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Abstract.  We study a class of second order variational inequalities with bilateral
constraints. Under certain conditions we show the existence of a unique viscosity solution
of these variational inequalities and give a stochastic representation to this solution. As
an application, we study a stochastic game with stopping times and show the existence
of a saddle point equilibrium.
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1. Introduction and preliminaries

We study a class of second order nonlinear variational inequalities with bilateral con-
straints. This type of inequalities arises in zero sum stochastic differential games of mixed
type where each player uses both continuous control and stopping times. Under a non-
degeneracy assumption Bensoussan and Friedman [1, 4] have studied this type of problems.
They proved the existence of a unique solution of these variational inequalities in certain
weighted Sobolev spaces. This result together with certain techniques from stochastic cal-
culus is then applied to show that the unique solution of these inequalities is the value
function of certain stochastic differential games of mixed type. In this paper we study the
same class of variational inequalities without the non-degeneracy assumption. The non-
degeneracy assumption is crucially used in the analysis of the problem in [1, 4]. Thus the
method used in [1, 4] does not apply to the degenerate case. We study the problem via the
theory of viscosity solutions. We transform the variational inequalities with bilateral con-
straints to Hamilton—Jacobi—Isaacs (HJI for short) equations associated with a stochastic
differential game problem with continuous control only. Then using standard results from
the theory of viscosity solutions, we show that the value function of this stochastic differ-
ential game with continuous control is the unique viscosity solution of the corresponding
variational inequalities. Then for a special case we identify this unique viscosity solution
as the value function of the stochastic game with stopping times. We now describe our
problem.

LetU;,i = 1, 2, be the compact metric spaces. Let

b:Rdelez—MRd
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and

a R x Uy x Uy — R4,
We assume that:
(A1)

The functionsh anda are bounded and continuousy, u1, u) is C2in x uniformly with
respecttarq, us. The matrixa is symmetric and non-negative definite. Further there exists
constaniC; > O such that forall; € U;,i =1, 2,

1b(Cx, ug, uz) — by, u1, u2)| < Cilx — y|.
Let
r:Rdelez—ﬂR
and
Ui RIS R, i=1,2
We assume that
(A2)

(i) r, Y1, Y2 are bounded and continuous.
(i) There exists a constalt, > 0 such that for alk, y € RY, (u1, up) € U1 x U,

[r(x, un, uz) — r(y, ug, u2)| + [¥i(x) — Y1) + [Y2(x) — ¥2(3)|
< Calx —yl.

(ii)) ¥2 < yn.
Let Ht, H= :R? x R? x R?*¢ — R be defined by

e 1
H"(x,p,X)= inf sup 2tr(a(x,u1,u2)X)

u1€elUy uzels

+b(x,u1,uz) - p+r(x,u, uz)},

H (x,p,X)= sup inf [%tr(a(x,ul, u2)X)

usels urely
+b(x,u1,u2) - p+r(x,u, uz)}-

Consider the following Hamilton—Jacobi—Isaacs variational inequalities with bilateral con-
straints
Ya(x) < v(x) = Y1(x), Vx
a(x) — HY (x, Du(x), D%v(x)) =0, if ¥2(x) < v(x) < ¥1(x)
a(x) — Ht(x, Dv(x), D%v(x)) > 0, if v(x) = ¥2(x)
a(x) — HH (x, Du(x), D%v(x)) <0, if v(x) = ¥1(x)

(1.1)
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and

Y2(x) < v(x) < Ya(x), Vx

a(x) — H (x, Dv(x), D%v(x)) =0, if ¥2(x) < v(x) < ¥1(x)
Av(x) — H™ (x, Du(x), D?v(x)) > 0, if v(x) = ¥a(x)

av(x) — H (x, Dv(x), D%v(x)) <0, if v(x) = ¥1(x)

W)

By a classical solution of (1.1), we mearC&-function v satisfying (1.1). Similarly a
classical solution of (1.2) is defined.

The rest of our paper is structured as follows. In §2, we introduce the notion of viscos-
ity solution and establish the existence of unique viscosity solutions of these variational
inequalities by a probabilistic method. In 83, we apply these variational inequalities to
treat a stochastic game with stopping times. We establish the existence of a saddle point
equilibrium for this problem. Section 5 contains some concluding remarks.

2. Viscosity solutions

To motivate the definition of viscosity solutions of the variational inequalities we first
prove the following result.

Theorem 2.1. AssumgA2)(iii) . A functionv € C2(R¢) is a classical solution ofl.1)if
and only if it is a classical solution of the equation

max{min{Av(x) — H* (x, Dv(x), D*v(x)); A(v(x) — $2(x))};
Aw(x) —y1(x))} = 0. (2.1

Similarly a functionv € C2(R%) is a classical solution of1.2)if and only if it is a
classical solution of the equation

min{max{Av(x) — H™ (x, Dv(x), D?v(x)); A(v(x) — ¥1(x))};
A (x) — Y2(x))} =0. (2.2)

Proof. Letv be a classical solution of (1.1). Suppase such that/a(x) < v(x) < ¥1(x).
Then

av(x) — HY (x, Dv(x), D?v(x)) =0, v(x) — ¥2(x) > 0,
v(x) — Y1(x) <O.

Thus (2.1) clearly holds in this case. Nowifx) = vy2(x), then
min{Av(x) — H* (x, Dv(x), D?v(x)); A(v(x) — Y2(x))} = O,
and hence (2.1) is satisfied. Finally assunie) = v1(x), then
min{Av(x) — H* (x, Dv(x), D?v(x)); A(v(x) — Y2(x))} <0,
and hence

maxmin{Av(x) — H* (x, Dv(x), D*v(x)); A(v(x) — Y2())};
A(x) —P1(x))} =0.
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Thusv satisfies (2.1). We now show the converse. Itis clear from (2.1pihat< ¢ (x).
If v(x) = ¥1(x) for somex, then it clearly satisfies(x) > y2(x) by (A2)(iii). Now let
v(x) < Y1(x). Then from (2.1), we have

min{Av(x) — HT (x, Dv(x), D?v(x)); A(v(x) — ¥2(x))} = O

and hencev(x) — ¥2(x) > 0. Thus for allx, we havey2(x) < v(x) < ¥1(x). Now let
v(x) < ¥1(x). Then from the above equation, we have

av(x) — HY(x, Du(x), D%v(x)) > 0.
Similarly if v(x) > ¥2(x), we can show that
r(x) — HY (x, Dv(x), D?v(x)) < 0.

Thusuv is a classical solution of (1.1). This concludes the proof of the first part. The second
part of the theorem can be proved in a similar way. |

Remark2.2. Under (A2)(iii), we can also show that a functiore C2(R?) is a classical
solution of (1.1) if and only if it is a classical solution of the equation

min{max{Av(x) — HT (x, Dv(x), D?v(x)); A(v(x) — ¥1(x))};
A (x) —¥2(x))} =0.

Similarly a functiorw € C2(R?) is a classical solution of (1.2) if and only if it is a classical
solution of the equation

max{min{Av(x) — H~ (x, Dv(x), D?v(x)); A(v(x) — ¥2(x))};
A (x) —¥1(x))} =0.

Theorem 2.1 motivates us to define viscosity solutions for (1.1) and (1.2) using (2.1)
and (2.2) repsectively.

DEFINITION 2.3

An upper semicontinuous functian : RY — R is said to be a viscosity subsolution

of (1.1) if it is a viscosity subsolution of (2.1). Similarly a lower semicontinuous func-
tionv : RY — R is said to be a viscosity supersolution of (1.1) if it is a viscosity
supersolution of (2.1). A function which is both sub- and super-solution of (1.1) is called
a viscosity solution of (1.1). Similarly, viscosity sub- and super-solutions of (1.2) are
defined.

We now address the question of showing the existence of unique viscosity solutions of
(1.1) and (1.2). This is done by showing that (1.1) and (1.2) are equivalent to Hamilton—
Jacobi-Isaacs equations corresponding to a stochastic differential game.

Let w1, w2 be two symbols. We formulate a zero sum stochastic differential. In this
game,U; is the set of controls for playér wherelU; = U; U {w;},i = 1, 2. Leto (-, -, -)
be the non-negative square rootuf, -, -). Extendb, o, r to

h:RExULxUp— RY, 5 :RY x Uy x Uy — R4,
FiRYx Uy x Uy — R,
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respectively such that

b(x,w1,)=0, b(x,-,w2)=0, 6(x,w1,)=0, &(x,-,w2) =0,

F(x, w1, u2) = A1(x) forall up € Uz andr(x, -, w2) = Ara(x).
Let(Q, F, P) be acomplete probability space aidr) a standard-dimensional Brown-
ian motion on it. Let4; denote the set of all;-valued functions progressively measurable
with respect to the procedg (¢). For (iz1(-), u2(-)) € A1 x A2, consider the controlled
stochastic differential equation

dX (1) = b(X(1), @1(r), @2(1)) dr + 6 (X (1), ua (), u2(r)) dW (1)
X0) = x '

(2.3)
Let the payoff function be defined by

R(x,i1(),i2(-)) = E [ /O e MF(X (1), i1 (1), iia()) dr} :

A strategy for the player 1 is a ‘non-antiticipating’ map A, — Ay, i.e., foranyuy, iip €
Az suchthatiz(s) = ua(s) forall0 < s < rthenwe have[u2](s) = afi2](s),0<s <1t.
Let I" denote the set of all non-anticipating strategies for player 1. Similarly strategies for
player 2 are defined. Let the set of all non-anticipating strategies for player 2 be denoted
by A. Then the upper and lower value functions are defined by
VT (x) = sup inf R(x,a1(), Bla1] (),
BeA i1€As

V=(x) = inf sup R(x,af@2] (), i2().

ael 1226./42

Then we can closely follow the arguments in [3] to show that under (A1) and (AD),
andV —, respectively, are unique viscosity solutions of

a(x) — HY (x, Du(x), D%v(x)) =0 (2.4)
and

Av(x) — H™ (x, Dv(x), D?v(x)) =0 (2.5)

in the class of bounded continuous functions, whigre, H— : RY x RY x R?*4 —» R
are defined as follows:

- . 1 .
HT(x,p,X)= inf sup |Ztr(a(x, us, u)X)
u1€U1 ji,e0, L2

+ b(x, i1, @2) - p +r(x, i, ﬁz)},

- 1 .
H™ (x, p, X) = sup sup | ztr(a(x, u1, uz)X)
ﬁzel_/z ﬁlel_ll -2

+ b(x, i1, i2) - p +r(x, i1, ﬁﬂ,

wherea = 55*. We now establish the equivalence of (1.1) and (1.2) with (2.4) and (2.5)
respectively.
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Theorem 2.4. AssumégA2)(iii) . A continuous function : R? — R is a viscosity solution
of (2.4) if and only if it is a viscosity solution dfL.1). Similarly a continuous function
v : R? — R is a viscosity solution of2.5)if and only if it is a viscosity solution dfL..2).

Proof. The proof of this theorem is a simple consequence of the observation that

HT(x,p, X) = (H"(x, p, X) V Af2(x)) A Ari(x) (2.6)

and
H™ (x,p,X) = (H (x, p, X) AMJ1(x)) V Afra(x). (2.7)
|

As a consequence of this result we have the following existence and uniqueness result
for the solutions of (1.1) and (1.2).

COROLLARY 2.5

AssuméAl) and(A2). ThenV* and V~ are unique vicosity solutions ¢f.1)and(1.2)
respectively in the class of bounded continuous functions.

Proof. Since (2.4) has a unique viscosity solution in the class of bounded continuous
functions given byv +, we get by Theorem 2.4, that* is the unique viscosity solution

of (1.1) in the class of bounded continuous functions. Simil#riyis the unique viscosity
solution of (1.2) in the class of bounded continuous functions. |

Remark2.6. Inthe classical case, itis quite clear from the proof of Theorem 2.1 that under
(A2)(iii), ¥2 < v <y if v is a classical solution of (2.1). In fact this remains true even
in the case of viscosity solutions. Indeed assume (A2)(iii). Then any viscosity solution of
(2.1) satisfies

Ya(x) < v(x) < Y1(x), forallx € RY.

Similar result holds for viscosity solutions of (2.2). Observe thatis a viscosity sub-
solution of (2.1) andy is a viscosity super-solution of (2.1). Thus the desired result
follows from a general comparison principle on viscosity solutions [2].

3. Application to stochastic games

In this section we consider a stochastic game with stopping times. We show the existence
of a value and a saddle point equilibrium for this problem. We now describe the stochastic
game with stopping times.

Leth : R - R? ando : RY — RY*?, Assume thab, o are bounded and Lipschitz
continuous. Consider the stochastic differential equation

(3.1)

dX (1) = b(X (1)) dt + (X (1)) dW(t), 1 > 0
X(0) = x }
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HereW is ad-dimensional Brownian motion on an underlying complete probability space
(Q, F, P). Letr, ¥1, ¥ : RY — R be bounded and Lipschitz continuous functions and
Y1 > Y. Letd > 0. Define

ONT
R(x,0,7)=E [ / e r(X(s)) ds + e Oy (X (0) xp <
0
+ wz<X(r»xf§9]}, (3.2)

wheref, T are the stopping times with respect to thdield generated by (¢).

Let W denote anothef-dimensional Brownian motion independentsf constructed
on an augmented probability space which is also denote@hyF, P) by an abuse of
notation. Leto? : R? — R?*% pe defined by? = [0 y1,], wherel, is thed x d
identity matrix. Now consider the following stochastic differential equation

dx” () b(X7 (1)) dt + 07 (X7 (1)) dW(r), t > 0 } 7 (3.3)

XY0) = x

whereW = [W, W]*. Player 1 tries to minimiz&(x, -, -), as in (3.2), over stopping times

6 (with respect to the -field generated byv (1)), whereas player 2 tries to maximize the
same over stopping timegwith respect to the -field generated by (r)). Note that these
stopping times need not be finite a.s.. In other words, each player has the option of not
stopping the game at any time. We refer to [7] for a similar treatment to stochastic games
with stopping times. We now define the lower and upper value functions. Let

V7™ (x) = supinf R(x, 0, 1),
>00=
Vi) = infosupR(x, 0, 1).

zU07>0

The stochastic game with stopping times is said to have a valde i V.
We now establish the existence of a value for this problemALeR¢ x RY x R¥*¢ — R
be defined by

1
H(x,p, X)= > tr (a(x)X) +b(x) - p+rx),
wherea = oo*.

Theorem 3.1. The stochastic game with stopping times has a value and a saddle point
equilibrium. The value of this game is the unique viscosity solution in the class of bounded
and continuous functions of the variational inequalities with bilateral constraints given by

Y2(x) < wx) < Y1(x), Vx
rw(x) — H(x, Dw(x), D?w(x)) =0, if ¥o(x) < w(x) < Y1(x)
Aw(x) — H(x, Dw(x), D?w(x)) > 0, if w(x) = ¥a(x)
rw(x) — H(x, Dw(x), D?w(x)) <0, if w(x) = ¢1(x)
(3.4)
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Proof. Using the results of §2, it follows that there is a unigue viscosity solution(3.4)
in the class of bounded continuous functions. We now identify this solution as the value
function of the stochastic game with stopping times.

We first assume that is C2. Let w(x) > ¥2(x). Let be any stopping times. Define
the stopping timé& by

T =inf{t >0 :ya(X(®)) = wX ()},
whereX (¢) is a solution of (3.1) with the initial conditioX (0) = x. Sincew is a smooth

viscosity solution of (3.4), by Ito’s formula, we have for afiy>= 0 and stopping timé,

TAOAT R
wx) < E {/ e M r(X(s) ds + e M TND (X (T A6 A f)} )
0

LettingT — oo in the above equation, we obtain
OAT )
w(x) < E / e Mr(X(s) ds +e Dy xOAt) .
0

Now using the first inequality in (3.4) and the definitionzoiih the above, it follows that
w(x) < R(x,0,7).
Sincef is arbitrary, we get
w(x) < V7 (x).
Next letw is C2 andw(x) < y1(x). Define the stopping time by
6 =inf{r = 01 ya(X (1) = w(X (1)},

where X (¢) is a solution of (3.1) with the initial conditioX (0) = x. Now using the
foregoing arguments we can show that

w(x) > V().
Thus
w=Vr=Vv".
We now prove this result for the general case.ketbe the sup-convolution ab, i.e.,

1§ —x|2}
2¢ '

we(x) = sup {w(é) -

£eRd

Thenw, — w uniformly in R¢ ase — 0, w, are bounded, Lipschitz continuous, semi-
convex and satisfy a.e. @&f’,

Awe (x) — H(x, Dwe(x), D?we(x)) < po(x),
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for a modulusog (see [8]). Now letw? be the standard mollification af.. Thenw? are
c21 u)‘eS — we uniformly in R4 andDwf(x) — Dw(x), Dzu)g(x) — D%w,(x)fora.e.
x € R?. Also w? have the same Lipschitz constantasand for anyy > 0, we have
2
wd(x) — % tr (D*w}(x)) — H(x, Dwl (x), D*w?(x)) < pole)
2d

+ 4500+ 1=, (3.5)

wheregs are uniformly continuous. Let

y%d
rs(x,uy, up) =r(x, uy, uz) + po(e) + —

We now assume (x) > y2(x). Define the stopping timgas before. Thew;S (x) > Yra(x)
for sufficiently smalk ands. Applying Ito’s formula forw?, we obtain for anyr” > 0 and
any stopping time,

TAOAT
wl(x) < E :/ e Mrs(X7 (5)) ds+e M TN (XY (T AO AT},
0

(3.6)

whereX? (¢) is the solution of (3.3) with the initial conditiok” (0) = x.
By a standard martingale inequality, for apy- 0, we can find a constam, such that

0<s<T

P < sup [X7(s)| = Rn> <.

LetQ, C R be such thal®,| < n andg, — O uniformly onBg, \ ;. Using this we
can find a local modulug; such that

TANOAT
E/O 85(X7(s)) ds| < p1(8, ).

Using this in (3.6), we obtain

TAOAT
wl(x) <E :/ e M r (X7 (s)) ds + e M TNND S (XY (T A O A T))
0

2q
48y + T (po(e) + %) : (3.7)

whereps is a local modulus. Now using moment estimates [8], we have

E ( sup X (s) — XV(s)F) <Cy?

0<s<T

for some constanf > 0 which may depend off andx. Now using this in (3.7), and
passing to the limity — 0 and ther$, ¢ — 0, we obtain

TAOAT R
wx) < E {/ e Mr(X(s)) ds + e M TNND Y (X (T A0 A f))} )
0
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Now lettingT — oo, as before, we obtain
wx) <V~ (x).

Similarly we can show that
w(x) = VF(x)

forallx suchthat/1(x) > w(x). Thus the stochastic game with stopping times has a value.
We now show thaf9, 7) is a saddle point equilibrium. We need to prove this only when
Yo(x) < w(x) < Y¥1(x). Using the foregoing arguments, we can show that

ont A A n N
wx)=E [/ e Mr(X(s)) ds + e M (X (@ A f))} = R(x,0,7).
0

Clearly (4, ) constitutes a saddle point equilibrium. |

Remark3.2. The above result generalizes the optimal stopping time problem for degen-
erate diffusions studied by Menaldi [6]. Menaldi has characterized the value function in
the optimal stopping time problem as a maximal solution of the corresponding variational
inequalities with one sided constraint. He has used the penalization arguments to obtain his
results. Here we have used the method of viscosity solutions to generalize the optimal stop-
ping time problem to stochastic games with stopping times. We also wish to mention that
Stettner [7] has studied stochastic games with stopping times for a class of Feller Markov
processes. He has employed a penalization argument using semigroup theory. Thus our
approach is quite different from that of Stettner.

4. Conclusions

We have studied a class of second order variational inequalities with bilateral constraints.
Under certain conditions, we have showed the existence and uniqueness of viscosity solu-
tions by transforming the variational inequalities to HJI equations corresponding to a
stochastic differential game. Here we have confined our attention to a particular form of
H which arises in stochastic differential games of mixed type. A general forfh cén

be reduced to this particular form by a suitable representation formula as in [5]. Thus our
probabilistic method can be used to prove the existence and uniqueness of viscosity solu-
tions for more general class of second order nonlinear variational inequalities with bilateral
constraints.

As an application, we have showed the existence of a value and a saddle point equi-
librium for a stochastic game with stopping times. We now give a brief description of a
stochastic differential game of mixed type where each player uses both continuous control
and stopping times.

Consider the following controlled stochastic differential equation

dXx (1) b(X (), us(t), up())dt + o (X(t), us(t), u2())dw(), t>0
X(0) = x }
(4.1)
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HereW (¢) is a standard-dimensional Brownian motion on an underlying complete prob-
ability space(2, F, P) ando is the non-negative square rootaafThe processes; (¢)
anduy(t) areU; andU»-valued control processes of players 1 and 2 respectively which
are progressively measurable with respect totHeld generated by (). Let A > 0 be

the discount factor. The payoff function is given by

OnT
R(-xv ul()v 97 ”2()7 T) =F [/ e_ASr(X(S)7 l/ll(S), MZ(S)) dr
0

+ e MY (x(0) xo<c + wz(w))ere]]’
(4.2)

wherefd, t are the stopping times with respect to the filtration generated by.

An admissible control for player 1 is a map(-) : [0, co) — Uz which is progressively
measurable with respect to thefield generated by (-). The set of all admissible controls
for player 1 is denoted byl;. Similarly an admissible control for player 2 is defined. Let
A denote the set of all admissible controls for player 2.

We identify two controlsuy(-), u1(-) in Az on [0, ¢] if P(u1(s) = u1(s) fora.es €
[0, #]) = 1. Similarly we identify the controls i>.

An admissible strategy for player 1 is a map A2 — Az such that ifup = i on
[0, s]thena[uz] = «fiiz] for all s € [0, oo). The set of all admissible strategies for player
1 is denoted by. Similarly admissible strategies for player 2 are defined.A etenote
the set of all admissible strategies for player 2.

Let S denote the set of all stopping times. Lietlenote the set of all non-anticipating
mapsd : A» — A1 x S for player 1. Similarly letA denote the set of all non-anticipating
mapsB . A1 — Ay x S for player 2. Player 1 tries to minimizR(x, u1(-), 6, uz2(-), t)
over his admissible contral (-) and stopping time&, whereas player 2 tries to maximize
the same over his admissible contzgl-) and stopping times. We now define the upper
and lower value functions of stochastic differential game of mixed type. Let

Vi) =sup inf  R(x,u1(),0, Bluil (),
feA u1€A1,0>

V= (x)=inf sup R(x,a[u2](-), u2(-), 7).
ael’ ype As,v>0

The functionsV ™ and vV~ are respectively called upper and lower value functions of the
stochastic differential game of mixed type. This differential game is said to have a value
if both upper and lower value functions coincide. Now we make the following conjecture.

Conjecture. The value functiong/* and vV~ are unique viscosity solutions of (1.1) and
(1.2) respectively in the class of bounded continuous functions.

Note that the above conjecture is true for the special case treated in 3. Analogous results
also holds when the matrix is independent of the control variables and is uniformly
elliptic [1, 4].
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