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Probabilistic representations of solutions to the heat equation
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Abstract. In this paper we provide a new (probabilistic) proof of a classical result
in partial differential equations, viz. ifφ is a tempered distribution, then the solution of
the heat equation for the Laplacian, with initial conditionφ, is given by the convolution
of φ with the heat kernel (Gaussian density). Our results also extend the probabilistic
representation of solutions of the heat equation to initial conditions that are arbitrary
tempered distributions.
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1. Introduction

Let (Xt )t≥0 be ad-dimensional Brownian motion, withX0 ≡ 0. Let ϕ ∈ S ′(Rd), the
space of tempered distributions. Letϕt represent the unique solution to the heat equation
with initial valueϕ, viz.

∂tϕt = 1

2
1ϕt 0 ≤ t ≤ T ; ϕ0 = ϕ.

It is well-known thatϕt = ϕ ∗ pt , wherept (x) = 1
(2πt)d/2

e−(|x|2/2t) and ‘∗’ denotes
convolution. Whenϕ is smooth, sayϕ ∈ S, the space of rapidly decreasing smooth
functions, then the probabilisitc representation of the solution is given by the equality
ϕ(t, x) = Eϕ(Xt + x) and is obtained by taking expectations in the Ito formula

ϕ(Xt + x) = ϕ(x)+
∫ t

0
∇ϕ(Xs + x) · dXs + 1

2

∫ t

0
1ϕ(Xs + x)ds.

Such representations are well-known (see [1–4]) and extend to a large class of initial
value problems, with the Laplacian1 replaced by a suitable (elliptic) differential operator
L and(Xt ) being replaced by the diffusion generated byL. A basic problem here is to
extend the representation to situations whereϕ is not smooth.

The main contribution of this paper is to give a probabilistic representation of solutions
to the initial value problem for the Laplacian with an arbitrary initial valueϕ ∈ S ′. This
representation follows from the Ito formula developed in [9], for theS ′-valued process
(τXt ϕ), whereτxϕ is the translation ofϕ by x ∈ R

d . Our representation (Theorem 2.4)
then reads,ϕt = EτXt ϕ where of courseϕt is the solution of the initial value problem for
the Laplacian, with initial valueϕ ∈ S ′. In particular, the fundamental solutionpt (x − ·)
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has the representation,pt (x − ·) = EτXt δx . However, the results of [9] only show that if
ϕ ∈ S ′

p, then there existsq > p such that the process(τXt ϕ) takes values inS ′
q . Here for

each realp, theSps are the ‘Sobolev spaces’ associated with the spectral decomposition
of the operator|x|2 −1 or equivalently they are the Hilbert spaces defining the countable
Hilbertian structure ofS ′ (see [6]).S ′

p, the dual ofSp, is the same asS−p. Clearly it would
be desirable to have the process(τXt ϕ) take values inS ′

p, wheneverϕ ∈ S ′
p. Such a result

also has implications for the semi-martingale structure of the process(τXt ) – it is a semi-
martingale inS ′

p+1 (Corollary 2.2) and fails to have this property inS ′
q for q < p+ 1 (see

Remark 5.2 of [5]).
Given the above remarks and the results of [9], the properties of the translation operators

become significant. We show in Theorem 2.1 that the operatorsτx : Sp → Sp for x ∈ R
d ,

are indeed bounded operators, for any realp, with the operator norms being bounded above
by a polynomial in|x|. The proof uses interpolation techniques well-known to analysts.
Theorem 2.4 then gives a comprehensive treatment of the initial value problem for the
Laplacian from a probabilistic point of view.

2. Statements of the main results

Let (�,F, (Ft )t≥0, P ) be a filtered probability space with a filtration(Ft ) satisfying usual
conditions:Ft = ⋂

s>t Fs andF0 contains allP -null sets. Let(Xt )t≥0 be ad-dimensional,
(Ft )-Brownian motion withX0 ≡ 0.

S denotes the space of rapidly decreasing smooth functions onR
d (real valued) and

S ′ its dual, the space of tempered distributions. We refer to [11] for formal definitions.
For x ∈ R

d , δx ∈ S ′ will denote the Dirac distribution atx. Let {τx : x ∈ R
d} denote

the translation operators defined on functions by the formulaτxf (y) = f (y − x) and let
τx : S ′ → S ′ act on distributions by

〈τxϕ, f 〉 = 〈ϕ, τ−xf 〉.

The nuclear space structure ofS ′ is given by the family of Hilbert spacesSp, p ∈ R,
obtained as the completion ofS under the Hilbertian norms{‖ · ‖p}p∈R defined by

‖ϕ‖2
p =

∑
k

(2|k| + d)2p〈ϕ, hk〉2,

whereϕ ∈ S, and the sum is taken overk = (k1, . . . , kd) ∈ Z
d+, |k| = (k1 + · · · +

kd), 〈ϕ, hk〉 denotes the inner product inL2(Rd) and{hk, k ∈ Z
d+} is the ONB inL2(Rd),

constructed as follows: forx = (x1, . . . , xd), hk(x) = hk1(x1) . . . hkd (xd). The one-

dimensional Hermite functions are given byh`(s) = 1
(
√
π2``!)1/2

e−(s2/2)H`(s), where

H`(s) = (−1)`es
2 d`

ds`
e−s2 are the Hermite polynomials. While we mainly deal with real

valued functions, at times we need to use complex valued functions. In such cases, the
spacesSp are defined in a similar fashion as above, i.e. as the completion ofS with respect
to ‖ · ‖p. However, in the definition of‖ϕ‖2

p above we need to replace the realL2 inner
product〈ϕ, hk〉 by the one for complex valued functions, viz.〈ϕ,ψ〉 = ∫

Rd
ϕ(x)ψ̄(x)dx

and〈ϕ, hk〉2 is replaced by|〈ϕ, hk〉|2. It is well-known (see [6, 7]) thatS = ⋂
p Sp,S ′ =⋃

p Sp andS ′
p =: dual ofSp = S−p. We will denote by〈·,·〉p, the inner product corre-

sponding to the norm‖ · ‖p.
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Let (Yt )t≥0 be anSp-valued, locally bounded, previsible process, for somep ∈ R. Let
∂i : Sp → Sp−1/2 be the partial derivatives, 1≤ i ≤ d, in the sense of distributions. Then
since∂i, 1 ≤ i ≤ d are bounded linear operators it follows that(∂iYt )t≥0 is anSp−1/2-
valued, locally bounded, previsible process. From the theory of stochastic integration in
Hilbert spaces [8], it follows that the processes(∫ t

0
YsdX

i
s

)
t≥0

,

(∫ t

0
∂iYsdX

i
s

)
t≥0

are continuousFt local martingales for 1≤ i ≤ d, with values inSp andSp−1/2 respec-
tively. If Xt = (X1

t , . . . , X
d
t ) is a continuousRd -valued,Ft -semi-martingale, it follows

from the general theory that the above processes too are continuousFt -semi-martingales
with values inSp andSp−1/2 respectively.

Theorem 2.1. Letp ∈ R. There exists a polynomialPk(·) of degreek = 2([|p|] +1) such
that the following holds: For x ∈ R

d , τx : Sp → Sp is a bounded linear map and we have

‖τxϕ‖p ≤ Pk(|x|)‖ϕ‖p
for all ϕ ∈ Sp.

In ([9], Theorem 2.3) we showed that if(Xt )t≥0 is a continuous,d-dimensional,Ft -
semi-martingale andϕ ∈ Sp ⊂ S ′, then the process(τXt ϕ)t≥0 is anSq -valued continuous
semi-martingale for someq < p. Corollary 2.2 below says that we can takeq = p − 1.

COROLLARY 2.2

Let(Xt )t≥0 be a continuousd-dimensional,Ft -semi-martingale. Letϕ ∈ Sp, p ∈ R. Then
(τXt ϕ)t≥0 is anSp-valued, continuous adapted process. Moreover it is anSp−1-valued,
continuousFt -semi-martingale and the following Ito formula holds inSp−1: a.s., ∀ t ≥ 0,

τXt ϕ = τX0ϕ −
d∑
i=1

∫ t

0
∂i(τXsϕ)dX

i
s

+ 1

2

d∑
i,j=1

∫ t

0
∂2
ij (τXsϕ)d〈Xi,Xj 〉s , (2.1)

whereXt = (X1
t , . . . , X

d
t ) and (〈Xi,Xj 〉t ) is the quadratic variation process between

(Xit ) and(Xjt ), 1 ≤ i, j ≤ d.

Proof. From Theorem 2.1, it follows that(τXt ϕ) is an Sp-valued continuous adapted
process. By Theorem 2.3 of [9],∃ q < p, such that(τXt ϕ) is anSq semi-martingale and
the above equation holds inSq . Clearly each of the terms in the above equation is inSp−1
and the result follows. �

The next corollary pertains to the case when(Xt ) = (X1
t , . . . , X

d
t ) is ad-dimensional

Brownian motion,X0 ≡ 0. In ([5], Definition 3.1), we introduced the notion of anS ′
p(=

S−p, p > 0)-valued strong solution of the SDE

dYt = 1

2
1(Yt )dt + ∇Yt · dXt,

Y0 = ϕ, (2.2)
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where∇ = (∂1, . . . , ∂d) and1 = ∑d
i=1 ∂

2
i . There we showed that ifϕ ∈ S ′

p, then the
above equation has a uniqueS ′

q -valued strong solution,q ≥ p + 2. Theorem 2.1 implies
that we indeed have an (unique)S ′

p-valued strong solution.

COROLLARY 2.3

Letϕ ∈ S ′
p. Then, eq.(2.2)has a uniqueS ′

p-valued strong solution on0 ≤ t ≤ T .

Proof. By Corollary 2.2, the process(τXt ϕ), where(Xt ) is a d-dimensional Brownian
motion,X0 ≡ 0, satisfies eq. (2.1). Further,

E

∫ T

0
‖τXt ϕ‖2

−pdt =
∫ T

0

∫
Rd

‖τxϕ‖2
−p

e−(|x|2/2t)

(2πt)d/2
dx dt < ∞.

Uniqueness follows as in Theorem 3.3 of [5]. �
We now consider the heat equation for the Laplacian with initial conditionϕ ∈ Sp, for

somep ∈ R.

∂tϕt = 1

2
1ϕt 0< t ≤ T ,

ϕ0 = ϕ. (2.3)

By anSp-valued solution of (2.3), we mean a continuous mapt → ϕt : [0, T ] → Sp
such that the following equation holds inSp−1:

ϕt = ϕ +
∫ t

0

1

2
1ϕsds. (2.4)

Let {hp−1
k } be the ONB inSp−1 given byhp−1

k = (2|k| + d)−(p−1)hk. We then have for
p < 0 andt ≤ T :

‖ϕt‖2
p−1 =

∞∑
|k|=0

〈ϕt , hp−1
k 〉2

p−1

=
∞∑

|k|=0

{
〈ϕ, hp−1

k 〉2
p−1 + 2

∫ t

0
〈ϕs, hp−1

k 〉p−1d〈ϕs, hp−1
k 〉p−1

}

= ‖ϕ‖2
p−1 +

∞∑
|k|=0

2
∫ t

0
〈ϕs, hp−1

k 〉p−1

〈
1

2
1ϕs, h

p−1
k

〉
p−1

ds

= ‖ϕ‖2
p−1 + 2

∫ t

0

〈
1

2
1ϕs, ϕs

〉
p−1

ds.

It follows from the results of [5] (the monotonicity condition) that forp < 0,

2

〈
1

2
1ϕ, ϕ

〉
p−1

+
d∑
i=1

‖∂iϕ‖2
p−1 ≤ C ‖ϕ‖2

p−1

for some constantC > 0 for all ϕ ∈ Sp. We then get

‖ϕt‖2
p−1 ≤ ‖ϕ‖2

p−1 + C

∫ t

0
‖ϕs‖2

p−1ds.
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Hence for the casep < 0, uniqueness follows from the Gronwall lemma. Uniqueness for
the casep ≥ 0, follows from uniqueness for the casep < 0 and the inclusionSp ⊂ Sq
for q < p. It is well-known that the solutions of the initial value problem (2.3) inS ′(Rd)
are given by convolution ofϕ andpt (x), the heat kernel. That these coincide (as they
should) with theSp-valued solutions follows from the ‘probabilistic representation’ given
by Theorem 2.4 below. Define the Brownian semi-group(Tt )t≥0 onS in the usual manner:

Ttϕ(x) = ϕ ∗ pt (x) t > 0, T0ϕ = ϕ

wherept (x) = 1
(2πt)d/2

e(−|x|2/2t), t > 0 and ‘∗’ denotes convolution:f ∗ g(x) =∫
Rd
f (y)g(x − y)dy. In the next theorem we consider standard Brownian motion(Xt ).

Theorem 2.4. (a) Let ϕ ∈ Sp. Then fort ≥ 0, theSp-valued random variableτXt ϕ is
Bochner integrable and we have

E τXt ϕ = ϕ ∗ pt = Ttϕ.

In particular, for everyp ∈ R, andT > 0, supt≤T ‖Tt‖ < ∞ where‖Tt‖ is the operator
norm ofTt : Sp → Sp.
(b)For ϕ ∈ Sp, the initial value problem(2.3)has a uniqueSp-valued solutionϕt given by

ϕt = EτXt ϕ.

Furtherϕt → ϕ strongly inSp ast → 0.

3. Proofs of Theorems 2.1 and 2.4

The spacesSp can be described in terms of the spectral properties of the operatorH defined
as follows:

Hf = (|x|2 −1)f, f ∈ S.

If {hk} is the ONB inL2(Rd) consisting of Hermite functions (defined in §2), then it is
well-known (see [10]) that

Hhk = (2|k| + d)hk.

Forf ∈ S, define the operatorHp as follows:

Hpf =
∑
k

(2|k| + d)p〈f, hk〉hk.

Herep is any real number. Forf ∈ S andz = x + iy ∈ C defineHzf = ∑
k(2|k| +

d)z〈f, hk〉hk and note that,Hzf = Hx(H iyf ) = Hiy(Hxf ) andHiy : L2 → L2 is an
isometry. Further,

‖Hzf ‖2
0 =

∑
k

(2|k| + d)2x〈f, hk〉2

= ‖f ‖2
x.

The following propositions (3.1, 3.2 and 3.3) may be well-known. We include the proofs
for completeness.
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PROPOSITION 3.1

For anyp andq, ‖Hpϕ‖q−p = ‖ϕ‖q for ϕ ∈ S. Consequently,Hp : Sq → Sq−p extends
as a linear isometry. Moreover, this isometry is onto.

Proof. Let hpk = (2|k| + d)−phk. Then from the relation〈ϕ, hk〉p = (2|k| + d)2p〈ϕ, hk〉
it follows that{hpk } is an ONB forSp. Letϕ ∈ S. Since

Hpϕ =
∑
k

〈ϕ, hk〉(2|k| + d)phk

=
∑
k

〈ϕ, hk〉(2|k| + d)qh
q−p
k ,

we get‖Hpϕ‖2
q−p = ‖ϕ‖2

q .
To show thatHp is onto, considerψ ∈ Sq−p,

ψ =
∑
k

〈ψ, hq−pk 〉q−phq−pk .

Definingϕ =:
∑
k〈ψ, hq−pk 〉q−phqk , we see thatϕ ∈ Sq . Also,

Hpϕ =
∑
k

〈ϕ, hqk 〉qhq−pk =
∑
k

〈ψ, hq−pk 〉q−phq−pk = ψ. �

LetAj = xj + ∂j andA+
j = xj − ∂j , 1 ≤ j ≤ d. Then it is easy to see that

H = 1

2

d∑
j=1

(AjA
+
j + A+

j Aj ).

For multi-indicesα = (α1, . . . , αd) andβ = (β1, . . . , βd) we define

Aα =: Aα1
1 . . . A

αd
d , (A+)β =: (A+

1 )
β1 . . . (A+

d )
βd .

For an integer̀ ≥ 0 andx ∈ R, recall that

h`(x) = 1

(
√
π2``!)1/2

e−(x2/2)H`(x),

whereH` is the Hermite polynomial defined by

H`(x) = (−1)`ex
2 d`

dx`
e−x2

.

It is easily verified that(
x + d

dx

) (
e−(x2/2)H`(x)

)
= 2`

(
e−(x2/2)H`−1(x)

)
,(

x − d

dx

) (
e−(x2/2)H`(x)

)
= e−(x2/2)H`+1(x).

It then follows that

A+
j hkj (xj ) =

√
2(kj + 1)hkj+1(xj ),

Ajhkj (xj ) = √
2kjhkj−1(xj ).

Iterating these two formulas we get the following:
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PROPOSITION 3.2

Letk, β andα be multi-indices such thatkj ≥ αj , j = 1, . . . , d. Then

(A+)βhk(x) = 2|β|/2
(
(k + β)!

k!

)1/2

hk+β(x),

Aαhk(x) = 2|α|/2
(

k!

(k − α)!

)1/2

hk−α(x),

wherek! = k1! . . . kd !.

PROPOSITION 3.3

For all m ≥ 0, ∃ constantsC1 = C1(m) andC2 = C2(m) such that the following hold:
(a)For all f ∈ S,

‖f ‖m ≤ C1

∑
|α|+|β|≤2m

‖Aα(A+)βf ‖0 ≤ C2‖f ‖m.

(b) For all f ∈ S,

‖f ‖m ≤ C1

∑
|α|+|β|≤2m

‖xα∂βf ‖0 ≤ C2‖f ‖m.

Proof. (a) We can write

Hm =
∑

|α|+|β|≤2m

CαβA
α(A+)β,

whereCαβ are constants. Since‖f ‖m = ‖Hmf ‖0, the first part of the inequality follows.
To show the second half of the inequality it is sufficient to show that forf ∈ S and
|α| + |β| ≤ 2m, ‖Aα(A+)βH−mf ‖0 ≤ Cαβ‖f ‖0. Now,

‖Aα(A+)βH−mf ‖2
0 =

∑
`

〈Aα(A+)βH−mf, h`〉2

=
∑
`

[∑
k

(2|k| + d)−m〈f, hk〉〈Aα(A+)βhk, h`〉
]2

=
∑
`

[∑
k

(2|k| + d)−m〈f, hk〉Ck,β,α〈hk+β−α, h`〉
]2

=
∑
`

(2|`+ α−β| + d)−2mC2
`+α−β,β,α〈f, h`+α−β〉2,

where the sum is taken over` = (`1, . . . , `d) such that̀ j + αj − βj ≥ 0 for 1 ≤ j ≤ d

and where we have used Proposition 3.2 in the last but one equality above. From the same
proposition, it follows that

(2|α + `− β| + d)−2mC2
`+α−β,β,α

are uniformly bounded iǹ for |α| + |β| ≤ 2m and the second inequality in (a) follows.
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(b) Since‖f ‖m = ‖Hmf ‖0 and clearlyHm = ∑
|α|+|β|≤2m Cαβx

α∂β , the first inequality
follows. To prove the second inequality, note that

xj = 1

2
(Aj + A+

j ), ∂j = 1

2
(Aj − A+

j ).

Hence, using [Aj ,A
+
k ] = δjkI ,

xα∂β =
∑

|k|+|`|≤|α|+|β|
Ck,`A

k(A+)`

and hence by part (a) we get∑
|α|+|β|≤2m

‖xα∂βf ‖0 ≤ C1

∑
|k|+|`|≤2m

‖Ak(A+)`f ‖0 ≤ C2‖Hmf ‖0.

�
Proof of Theorem2.1. We first show that for an integerm ≥ 0,

‖τxϕ‖m ≤ P2m(|x|)‖ϕ‖m,

whereP2m(t) is a polynomial int ∈ R of degree 2m with non-negative coefficients. This
follows from Proposition 3.3:

‖τxf ‖m ≤ C1

∑
|α|+|β|≤2m

‖yα∂βτxf ‖0

≤ C1

∑
|α|+|β|≤2m

‖(y + x)α∂βf ‖0.

The last sum is clearly dominated byP2m(|x|)‖f ‖m for some polynomialP2m. If m <

p < m + 1, wherem ≥ 0 is an integer, we prove the result using the 3-line lemma: for
f, g ∈ S, let

F(z) = 〈Hz̄τxH
−zf, g〉0.

Then from the expansion inL2 for the RHS it is verified thatF(z) is analytic inm <

Rez < m+ 1 and continuous inm ≤ Rez ≤ m+ 1. We will show that

|F(m+ iy)| ≤ P2m(|x|)‖f ‖0‖g‖0,

|F(m+ 1 + iy)| ≤ P2(m+1)(|x|)‖f ‖0‖g‖0 (3.1)

for −∞ < y < ∞. Hence from the 3-line lemma [12], it follows that

|F(p + iy)| ≤ (P2m(|x|)‖f ‖0‖g‖0)
m+1−p(P2(m+1)(|x|)‖f ‖0‖g‖0)

p−m

≤ Pk(|x|)‖f ‖0‖g‖0,

wherePk(t) is a polynomial int of degreek = 2([p] + 1). It follows that

‖τxf ‖p ≤ Pk(|x|)‖f ‖p.
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Using the fact thatS−p = S ′
p we get‖τxf ‖−p ≤ Pk(|x|)‖f ‖−p for m ≤ p ≤ m+ 1.

The following chain of inequalities establish the inequalities (3.1):

|F(m+ iy)| ≤ ‖Hm−iyτxH−(m+iy)f ‖0‖g‖0

≤ ‖HmτxH
−(m+iy)f ‖0‖g‖0

= ‖τxH−(m+iy)f ‖m‖g‖0

≤ P2m(|x|)‖H−(m+iy)f ‖m‖g‖0

= P2m(|x|)‖H−iyf ‖0‖g‖0

= P2m(|x|)‖f ‖0‖g‖0.

This completes the proof of Theorem 2.1. �

Proof of Theorem2.4. (a) Letϕ ∈ Sp, p ∈ R. From Theorem 2.1 we have

‖τXt ϕ‖p ≤ Pk(|Xt |)‖ϕ‖p,

wherePk is a polynomial. SinceEPk(|Xt |) < ∞, Bochner integrability follows. For
ψ ∈ S, ϕ ∈ S,〈

ψ,

∫
τxϕ pt (x)dx

〉
=

∫
〈ψ, τxϕ〉pt (x)dx

=
∫
pt (x)dx

∫
ψ(y)ϕ(y − x)dy

=
∫
ψ(y)dy

∫
ϕ(y − x)pt (x)dx

=
∫
ψ(y)ϕ ∗ pt (y)dy

= 〈ψ, ϕ ∗ pt 〉.

The result forϕ ∈ Sp follows by a continuity argument: Letϕn ∈ S, ϕn → ϕ in Sp.
Henceϕn ∗ pt → ϕ ∗ pt weakly inS ′. Hence,

〈ψ, ϕ ∗ pt 〉 = lim
n→∞〈ψ, ϕn ∗ pt 〉

= lim
n→∞

∫
ψ(y)ϕn ∗ pt (y)dy

= lim
n→∞

∫
〈ψ, τxϕn〉pt (x)dx

=
∫

〈ψ, τxϕ〉pt (x)dx

=
〈
ψ,

∫
τxϕ pt (x)dx

〉
,

where we have used DCT in the last but one equality. ThatTt : Sp → Sp is a (uniformly)
bounded operator follows:
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‖Ttϕ‖p = ‖ϕ ∗ pt‖p = ‖EτXt ϕ‖p
=

∥∥∥∥
∫
τxϕ pt (x)dx

∥∥∥∥
p

≤
∫

‖τxϕ‖ppt (x)dx

≤ ‖ϕ‖p
∫
Pk(|x|)pt (x)dx ≤ C ‖ϕ‖p,

whereC = sups≤T
∫
Pk(|x|)ps(x)dx < ∞.

(b) Let (Xt ) be the standard Brownian motion so that〈Xi,Xj 〉 ≡ 0 for i 6= j . Equa-
tion (2.1) then reads, forϕ ∈ Sp, p ∈ R,

τXt ϕ = ϕ −
∫ t

0
∇(τXsϕ) · dXs + 1

2

∫ t

0
1(τXsϕ)ds. (3.2)

The stochastic integral is a martingale inSp−1:

E

∥∥∥∥
∫ t

0
∂i(τXsϕ)dX

i
s

∥∥∥∥
2

p−1
≤ C1 E

∫ t

0
‖∂i(τXsϕ)‖2

p−1ds

= C1

∫ t

0

(∫
‖∂i(τxϕ)‖2

p−1ps(x)dx

)
ds

≤ C2

∫ t

0

(∫
‖τxϕ‖2

p ps(x)dx

)
ds

≤ C3‖ϕ‖p
∫ t

0

(∫
Pk(|x|)ps(x)dx

)
ds

< ∞.

Letϕt = EτXt ϕ. Taking expected values in (3.2) we get eq. (2.4). Henceϕt is the solution
to the heat equation with initial valueϕ ∈ Sp. The uniqueness of the solution is well-known
and also follows from the remarks preceeding the statement of Theorem 2.4.

To complete the proof of the theorem, we need to show thatϕt → ϕ in Sp ast ↓ 0.
Let F denote the Fourier transform, i.e.Ff (ξ) = ∫

e−i(x·ξ)f (x)dx for f ∈ S. ThenF
extends toS ′ by duality, where we considerS ′ as a complex vector space. SinceF(hn) =
(−√−1)nhn ([10], p. 5, Lemma 1.1.3),F acts as a bounded operator fromSp to Sp, for
all p. Letϕ ∈ Sp.

ϕt − ϕ = Ttϕ − ϕ = F−1(St (Fϕ)),
where

Stϕ(x) = F(Tt − I )F−1ϕ(x) = (e−(t/2)|x|2 − 1)ϕ(x).

Clearly,St : Sp → Sp is a bounded operator and

‖ϕt − ϕ‖p = ‖St (Fϕ)‖p.
The following proposition completes the proof of the theorem.

PROPOSITION 3.4

Letϕ ∈ Sp, p ∈ R. Then‖Stϕ‖p → 0 ast → 0.
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Proof. We prove the proposition by showing that (i)St : Sp → Sp are uniformly bounded,
0 < t ≤ T and (ii) ‖Stϕ‖p → 0 for everyϕ ∈ S, ast → 0. Let us assume these results
for a moment and complete the proof.

Let ε > 0 be given. By (i), there is a constantC > 0 such that

sup
0≤t≤T

‖Stf ‖p ≤ C ‖f ‖p, f ∈ Sp.

Chooseϕ ∈ S, so that‖f − ϕ‖p ≤ ( ε2C ). Then,

‖Stf ‖p ≤ ‖St (f − ϕ)‖p + ‖Stϕ‖p
≤ ε/2 + ‖Stϕ‖p.

Now chooseδ > 0 such that‖Stϕ‖p ≤ ε/2 for all 0 ≤ t < δ, to get‖Stf ‖p < ε for all
0 ≤ t < δ.

SinceSt = F(Tt − I )F−1, (i) follows from the fact thatTt : Sp → Sp are uniformly
bounded (Theorem 2.4a) andF : Sp → Sp is a unitary operator. The proof of (ii) is by a
direct calculation whenp = m is a non-negative integer.

‖Stϕ‖m = ‖HmStϕ‖0 ≤ C1

∑
|α|+|β|≤2m

‖xα∂βStϕ‖0.

SinceStϕ(x) = (e−(t/2)|x|2 − 1)ϕ(x), by Leibniz rule

‖xα∂βStϕ‖0 ≤
∑

|µ|+|γ |=|β|
Cµγ ‖xα∂µ(e−(t/2)|x|2 − 1)∂γ ϕ‖0.

Whenµ 6= 0, we have

‖xα∂µ(e−(t/2)|x|2 − 1)∂γ ϕ‖0 ≤ C2t
|µ|‖ϕ‖m

and whenµ = 0, using the elementary inequality|1 − e−u| ≤ C3u, u > 0 we get

‖xα(e−(t/2)|x|2 − 1)∂γ ϕ‖0 ≤ C4t‖ϕ‖m+1.

Therefore,‖Stϕ‖m ≤ C t‖ϕ‖m+1 for some constantC, which shows that‖Stϕ‖m → 0 as
t → 0. If p is real andm is a non-negative integer such thatp ≤ m, we have

‖Stϕ‖p ≤ ‖Stϕ‖m ≤ Ct‖ϕ‖m+1

and so‖Stϕ‖p → 0 ast → 0 in this case as well. �
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