S;-wt = §; or 71 in each of the cases. Therefore, since the generators commute
among themselves, we conclude thatX) is abelian. O

Remarks.2. If A is complete, then the conditiary ;; = 1 will be forced after Step 4 in
which case, we shall skip Step 5. However this is not true in general for example, in the
non-complete fam\ = {{0}, (e1, e2), (—2e1 + e2)} IN N = Ze1 @ Zeo.

Remak 5.3 (Torsion elements By Lemma 4.2 since m1(X) is a subgroup oV, the
torsion elements imr1(X) are always of order 2. In particular, when (X) is abelian,
S; = sj-sp sy forn+ 1< j <disoforder 2iff(v;,v;) € Aforalll<i <n
and itis of infinite order iff there exists a unique<li; < n such that{v;, v;;) ¢ A since
in this caseq;,;; = 1 andSJZ. =[sj.s;] #Lin[W, W] C W.

Remarks.4. If 71(X) is abelian thenr1(X) is generated by§; = s -sy"---5,"" for
n+l<j<dLlet{jijo....jp)}=J={ln+l=<j=<dand(vj,v;) ¢ A
for some 1< i; < n}. Therefore, ifj ¢ J then,(v;,v;) € Aforevery1<i < n.
Thus,mr1(X) ~ Zg_"" ® Z" where,Z" = (S;, =s,, -szj‘”l s forl < p < ).
Furthermore, W, W] = ([s,, si(j)] = sz-p forl < p <r) C Wis afree abelian of
rankr. We therefore have the following commuting diagram

1 — [W,W] - mX)  — z5™" — 1

1 — 7 Breri — meri — 1

Remarks.5. If1(X) is abelian then necessarily< 2n because, toevewy+1 < j <d,

we associate a uniqug with 1 < i; < n. Examples of toric varieties with abelian
fundamental group are: (i) products of real projective spaces, (i) toric bundles with base as
aspherical toric variety with abelian fundamental group and fjréor » > 2. (However,

this is not true for a non-trivial bundle with fib}fg}g for examplesr1((F1)Rr) is non-abelian
where(IF1)r denotes the real part of the Hirzebruch surfBge

6. Asphericity of X

Let Sy := (Ng — {0})/R~p andz : Ng — {0} —> Sy be the projection. Lef, denote
the simplicial complex associated to the smoothAgmwhere eacli-dimensionab € A
corresponds to & — 1)-dimensional spherical simplex(c — {0}). If further we assume
A to be complete, then it gives rise to a triangulatiors 9f(cf. p. 52 of [14]).

Recall that a simplicial compleX with verticesV = {v;} is called &lag complexf the
following condition holds for every finite subsgiy, vo, ... , v,} of Vi If {v;, v;} span a
simplexinS foralli, j € {1, 2, ... ,n} then{v1, vo, ..., v,} Span a simplex of.

Hence Sy is a flag complex if and only if for every collection of primitive edge vectors
{vig, ..., v 3 i {(ui, viy) € AVL <k, I <r}then(u;, ..., v;) € A. We shall say that
A is flag-likewheneveiS, is a flag complex.

Theorem 6.1. X is aspherical if and only ifA is flag-like.
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Proof. If X is contractible then we claim that is flag-like.

Suppose on the contrary is not flag-like. Then3 {vj,, ..., v;} such thatv 1 <
p.q =1l (vj,, vj,) €A but, (vj,...,vj) ¢ A.

Letw' = sj,...5; € W and letN(w’) be the normal subgroup d¥ generated by
w’ as in Lemma 4.3. Also let : W — W/N(w’) be the canonical surjection. Clearly,
A = (Ar = 0 o) is a simple morphism frond; (A) — W/N (w’). Further, Lemma 4.3
implies that, : G, € T — W/N(w') is injectiveY € A. Hence, is injective at the
local groups. Now, the developmebt{ X ., 1) of X withrespecttd., hasD(X, 1) ~ X
as the universal cover and its fundamental graupD(X.,1) >~ N(w’) hasw’ as a
torsion element. This is a contradiction singeX ., 1) is akK (r, 1) space, because of our
assumption thaX is contractible.

For proving the converse, we apply Corollary 10.3 of the main result of [7] to the
reflection systenil' = W,V = §) onM = X with fundamental chambeg? = X (which
is contractible by Lemma 2.2). Here, for evefyC S, Or = Ns;erV(pj)+. Let Wr be
the subgroup generated BByin W. Then, the following statements are equivalent:

1. Qr isacyclic for allT C S with Wy finite.
2. Alis flag-like.

Proof of(1) = (2). Letpj,, ..., p; be edges such th@p;,, o} spans a cone in for

all1 < p,qg < 1. Then, (1) implies thaQr = N._,V(p;)+ = V()4 is non-empty
since, by Lemma 4.2W7r = (s;,...s;) is a finite subgroup o#¥. This implies that,
T =(pj,...,pj) iSanon-empty cone in.

Proof of (2) = (1). LetT = {s;,,...,s;} S S be such thaWr is finite. Then, in partic-
ular,w’ = s;, ---s;, is an element of finite order iW. By Lemma 4.2, the edge vectors
vj, ..., vj pairwise span cones ih. The assumption (2) furtherimplies thay,, ... , v},
together span a conein A. Thus,Q7 = m’r:1V(,oj,_)+ = V(7)4+ is non-empty. More-
over, V() being a smooth toric variety, its non-negative peft). is contractible by
Lemma 2.2, and is hence acyclic if it is non-empty.

We therefore conclude from Corollary 10.3 of [7] thatalfis a flag-like thenM = X is
contractible. O

Remarks.2. In fact, sincq1l) < (2) above, it is clear that Corollary 10.3 of [7] also
proves the first implication of the above theorem. However, in our particular case (where
W is a right-angled Coxeter group), the argument given above is self-contained and is
an application of the ‘method of development’ which is consistent with the theme of this
paper.

The following are some corollaries of the above theorem.

COROLLARY 6.3
If X is aspherical therV (1) is aspherical for every cone.
Proof. This is immediate becaus¥®,(t) is the toric variety associated to the fan $tar

which by definition (cf. p. 52 of [10]) is smooth and flag-like whenexeis smooth and
flag-like. A proof for this is as follows: Lep;, ... , p;, be edge vectors which pairwise
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span cones in Stér). Therefore by the definition of Star), the edges of andp;,, ... p;,

pairwise span cones ift. SinceA is flag-like, this implies thay = (r, p;, ..., p;;) iSa

cone inA and hencey = (o, ... , pi;) IS a cone in Star). Thus, Stafr) is flag-like.
O

COROLLARY 6.4

LetX be smooth and complete. We can blowkuglong a number of -stable subvarieties
to get a smooth complete toric varieXy which is aspherical.

Proof. Since A is a smooth and complete fafis is a simplicial decomposition of the
sphereSy. Itis known that the barycentric subdivision of any simplicial complex is a flag
complex (cf. [2], p. 210). Therefore, &’ is the refinement ofA obtained by taking the
cones over the simplices in the barycentric subdivisio§s ofthenA’ is a flag-like fan.

It is not difficult to see than\’ is also smooth and complete. Hence, the smooth complete
toric variety X (A’) which is obtained by blowing uf along certairf"-stable subvarieties

is aspherical. O

Remark6.5. However, in some cases we need lesser number of blow ups to arrive at an
aspherical space. For e.qg. Eﬁ blown up at aT-fixed point is the Hirzebruch surface
(F1)r (the Klein-bottle) andF1)R is aspherical. (ii)Pﬁ x S1 needs to be blown up along
aT-stableP} to get an aspherical spaggy)r x St.

7. Subspace arrangement related ta

Throughout this section we assume thails a smooth and complete fan.

Inthis section we define a real subspace arrangement associatedhtwse complement
in R? is denoted byC,. Recall from [6] that,X¢ ~ X/(C*)?~" where, X, is the
complement of a complex subspace arrangemer@“inBy restricting scalars ti in
the above quotient, we show th&it~ C, /(R*)4~" whereCa ~ X. We compute the
fundamental group af » and also give necessary and sufficient conditions for it to be a
K(w, 1) space.

DEFINITION 7.1

A collection P = {pi,, pip, ..., pi;} Of edges inA is called a primitive collec-
tion if {pi,, pi,, ..., pi} together does not span a cone Anbut every proper sub-
collection of P spans a cone im. For the primitive collectionP let A(P) =
{(xl... , Xd) eRdlxil =Xj, == Xj =0}.

DEFINITION 7.2

() The coordinate subspace arrangemeiR{rcorresponding to a fan denoted byA A
is defined as followsA, = Up. A(P), where the union is taken over all primitive
collectionsP of edges inA.

(i) Let Ca denote the complement of, inR?, i.e.Ca = RY — Ax.

Let{P1, P2, ..., P,} bethe set of all primitive collections ik consisting of two edges.
Let?; = {pi,, pi,} Where 1<i,,i, <d V1<i<r.
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The following lemma generalizes the description of a smooth complete complex toric
variety as given in [6] and [1] to the corresponding real and non-negative parts. Although
this follows almost immediately from the complex case, we give a proof for it since we
have not seen the result mentioned anywhere explicitly.

Lemmar.3. The real toric varietyX corresponding to a smooth complete fanis the
geometric quotient of» by the real algebraic torugR*)¢~" and we have a locally
trivial principal bundle with total spac€,, baseX and structure grougR*)4~", i.e,
Ca — Ca/(R*)4™" ~ X. Similarly, X =~ (Ca);/RT)I".

Proof. Leto = (v1...,v,) € A(n) be such thafvs, ... , v,} form aZ basis forN. Let
{u1, ..., u,) be the dual basis. Le¥” ~ z¢—": N’ ~ 7¢ and letfe’, 1 1 < j < d,
{ef : 1 < k < d — n} denote the natural bases 8f and N” respectively. Further, let
g:N =N mape’/. tov; forevery 1< j <d andletf : N — N’ be the map which
takeSegfj+l to e; - (211 {uj, vj) - e)) for everyn + 1 < j < d. From the results of [6]
we know that there is an exact sequence of fans:

0— (A", N") J, (A, N) 25 (A, N) — 0,

whereA” = {0} andA’ is the fan consisting of the cone’s= (e;.l, . ,e}k) corresponding

to everyr = (vj,...,v;) € A. Observe that, the real toric varieties corresponding to
A" and A’ are X(A”) ~ (R*)4™" and X (A") ~ R¢ — Z respectively, wher¢ is the

zero locus inR“ of the monomials; = [1,¢s xo for everyo € A. Moreover, it is easy

to see thalR? — Z is also isomorphic to the complement of the subspace arrangement
R? — Ap = C,a defined above (cf. p. 130 of [4]). Hence, from the above exact sequence of
fans, we see that the smooth complete real toric valety the base space of a principal
bundle with total spacéR? — Z) ~ (R4 — Aa) ~ Cx and structure groupR*)4—"(cf.

p. 59 of [14] and p. 27 of [6]). Similarly, by restricting to the non-negative parts we see that
X, is the base space of a principal fibre bundle with total SM& Z, and structure
group(R1)4=", Thus we have the following:

X~ [RY = Z)/(R*T™" >~ Cp/ (R,
Xy~ RY — Zy /RYIT  (Cp) g /(R 0

Remark7.4. Note that the only property of a smooth and complete fan which we use in
the above proof is thdts, ... , v,} form aZ basis of N. Thus Lemma 7.3 is true even
for a smooth (not necessarily complete) fapfor which the primitive vectors along (1)
contains & basis forN.

Lemma?.5. 71(Ca) is isomorphic to the commutator subgro[§¥, W] of the Coxeter
group W defined in§2, which is generated as a normal subgroupWfby [s;,, s;,] for
1<i<rwhereP; = {pi,, pi} V1<i<r.

Proof. From Lemma 7.3 we know tha& ~ C,/(R*)¢~". Moreover, sincgR*)?~" ~
(RT)4" x 747", X1 = Ca/(R*)?~" is a regular covering space ov&mwith deck trans-
formation groupZ‘zi_”. In fact, it is the same covering spaceXfas in Theorem 2.5(4).
Also observe thaf, and X, are of the same homotopy type sirn€g is a fibre bundle
over X1 with contractible fibrgR)¢—". Therefore we haver1(Ca) =~ [W, W]. O
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In the following theorem we shall find the necessary and sufficient conditionsaomd
hence on the arrangemenh , under whichC, is aspherical.

Theorem 7.6. Cx is aspherical if and only ifA, is a union of precisely codimensién
subspaces.

Proof. SinceC, is of the homotopy type of a finite regular covering space ayétfollows
that X is aspherical if and only i€, is aspherical. From Theorem 6.1 the necessary and
sufficient condition folX to be aspherical is that is flag-like. Therefore, it suffices to show
that A is flag-like if and only if. A, is a union of precisely codimension two subspaces.
Now, by Definition 7.1, the condition fok to be flag-like is equivalent to the condition
that in A there are no primitive collections consisting of more than two edges. Also by
Definition 7.2,Ax = Up Ap, where the union is over primitive collectio®in A and
where Ap is a subspace iR¢ of codimension precisely equal to the number of edges
in P. Thus, A is flag-like if and only if A = Up, A(P;) where the union runs over the
primitive collections{Ps, ... , P,} consisting of two edges or equivalentl, is a union
of codimension two subspaces. Hence the theorem. O

Remak 7.7 (K (r, 1)-arrangements. The barycentre subdvision of any simplicid com-

plex is a flag complex. Hence, given a smooth completeAanve can obtain several
smooth complete flag-like fans whose cones are the cones over the simplices of the repeated
barycentric subdivisions afs. We therefore get several exampleskofr, 1) arrange-

ments finding which seems to be of interest in the topology of arrangements (cf. [15] and
[12]). However, note that even if we start with a flag-complex, an arbitrary subdivision
need not result in a flag-complex. For example,Aebe the fan consisting of the faces

of o = (e1,e2,e3) IN N = Ze1 @ Zes @ Zes. If we refineA by adding the edge vector
throughv = e1 + e2 + e3, then the resulting fad’ is not flag-like sincees, e2, e3, v
pairwise span cones it’ but together do not span any cone.

Remark7.8. Indeed, both Lemma 7.5 and Theorem 7.6 follow directly from the fact that
Ca is a smooth non-complete toric variety associated to theXfag: {(¢;,. ... ,ej,) for
every coner = (vj,...,v;) € A} in N = Ze1 & --- @ Zey (cf. Lemma 7.3) and
applying Theorems 2.5 and 6.1. However, sidgehas been defined specifically as the
complement of real coordinate subspace arrangement related to a smooth complgte fan
we therefore describe both its fundamental group and criterion for asphericity Aising

Remark7.9. SinceC, is the toric variety associated to the far, we can apply Theo-
rems 3.1 and 4.1 respectively to give a presentatiomr{(f ) and give conditions on\’

for it to be abelian. In particular, it follows from Theorems 7.6 and 4.1€hais K (i, 1)

with 1(Ca) abelian, if and only if it is the complement of subspaces of codimension pre-
cisely 2 which pairwise intersect &0}. Moreover, it also follows from Lemma 4.2 that
m1(Ca) = [W, W] is always torsion free.
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