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Abstract. We study a class of second order variational inequalities with bilateral
constraints. Under certain conditions we show the existence of a unique viscosity solution
of these variational inequalities and give a stochastic representation to this solution. As
an application, we study a stochastic game with stopping times and show the existence
of a saddle point equilibrium.
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1. Introduction and preliminaries

We study a class of second order nonlinear variational inequalities with bilateral con-
straints. This type of inequalities arises in zero sum stochastic differential games of mixed
type where each player uses both continuous control and stopping times. Under a non-
degeneracy assumption Bensoussan and Friedman [1, 4] have studied this type of problems.
They proved the existence of a unique solution of these variational inequalities in certain
weighted Sobolev spaces. This result together with certain techniques from stochastic cal-
culus is then applied to show that the unique solution of these inequalities is the value
function of certain stochastic differential games of mixed type. In this paper we study the
same class of variational inequalities without the non-degeneracy assumption. The non-
degeneracy assumption is crucially used in the analysis of the problem in [1, 4]. Thus the
method used in [1, 4] does not apply to the degenerate case. We study the problem via the
theory of viscosity solutions. We transform the variational inequalities with bilateral con-
straints to Hamilton–Jacobi–Isaacs (HJI for short) equations associated with a stochastic
differential game problem with continuous control only. Then using standard results from
the theory of viscosity solutions, we show that the value function of this stochastic differ-
ential game with continuous control is the unique viscosity solution of the corresponding
variational inequalities. Then for a special case we identify this unique viscosity solution
as the value function of the stochastic game with stopping times. We now describe our
problem.

LetU
i

, i = 1, 2, be the compact metric spaces. Let

b : R

d

× U1 × U2 → R

d

431
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and

a : R

d

× U1 × U2 → R

d×d

.

We assume that:

(A1)

The functionsb anda are bounded and continuous,a(x, u1, u2) isC2 in x uniformly with
respect tou1, u2. The matrixa is symmetric and non-negative definite. Further there exists
constantC1 > 0 such that for allu

i

∈ U

i

, i = 1, 2,

|b(x, u1, u2)− b(y, u1, u2)| ≤ C1|x − y|.

Let

r : R

d

× U1 × U2 → R

and

ψ

i

: R

d

→ R, i = 1, 2.

We assume that

(A2)

(i) r, ψ1, ψ2 are bounded and continuous.
(ii) There exists a constantC2 > 0 such that for allx, y ∈ R

d

, (u1, u2) ∈ U1 × U2,

|r(x, u1, u2)− r(y, u1, u2)| + |ψ1(x)− ψ1(y)| + |ψ2(x)− ψ2(y)|

≤ C2|x − y|.

(iii) ψ2 ≤ ψ1.

LetH+

, H

− : R

d

× R

d

× R

d×d

→ R be defined by

H

+

(x, p,X) = inf
u1∈U1

sup
u2∈U2

[

1

2
tr(a(x, u1, u2)X)

+ b(x, u1, u2) · p + r(x, u1, u2)

]

,

H

−

(x, p,X) = sup
u2∈U2

inf
u1∈U1

[

1

2
tr(a(x, u1, u2)X)

+ b(x, u1, u2) · p + r(x, u1, u2)

]

.

Consider the following Hamilton–Jacobi–Isaacs variational inequalities with bilateral con-
straints

ψ2(x) ≤ v(x) ≤ ψ1(x), ∀ x

λv(x)−H

+

(x,Dv(x),D

2
v(x)) = 0, if ψ2(x) < v(x) < ψ1(x)

λv(x)−H

+

(x,Dv(x),D

2
v(x)) ≥ 0, if v(x) = ψ2(x)

λv(x)−H

+

(x,Dv(x),D

2
v(x)) ≤ 0, if v(x) = ψ1(x)



















(1.1)
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and

ψ2(x) ≤ v(x) ≤ ψ1(x), ∀ x

λv(x)−H

−

(x,Dv(x),D

2
v(x)) = 0, if ψ2(x) < v(x) < ψ1(x)

λv(x)−H

−

(x,Dv(x),D

2
v(x)) ≥ 0, if v(x) = ψ2(x)

λv(x)−H

−

(x,Dv(x),D

2
v(x)) ≤ 0, if v(x) = ψ1(x)



















. (1.2)

By a classical solution of (1.1), we mean aC2-functionv satisfying (1.1). Similarly a
classical solution of (1.2) is defined.

The rest of our paper is structured as follows. In §2, we introduce the notion of viscos-
ity solution and establish the existence of unique viscosity solutions of these variational
inequalities by a probabilistic method. In §3, we apply these variational inequalities to
treat a stochastic game with stopping times. We establish the existence of a saddle point
equilibrium for this problem. Section 5 contains some concluding remarks.

2. Viscosity solutions

To motivate the definition of viscosity solutions of the variational inequalities we first
prove the following result.

Theorem 2.1. Assume(A2)(iii) . A functionv ∈ C

2
(R

d

) is a classical solution of(1.1) if
and only if it is a classical solution of the equation

max{min{λv(x)−H

+

(x,Dv(x),D

2
v(x)); λ(v(x)− ψ2(x))};

λ(v(x)− ψ1(x))} = 0. (2.1)

Similarly a functionv ∈ C

2
(R

d

) is a classical solution of(1.2) if and only if it is a
classical solution of the equation

min{max{λv(x)−H

−

(x,Dv(x),D

2
v(x)); λ(v(x)− ψ1(x))};

λ(v(x)− ψ2(x))} = 0. (2.2)

Proof. Letv be a classical solution of (1.1). Supposex is such thatψ2(x) < v(x) < ψ1(x).
Then

λv(x)−H

+

(x,Dv(x),D

2
v(x)) = 0, v(x)− ψ2(x) > 0,

v(x)− ψ1(x) < 0.

Thus (2.1) clearly holds in this case. Now ifv(x) = ψ2(x), then

min{λv(x)−H

+

(x,Dv(x),D

2
v(x)); λ(v(x)− ψ2(x))} = 0,

and hence (2.1) is satisfied. Finally assumev(x) = ψ1(x), then

min{λv(x)−H

+

(x,Dv(x),D

2
v(x)); λ(v(x)− ψ2(x))} ≤ 0,

and hence

max{min{λv(x)−H

+

(x,Dv(x),D

2
v(x)); λ(v(x)− ψ2(x))};

λ(v(x)− ψ1(x))} = 0.
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Thusv satisfies (2.1). We now show the converse. It is clear from (2.1) thatv(x) ≤ ψ1(x).
If v(x) = ψ1(x) for somex, then it clearly satisfiesv(x) ≥ ψ2(x) by (A2)(iii). Now let
v(x) < ψ1(x). Then from (2.1), we have

min{λv(x)−H

+

(x,Dv(x),D

2
v(x)); λ(v(x)− ψ2(x))} = 0

and hencev(x) − ψ2(x) ≥ 0. Thus for allx, we haveψ2(x) ≤ v(x) ≤ ψ1(x). Now let
v(x) < ψ1(x). Then from the above equation, we have

λv(x)−H

+

(x,Dv(x),D

2
v(x)) ≥ 0.

Similarly if v(x) > ψ2(x), we can show that

λv(x)−H

+

(x,Dv(x),D

2
v(x)) ≤ 0.

Thusv is a classical solution of (1.1). This concludes the proof of the first part. The second
part of the theorem can be proved in a similar way. ¥

Remark2.2. Under (A2)(iii), we can also show that a functionv ∈ C

2
(R

d

) is a classical
solution of (1.1) if and only if it is a classical solution of the equation

min{max{λv(x)−H

+

(x,Dv(x),D

2
v(x)); λ(v(x)− ψ1(x))};

λ(v(x)− ψ2(x))} = 0.

Similarly a functionv ∈ C

2
(R

d

) is a classical solution of (1.2) if and only if it is a classical
solution of the equation

max{min{λv(x)−H

−

(x,Dv(x),D

2
v(x)); λ(v(x)− ψ2(x))};

λ(v(x)− ψ1(x))} = 0.

Theorem 2.1 motivates us to define viscosity solutions for (1.1) and (1.2) using (2.1)
and (2.2) repsectively.

DEFINITION 2.3

An upper semicontinuous functionv : R

d

→ R is said to be a viscosity subsolution
of (1.1) if it is a viscosity subsolution of (2.1). Similarly a lower semicontinuous func-
tion v : R

d

→ R is said to be a viscosity supersolution of (1.1) if it is a viscosity
supersolution of (2.1). A function which is both sub- and super-solution of (1.1) is called
a viscosity solution of (1.1). Similarly, viscosity sub- and super-solutions of (1.2) are
defined.

We now address the question of showing the existence of unique viscosity solutions of
(1.1) and (1.2). This is done by showing that (1.1) and (1.2) are equivalent to Hamilton–
Jacobi–Isaacs equations corresponding to a stochastic differential game.

Let ω1, ω2 be two symbols. We formulate a zero sum stochastic differential. In this
game, ¯U

i

is the set of controls for playeri, where ¯

U

i

= U

i

∪ {ω

i

}, i = 1, 2. Letσ(·, ·, ·)
be the non-negative square root ofa(·, ·, ·). Extendb, σ, r to

¯

b : R

d

×

¯

U1 ×

¯

U2 → R

d

, σ̄ : R

d

×

¯

U1 ×

¯

U2 → R

d×d

,

r̄ : R

d

×

¯

U1 ×

¯

U2 → R,
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respectively such that

¯

b(x, ω1, ·) ≡ 0, ¯

b(x, ·, ω2) ≡ 0, σ̄ (x, ω1, ·) ≡ 0, σ̄ (x, ·, ω2) ≡ 0,

r̄(x, ω1, u2) = λψ1(x) for all u2 ∈ U2 andr̄(x, ·, ω2) ≡ λψ2(x).

Let (�,F, P ) be a complete probability space andW(t) a standardd-dimensional Brown-
ian motion on it. Let ¯A

i

denote the set of all¯U
i

-valued functions progressively measurable
with respect to the processW(t). For (ū1(·), ū2(·)) ∈

¯

A1 ×

¯

A2, consider the controlled
stochastic differential equation

d ¯

X(t) =

¯

b(

¯

X(t), ū1(t), ū2(t)) dt + σ̄ (

¯

X(t), u1(t), u2(t)) dW(t)
¯

X(0) = x

}

.

(2.3)

Let the payoff function be defined by

¯

R(x, ū1(·), ū2(·)) = E

[

∫

∞

0
e−λt

r̄(

¯

X(t), ū1(t), ū2(t)) dt

]

.

A strategy for the player 1 is a ‘non-antiticipating’ mapα : ¯

A2 →

¯

A1, i.e., for anyu2, ū2 ∈

A2 such thatu2(s) = ū2(s) for all 0 ≤ s ≤ t then we haveα[u2](s) = α[ū2](s), 0 ≤ s ≤ t .
Let ¯

0 denote the set of all non-anticipating strategies for player 1. Similarly strategies for
player 2 are defined. Let the set of all non-anticipating strategies for player 2 be denoted
by ¯

1. Then the upper and lower value functions are defined by

¯

V

+

(x) = sup
β∈

¯

1

inf
ū1∈

¯

A1

¯

R(x, ū1(·), β[ū1](·)),

¯

V

−

(x) = inf
α∈

¯

0

sup
ū2∈

¯

A2

¯

R(x, α[ū2](·), ū2(·)).

Then we can closely follow the arguments in [3] to show that under (A1) and (A2),¯

V

+

and ¯

V

−, respectively, are unique viscosity solutions of

λv(x)−

¯

H

+

(x,Dv(x),D

2
v(x)) = 0 (2.4)

and

λv(x)−

¯

H

−

(x,Dv(x),D

2
v(x)) = 0 (2.5)

in the class of bounded continuous functions, where¯

H

+

,

¯

H

− : R

d

× R

d

× R

d×d

→ R

are defined as follows:

¯

H

+

(x, p,X) = inf
ū1∈ ¯

U1

sup
ū2∈ ¯

U2

[

1

2
tr(â(x, u1, u2)X)

+

¯

b(x, ū1, ū2) · p + r(x, ū1, ū2)

]

,

¯

H

−

(x, p,X) = sup
ū2∈ ¯

U2

sup
ū1∈ ¯

U1

[

1

2
tr(â(x, u1, u2)X)

+

¯

b(x, ū1, ū2) · p + r(x, ū1, ū2)

]

,

whereâ = σ̄ σ̄

∗. We now establish the equivalence of (1.1) and (1.2) with (2.4) and (2.5)
respectively.
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Theorem 2.4. Assume(A2)(iii) . A continuous functionv : R

d

→ R is a viscosity solution
of (2.4) if and only if it is a viscosity solution of(1.1). Similarly a continuous function
v : R

d

→ R is a viscosity solution of(2.5) if and only if it is a viscosity solution of(1.2).

Proof. The proof of this theorem is a simple consequence of the observation that

¯

H

+

(x, p,X) = (H

+

(x, p,X) ∨ λψ2(x)) ∧ λψ1(x) (2.6)

and

¯

H

−

(x, p,X) = (H

−

(x, p,X) ∧ λψ1(x)) ∨ λψ2(x). (2.7)

¥

As a consequence of this result we have the following existence and uniqueness result
for the solutions of (1.1) and (1.2).

COROLLARY 2.5

Assume(A1) and(A2). Then ¯

V

+ and ¯

V

− are unique vicosity solutions of(1.1)and(1.2)
respectively in the class of bounded continuous functions.

Proof. Since (2.4) has a unique viscosity solution in the class of bounded continuous
functions given byV +, we get by Theorem 2.4, that¯V + is the unique viscosity solution
of (1.1) in the class of bounded continuous functions. SimilarlyV

− is the unique viscosity
solution of (1.2) in the class of bounded continuous functions. ¥

Remark2.6. In the classical case, it is quite clear from the proof of Theorem 2.1 that under
(A2)(iii), ψ2 ≤ v ≤ ψ1 if v is a classical solution of (2.1). In fact this remains true even
in the case of viscosity solutions. Indeed assume (A2)(iii). Then any viscosity solution of
(2.1) satisfies

ψ2(x) ≤ v(x) ≤ ψ1(x), for all x ∈ R

d

.

Similar result holds for viscosity solutions of (2.2). Observe thatψ2 is a viscosity sub-
solution of (2.1) andψ1 is a viscosity super-solution of (2.1). Thus the desired result
follows from a general comparison principle on viscosity solutions [2].

3. Application to stochastic games

In this section we consider a stochastic game with stopping times. We show the existence
of a value and a saddle point equilibrium for this problem. We now describe the stochastic
game with stopping times.

Let b : R

d

→ R

d andσ : R

d

→ R

d×d . Assume thatb, σ are bounded and Lipschitz
continuous. Consider the stochastic differential equation

dX(t) = b(X(t)) dt + σ(X(t)) dW(t), t > 0

X(0) = x

}

. (3.1)
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HereW is ad-dimensional Brownian motion on an underlying complete probability space
(�,F, P ). Let r, ψ1, ψ2 : R

d

→ R be bounded and Lipschitz continuous functions and
ψ1 ≥ ψ2. Let λ > 0. Define

R(x, θ, τ ) = E

[

∫

θ∧τ

0
e−λs

r(X(s)) ds + e−λ(θ∧τ)[ψ1(X(θ))χθ<τ

+ ψ2(X(τ))χτ≤θ ]

]

, (3.2)

whereθ, τ are the stopping times with respect to theσ -field generated byW(t).
Let ˜

W denote anotherd-dimensional Brownian motion independent ofW , constructed
on an augmented probability space which is also denoted by(�,F, P ) by an abuse of
notation. Letσγ : R

d

→ R

d×2d be defined byσγ = [σ γ I

d

], whereI
d

is thed × d

identity matrix. Now consider the following stochastic differential equation

dXγ (t) = b(X

γ

(t)) dt + σ

γ

(X

γ

(t)) dW(t), t > 0

X

γ

(0) = x

}

, (3.3)

whereW = [W, ˜

W ]∗. Player 1 tries to minimizeR(x, ·, ·), as in (3.2), over stopping times
θ (with respect to theσ -field generated byW(t)), whereas player 2 tries to maximize the
same over stopping timesτ (with respect to theσ -field generated byW(t)). Note that these
stopping times need not be finite a.s.. In other words, each player has the option of not
stopping the game at any time. We refer to [7] for a similar treatment to stochastic games
with stopping times. We now define the lower and upper value functions. Let

V

−

(x) = sup
τ≥0

inf
θ≥0

R(x, θ, τ ),

V

+

(x) = inf
θ≥0

sup
τ≥0

R(x, θ, τ ).

The stochastic game with stopping times is said to have a value ifV

+

≡ V

−.
We now establish the existence of a value for this problem. LetH : R

d

×R

d

×R

d×d

→ R

be defined by

H(x, p,X) =

1

2
tr (a(x)X)+ b(x) · p + r(x),

wherea = σσ

∗.

Theorem 3.1. The stochastic game with stopping times has a value and a saddle point
equilibrium. The value of this game is the unique viscosity solution in the class of bounded
and continuous functions of the variational inequalities with bilateral constraints given by

ψ2(x) ≤ w(x) ≤ ψ1(x), ∀x

λw(x)−H(x,Dw(x),D

2
w(x)) = 0, if ψ2(x) < w(x) < ψ1(x)

λw(x)−H(x,Dw(x),D

2
w(x)) ≥ 0, if w(x) = ψ2(x)

λw(x)−H(x,Dw(x),D

2
w(x)) ≤ 0, if w(x) = ψ1(x)



















.

(3.4)
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Proof. Using the results of §2, it follows that there is a unique viscosity solutionw of (3.4)
in the class of bounded continuous functions. We now identify this solution as the value
function of the stochastic game with stopping times.

We first assume thatw is C2. Letw(x) > ψ2(x). Let θ be any stopping times. Define
the stopping timêτ by

τ̂ = inf {t ≥ 0 : ψ2(X(t)) = w(X(t))},

whereX(t) is a solution of (3.1) with the initial conditionX(0) = x. Sincew is a smooth
viscosity solution of (3.4), by Ito’s formula, we have for anyT > 0 and stopping timeθ ,

w(x) ≤ E

{

∫

T∧θ∧τ̂

0
e−λs

r(X(s)) ds + e−λ(T∧θ∧τ̂ )

w(X(T ∧ θ ∧ τ̂ )

}

.

LettingT → ∞ in the above equation, we obtain

w(x) ≤ E

{

∫

θ∧τ̂

0
e−λs

r(X(s)) ds + e−λ(θ∧τ̂ )

w(X(θ ∧ τ̂ ))

}

.

Now using the first inequality in (3.4) and the definition ofτ̂ in the above, it follows that

w(x) ≤ R(x, θ, τ̂ ).

Sinceθ is arbitrary, we get

w(x) ≤ V

−

(x).

Next letw isC2 andw(x) < ψ1(x). Define the stopping timeˆθ by

ˆ

θ = inf {t ≥ 0 : ψ1(X(t)) = w(X(t))},

whereX(t) is a solution of (3.1) with the initial conditionX(0) = x. Now using the
foregoing arguments we can show that

w(x) ≥ V

+

(x).

Thus

w ≡ V

+

≡ V

−

.

We now prove this result for the general case. Letw

ε

be the sup-convolution ofw, i.e.,

w

ε

(x) = sup
ξ∈R

d

{

w(ξ)−

|ξ − x|

2

2ε

}

.

Thenw
ε

→ w uniformly in R

d asε → 0,w
ε

are bounded, Lipschitz continuous, semi-
convex and satisfy a.e. onRd ,

λw

ε

(x)−H(x,Dw

ε

(x),D

2
w

ε

(x)) ≤ ρ0(x),
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for a modulusρ0 (see [8]). Now letwδ
ε

be the standard mollification ofw
ε

. Thenwδ
ε

are
C

2,1,wδ
ε

→ w

ε

uniformly inR

d andDwδ
ε

(x) → Dw

ε

(x),D

2
w

δ

ε

(x) → D

2
w

ε

(x) for a.e.
x ∈ R

d . Alsowδ
ε

have the same Lipschitz constant asw
ε

and for anyγ > 0, we have

λw

δ

ε

(x)−

γ

2

2
tr (D2

w

δ

ε

(x))−H(x,Dw

δ

ε

(x),D

2
w

δ

ε

(x)) ≤ ρ0(ε)

+ g

δ

(x)+

γ

2
d

ε

, (3.5)

whereg
δ

are uniformly continuous. Let

r

δ

(x, u1, u2) = r(x, u1, u2)+ ρ0(ε)+

γ

2
d

ε

.

We now assumew(x) > ψ2(x). Define the stopping timêτ as before. Thenwδ
ε

(x) > ψ2(x)

for sufficiently smallε andδ. Applying Ito’s formula forwδ
ε

, we obtain for anyT > 0 and
any stopping timeθ ,

w

δ

ε

(x) ≤ E

{

∫

T∧θ∧τ̂

0
e−λs

r

δ

(X

γ

(s)) ds+e−λ(T∧θ∧τ̂ )

w

δ

ε

(X

γ

(T ∧ θ ∧ τ̂ ))

}

,

(3.6)

whereXγ (t) is the solution of (3.3) with the initial conditionXγ (0) = x.
By a standard martingale inequality, for anyη > 0, we can find a constantR

η

such that

P

(

sup
0≤s≤T

|X

γ

(s)| ≥ R

η

)

≤ η.

Let�
η

⊂ R

d be such that|�
η

| ≤ η andg
η

→ 0 uniformly onB
R

η

\ �

η

. Using this we
can find a local modulusρ1 such that

∣

∣

∣

∣

∣

E

∫

T∧θ∧τ̂

0
g

δ

(X

γ

(s)) ds

∣

∣

∣

∣

∣

≤ ρ1(δ, γ ).

Using this in (3.6), we obtain

w

δ

ε

(x) ≤ E

{

∫

T∧θ∧τ̂

0
e−λs

r(X

γ

(s)) ds + e−λ(T∧θ∧τ̂ )

w

δ

ε

(X

γ

(T ∧ θ ∧ τ̂ ))

}

+ ρ2(δ, γ )+ T

(

ρ0(ε)+

γ

2
d

ε

)

, (3.7)

whereρ2 is a local modulus. Now using moment estimates [8], we have

E

(

sup
0≤s≤T

|X(s)−X

γ

(s)|

2

)

≤ Cγ

2

for some constantC > 0 which may depend onT andx. Now using this in (3.7), and
passing to the limitsγ → 0 and thenδ, ε → 0, we obtain

w(x) ≤ E

{

∫

T∧θ∧τ̂

0
e−λs

r(X(s)) ds + e−λ(T∧θ∧τ̂ )

w(X(T ∧ θ ∧ τ̂ ))

}

.
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Now lettingT → ∞, as before, we obtain

w(x) ≤ V

−

(x).

Similarly we can show that

w(x) ≥ V

+

(x)

for all x such thatψ1(x) > w(x). Thus the stochastic game with stopping times has a value.
We now show that( ˆθ, τ̂ ) is a saddle point equilibrium. We need to prove this only when

ψ2(x) < w(x) < ψ1(x). Using the foregoing arguments, we can show that

w(x) = E

[

∫

ˆ

θ∧τ̂

0
e−λs

r(X(s)) ds + e−λ

ˆ

θ∧τ̂

w(X(

ˆ

θ ∧ τ̂ ))

]

= R(x,

ˆ

θ, τ̂ ).

Clearly( ˆθ, τ̂ ) constitutes a saddle point equilibrium. ¥

Remark3.2. The above result generalizes the optimal stopping time problem for degen-
erate diffusions studied by Menaldi [6]. Menaldi has characterized the value function in
the optimal stopping time problem as a maximal solution of the corresponding variational
inequalities with one sided constraint. He has used the penalization arguments to obtain his
results. Here we have used the method of viscosity solutions to generalize the optimal stop-
ping time problem to stochastic games with stopping times. We also wish to mention that
Stettner [7] has studied stochastic games with stopping times for a class of Feller Markov
processes. He has employed a penalization argument using semigroup theory. Thus our
approach is quite different from that of Stettner.

4. Conclusions

We have studied a class of second order variational inequalities with bilateral constraints.
Under certain conditions, we have showed the existence and uniqueness of viscosity solu-
tions by transforming the variational inequalities to HJI equations corresponding to a
stochastic differential game. Here we have confined our attention to a particular form of
H which arises in stochastic differential games of mixed type. A general form ofH can
be reduced to this particular form by a suitable representation formula as in [5]. Thus our
probabilistic method can be used to prove the existence and uniqueness of viscosity solu-
tions for more general class of second order nonlinear variational inequalities with bilateral
constraints.

As an application, we have showed the existence of a value and a saddle point equi-
librium for a stochastic game with stopping times. We now give a brief description of a
stochastic differential game of mixed type where each player uses both continuous control
and stopping times.

Consider the following controlled stochastic differential equation

dX(t) = b(X(t), u1(t), u2(t))dt + σ(X(t), u1(t), u2(t))dW(t), t > 0

X(0) = x

}

.

(4.1)
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HereW(t) is a standardd-dimensional Brownian motion on an underlying complete prob-
ability space(�,F, P ) andσ is the non-negative square root ofa. The processesu1(t)

andu2(t) areU1 andU2-valued control processes of players 1 and 2 respectively which
are progressively measurable with respect to theσ -field generated byW(t). Letλ > 0 be
the discount factor. The payoff function is given by

R(x, u1(·), θ, u2(·), τ ) = E

[

∫

θ∧τ

0
e−λs

r(X(s), u1(s), u2(s)) dt

+ e−λ(θ∧τ)[ψ1(x(θ))χθ<τ + ψ2(x(τ ))χτ≤θ ]

]

,

(4.2)

whereθ, τ are the stopping times with respect to the filtration generated byW(·).
An admissible control for player 1 is a mapu1(·) : [0,∞) → U1 which is progressively

measurable with respect to theσ -field generated byW(·). The set of all admissible controls
for player 1 is denoted byA1. Similarly an admissible control for player 2 is defined. Let
A2 denote the set of all admissible controls for player 2.

We identify two controlsu1(·), ũ1(·) in A1 on [0, t ] if P(u1(s) = ũ1(s) for a.e.s ∈

[0, t ]) = 1. Similarly we identify the controls inA2.
An admissible strategy for player 1 is a mapα : A2 → A1 such that ifu2 = ũ2 on

[0, s] thenα[u2] = α[ũ2] for all s ∈ [0,∞). The set of all admissible strategies for player
1 is denoted by0. Similarly admissible strategies for player 2 are defined. Let1 denote
the set of all admissible strategies for player 2.

Let S denote the set of all stopping times. Letˆ

0 denote the set of all non-anticipating
mapsα̂ : A2 → A1 ×S for player 1. Similarly letˆ1 denote the set of all non-anticipating
maps ˆ

β : A1 → A2 × S for player 2. Player 1 tries to minimizeR(x, u1(·), θ, u2(·), τ )

over his admissible controlu1(·) and stopping timesθ , whereas player 2 tries to maximize
the same over his admissible controlu2(·) and stopping timesτ . We now define the upper
and lower value functions of stochastic differential game of mixed type. Let

V

+

(x) = sup
ˆ

β∈

ˆ

1

inf
u1∈A1,θ≥0

R(x, u1(·), θ, ˆ

β[u1](·)),

V

−

(x) = inf
α̂∈

ˆ

0

sup
u2∈A2,τ≥0

R(x, α̂[u2](·), u2(·), τ ).

The functionsV + andV − are respectively called upper and lower value functions of the
stochastic differential game of mixed type. This differential game is said to have a value
if both upper and lower value functions coincide. Now we make the following conjecture.

Conjecture.The value functionsV + andV − are unique viscosity solutions of (1.1) and
(1.2) respectively in the class of bounded continuous functions.

Note that the above conjecture is true for the special case treated in §3. Analogous results
also holds when the matrixa is independent of the control variables and is uniformly
elliptic [1, 4].
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