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Abstract.  In this paper we provide a new (probabilistic) proof of a classical result
in partial differential equations, viz. i is a tempered distribution, then the solution of
the heat equation for the Laplacian, with initial conditipns given by the convolution

of ¢ with the heat kernel (Gaussian density). Our results also extend the probabilistic
representation of solutions of the heat equation to initial conditions that are arbitrary
tempered distributions.
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1. Introduction

Let (X;);>0 be ad-dimensional Brownian motion, witlko = 0. Lety € S'(RY), the
space of tempered distributions. Lgtrepresent the unique solution to the heat equation
with initial value ¢, viz.

1
8t<ﬂt:§A¢t 0<r<T; w0 = ¢.

It is well-known thatg, = ¢ * p,, wherep,(x) = We—(mz/zﬂ and % denotes

convolution. Whery is smooth, sayy € S, the space of rapidly decreasing smooth
functions, then the probabilisitc representation of the solution is given by the equality
o(t, x) = Ep(X; + x) and is obtained by taking expectations in the Ito formula

t t

(X +x) =p(x) +f0 V(X +x) -dX; + %/c; Ap(Xg + x)ds.

Such representations are well-known (see [1-4]) and extend to a large class of initial
value problems, with the Laplaciaxreplaced by a suitable (elliptic) differential operator
L and (X;) being replaced by the diffusion generated lbyA basic problem here is to
extend the representation to situations where not smooth.

The main contribution of this paper is to give a probabilistic representation of solutions
to the initial value problem for the Laplacian with an arbitrary initial vajue S’. This
representation follows from the Ito formula developed in [9], for #ievalued process
(tx,¢), wherer, ¢ is the translation op by x € R“. Our representation (Theorem 2.4)
then readsy; = Ety, ¢ Where of coursey is the solution of the initial value problem for
the Laplacian, with initial value € S'. In particular, the fundamental solutign(x — -)
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has the representatiop,(x — -) = Etx,5,. However, the results of [9] only show that if
RS S;,, then there existg > p such that the processy, ¢) takes values irzS[]. Here for
each reap, theS,s are the ‘Sobolev spaces’ associated with the spectral decomposition
of the operatorx|g — A or equivalently they are the Hilbert spaces defining the countable
Hilbertian structure o’ (see [6]).S),, the dual ofS,, is the same aS_,. Clearly it would
be desirable to have the procésg, ¢) take values ir5’,, wheneverp S;,. Such a result
also has implications for the semi-martingale structure of the praeess— it is a semi-
martingale inS’__, (Corollary 2.2) and fails to have this property&]f,l forg < p+1(see
Remark 5.2 oif[5]).

Given the above remarks and the results of [9], the properties of the translation operators
become significant. We show in Theorem 2.1 that the operatar§, — S, for x € R,
are indeed bounded operators, for any geabith the operator norms being bounded above
by a polynomial injx|. The proof uses interpolation techniques well-known to analysts.
Theorem 2.4 then gives a comprehensive treatment of the initial value problem for the
Laplacian from a probabilistic point of view.

2. Statements of the main results

Let(Q2, F, (F:)i>0, P) be afiltered probability space with a filtratio#; ) satisfying usual
conditionsF; = (,., Fs andFp contains allP-null sets. Le(X,),>0 be ad-dimensional,
(F;)-Brownian motion withXq = 0.

S denotes the space of rapidly decreasing smooth functior®’ofreal valued) and
S’ its dual, the space of tempered distributions. We refer to [11] for formal definitions.
Forx € R?, 8, € S will denote the Dirac distribution at. Let {r, : x € R¢} denote
the translation operators defined on functions by the formufay) = f(y — x) and let
7 . 8’ — &’ act on distributions by

(tep, [) =A@, T2 f).

The nuclear space structure 8f is given by the family of Hilbert spaceS,, p € R,
obtained as the completion Sfunder the Hilbertian normf - || ,} ,er defined by

lol5 = "Ikl + ) (9, hi)?,
k

whereg € S, and the sum is taken ovér= (k1, ... ,kq) € Z%, k| = (k1 + -+ +
ka), (¢, hi) denotes the inner product i (R?) and{hy, k € Z4} is the ONB inL2(R%),
constructed as follows: far = (x1,...,xq), hx(x) = hg(x1) ... ", (x4). The one-

dimensional Hermite functions are given by(s) = We—(ﬁ/awm, where

Hi(s) = (—1)Z€2dl;e—52 are the Hermite polynomials. While we mainly deal with real
valued functions, at times we need to use complex valued functions. In such cases, the
spacesS, are defined in a similar fashion as above, i.e. as the completiSmvith respect

to | - ||,. However, in the definition on¢||f, above we need to replace the ré&linner
product(e, ki) by the one for complex valued functions, vig, ¥) = [ga e(x)¥ (x)dx

and(g, ii)? is replaced by(g, i)|2. Itis well-known (see [6, 7]) thaf = (1, S, 8’ =

U, Sp andS,, =: dual of S, = S_,,. We will denote by(-,-) ,, the inner product corre-
sponding to the norni - || .
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Let (¥;);>0 be anS,-valued, locally bounded, previsible process, for sgmeR. Let
9; © S, = Sp—1/2 be the partial derivatives, 2 i < d, in the sense of distributions. Then
sinced;, 1 < i < d are bounded linear operators it follows tlatY;);-o is anS,_1/2-
valued, locally bounded, previsible process. From the theory of stochastic integration in
Hilbert spaces [8], it follows that the processes

t t
(f mext) - (f )
0 t>0 0 t>0

are continuous”; local martingales for k i < d, with values inS,, andS,_1/> respec-
tively. If X, = (X1, ..., X¢) is a continuou®R?-valued, 7;-semi-martingale, it follows
from the general theory that the above processes too are contifigaasni-martingales
with values inS, andS,_1/» respectively.

Theorem 2.1. Letp € R. There exists a polynomi# (-) of degreeék = 2([| p|] + 1) such
that the following holdsFor x € R?, 7, : S, — S, is a bounded linear map and we have

lzxellp = P(xDllellp

forallp € S,.
In ([9], Theorem 2.3) we showed that(k,);>0 is a continuous¢-dimensional ;-

semi-martingale and € S, C &', then the procesgy, ¢);>o is anS,-valued continuous
semi-martingale for somg < p. Corollary 2.2 below says that we can take- p — 1.

COROLLARY 2.2

Let(X;):;>0 be a continuoug-dimensiona|F;-semi-martingale. Let € S,,, p € R. Then
(tx,9)r=0 is anS,-valued continuous adapted process. Moreover it is§n 1-valued
continuous?;-semi-martingale and the following Ito formula holdsSp_;: a.s, vz > 0,

d t
X, P = Txof — Z/ 3 (tx, ) dX;

/ 2 (0, (X', X7),, 2.1)
lj =1
whereX, = (X1, ... ,X;f) and (X', X/),) is the quadratic variation process between
(XHand(x{),1<i,j<d.

Proof. From Theorem 2.1, it follows thatry,¢) is anS,-valued continuous adapted
process. By Theorem 2.3 of [4,4 < p, such thai(ry,¢) is anS, semi-martingale and

the above equation holds &,. Clearly each of the terms in the above equation iS,jn;
and the result follows. U

The next corollary pertains to the case whiéh) = (X1, ..., X;i) is ad-dimensional
Brownian motion Xg = 0. In ([5], Definition 3.1), we introduced the notion of élg(z
S_p, p > 0)-valued strong solution of the SDE

1
dYt = EA(YI)dt + VYt . dXt,
Yo = o, (2.2)
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whereV = (91, ...,9) andA = Zf’zl 81.2. There we showed that i € S;,, then the
above equation has a uniqgg-valued strong solutiory > p + 2. Theorem 2.1 implies
that we indeed have an (uniqu&g—valued strong solution.

COROLLARY 2.3

Lety € S),. Then eq.(2.2) has a uniqueS),-valued strong solutiono@ < ¢ < 7.

Proof. By Corollary 2.2, the procesgy, ¢), where(X,) is ad-dimensional Brownian
motion, X = 0, satisfies eq. (2.1). Further,

o (/20
E/O Iex, ¢l i = /fn nol, S v di < .

Uniqueness follows as in Theorem 3.3 of [5]. L]

We now consider the heat equation for the Laplacian with initial conditiensS,,, for
somep € R.

1
8t§0t=§A¢t O0<t<T,

Po=¢. (2.3)

By anS,-valued solution of (2.3), we mean a continuous mag ¢;: [0, T] — S,
such that the following equation holdsdf_1:

t

1

QOr =9 +/ EAgDsds. (2.4)
0

Let {h,f_l} be the ONB inS,_1 given byh,’j‘l = (2k| + d)~?=Dh. We then have for

p<O0and:t <T:

o0

-1
lellaa = {or hf )54
|k|=0
= 1,2 1
= Z {((pvh/l; > 1+2/ <(p57h >p71d<§03ah/€ >pl}
|k|=0
2 - ! p—1 1 p—1
=||¢||p1+|]d2202fc)<¢s,hk >p_1<§mos,hk >p_1ds

"1
= ||¢||§,_1+2/ <§A<ps,%> ds.
0 p—1

It follows from the results of [5] (the monotonicity condition) that fer< 0,

1
2<§A¢,¢> +Z||a,go||,, 1= Cllel5y
p—1

i=1

for some constar® > O for all¢ € S,,. We then get

lerl2_y < llol2_ 1+C/ s 112 _yds.
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Hence for the casg < 0, uniqueness follows from the Gronwall lemma. Uniqueness for
the casep > 0, follows from uniqueness for the cage< 0 and the inclusiois, C S,

for ¢ < p. Itis well-known that the solutions of the initial value problem (2.351iR¢)

are given by convolution of and p,(x), the heat kernel. That these coincide (as they
should) with theS,-valued solutions follows from the ‘probabilistic representation’ given
by Theorem 2.4 below. Define the Brownian semi-gromip;>o onS in the usual manner:

Tip(x) =¢xp(x) t >0, Top=¢
where p;(x) = We(""'z/z”,t > 0 and % denotes convolution:f * g(x) =
fRd f(y)g(x — y)dy. In the next theorem we consider standard Brownian matgmn.

Theorem 2.4. (a) Letyp € S,. Then forr > 0, the §,-valued random variabley, ¢ is
Bochner integrable and we have

Etx,0=¢x*p =To.

In particular, for everyp € R, and7 > 0, sup_y || 7| < oo where||T; || is the operator
norm of7; : S, — Sp.
(b) For ¢ € S, the initial value problenf2.3)has a uniques,-valued solutiory; given by

(pt - Eer(p'

Furtherg, — ¢ strongly inS, ast — O.

3. Proofs of Theorems 2.1 and 2.4

The spaces,, can be described in terms of the spectral properties of the opéfatefined
as follows:

Hf =(Ix?—A)f, feS.

If {h} is the ONB inL2(R?) consisting of Hermite functions (defined in §2), then it is
well-known (see [10]) that

Hhi = 2lk| + d)hy.
For f € S, define the operatall ¥ as follows:

HP f = @Ikl + d)"(f, hi)hi.
k

Herep is any real number. Fof € Sandz = x +iy € CdefineH*f = > i 2lk| +
d)*(f, hi)hy and note thatH*f = H*(H" f) = HY(H* f) andH"Y : L2 — L?is an
isometry. Further,

IH=£15 = _(@lk| + > (f. hu)?

k

=12

The following propositions (3.1, 3.2 and 3.3) may be well-known. We include the proofs
for completeness.
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PROPOSITICN 3.1

Foranyp andq, |[H?¢|l,—p = ll¢ll, fore € S. Consequentlyd? : S, — S,_, extends
as a linear isometry. Moreover, this isometry is onto.

Proof. Let h,’: = (2|k| 4+ d)~?hy. Then from the relatiorty, ), = (2|k| +d)?P (@, hy)
it follows that{h,’:} is an ONB forS,,. Letp € S. Since

HPp = (¢, i) 2lk| + d)Phy
k

= (o, hi)2lk| + )R] ",
k
we get|H7g|2_, = [lo|2.
To show thatH ? is onto, considety € S, ),

V=2 W gl
k
Definingy =: Y, (¥, h{ ")4—ph}, we see thap € S,. Also,

HPp = Z(go, hZ)qhz_l’ = Z(w’ hz_p)q—phz_p =y 0

k k

LetA; =x; +9; andA;r =x; —9;,1<j <d.Thenitis easy to see that
1 + +
H= EZI(AJ-A]. +ATA).
j:

For multi-indicesy = (a1, ... ,ay) andB = (B1, ... , Bs) we define
AY = AT LAY, (AN =D (A,

For an integef > 0 andx € R, recall that

he(x) = e D, (x),

1
(J/m2tenl/2
whereH, is the Hermite polynomial defined by

dt 2
H — (—Dle’ —e
1(x) = (=1 e
Itis easily verified that

(x + %() (e—(x2/2) Hy (x)) =2 (e_(x2/2) Hzfl(x)) )

d
<x a &> (e—(x2/2) Hz(x)) — e 2 H ().

It then follows that

AT hi (x)) = 20k + D 11(x)),
Ajhk_/- (x.j) = \/ijhkj_l(xj).
Iterating these two formulas we get the following:
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PROPOSITION 3.2
Letk, g anda be multi-indices such thdt; > «;, j =1,...,d. Then

1/2
(AP hy(x) = 2PV/2 (@) hi4p(x),

k!

1/2
m) hg—a(x),

A%hi(x) = 2|“/2<
wherek! = kq!. .. k4!,

PROPOSITION 3.3

For all m > 0, 3 constantsC; = C1(m) and C2 = C2(m) such that the following hold
(@Forall f eS8,

I flm = C1 Z 1A% (A)? fllo < C2ll fllm-

la|+1B1<2m
(b)Forall f e S,
Iflm <C1 > 11x%0P fllo < Call flm-
la|+|Bl<2m

Proof. (a) We can write

H"= Y CapA*(AMP,
loe|+[B8|<2m

whereC,g are constants. Sindgf|l,, = [|[H™ f |0, the first part of the inequality follows.
To show the second half of the inequality it is sufficient to show thatffoe S and
loe| + [B] < 2m, [|A*(ATYPH™™ fllo < Cagpll f llo- Now,

IA“ADYPHT fII5 =D (A“ANPH™ f, he)?
14

2
=y {Z(zw +d) " (f ) (AY APy, h@]
£ k

2
=y [Z(zm +d) " (fo hid) Cr o ket par he)i|
14 k

=Y @e+a—Bl+d)?"CE g polf hiva—p).
4

where the sum is taken ovér= ({1, ... ,£¢y) suchthat; +o; — ; >0forl< j <d
and where we have used Proposition 3.2 in the last but one equality above. From the same
proposition, it follows that

Qa+L—Bl+d)?"Cl oy ppa

are uniformly bounded i for |«| + | 8] < 2m and the second inequality in (a) follows.
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(b) Since|| f I, = |1H™ f|lo and clearlyH™ = Z\a|+\ﬁ\§2m Co,ﬁx"‘af‘, the first inequality
follows. To prove the second inequality, note that

1 1
Xj=§(Aj+A}L), 3j=§(Aj_A}_)-
Hence, using4;, A1 = 81,

%3P = Yo CreAlah!
|+ € =Tl +IB]

and hence by part (a) we get

Y P flo=c D 1A% AN fllo < CallH” fllo.

la|+1B1=2m k|+1€]<2m

Proof of Theoren2.1. We first show that for an integer > O,

ITx@llm < Pan(IxD @]l

where Py, (t) is a polynomial irt € R of degree & with non-negative coefficients. This
follows from Proposition 3.3:

ltefllm <C1 D> 1y*0Preflo

la|+|Bl=2m

<C1 Y. IG+0%" flo.

la|+|Bl<2m

The last sum is clearly dominated B, (|x])|l f|l;» for some polynomialPy,,. If m <
p < m+ 1, wherem > 0 is an integer, we prove the result using the 3-line lemma: for
figeS, let

F(z) = (H*t. H™*f, g)o.

Then from the expansion ih2 for the RHS it is verified tha# (z) is analytic inm <
Rez < m + 1 and continuous im < Rez < m + 1. We will show that

|[F(m+iy)| < P2u(IxD fllollgllo,
[F(m+1+iy)| = Pogny1)(IxDI flloligllo 3.1

for —oo < y < 0o. Hence from the 3-line lemma [12], it follows that

|F(p+in| < (Pan (DI f lollgllo) 7 (Pagmtny (1x DI £ ol glo)” ™
< Pre(IxDIl fllollgllo,

where Py (¢) is a polynomial irv of degreek = 2([ p] + 1). It follows that

Iz fllp < Pe(xDIfIp-
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Using the fact thaf_, = S;, we get|| T, fll—p < P(xDIIfll-p form < p <m + 1.
The following chain of inequalities establish the inequalities (3.1):

|F(m +iy)| < [|H™" V1 H=" ) flloligllo
< |H™t H=" ) flloligllo
= e H™ ") flmligllo
< Pon(IXDIH™F £l ligllo

= Pou(IXDIH™" flloligllo
= P2 (IxD)Il fliollgllo-

This completes the proof of Theorem 2.1. Il
Proof of Theoren2.4. (a) Lety € S;,, p € R. From Theorem 2.1 we have
lrx, el = P(X:Dllelp,

where Py is a polynomial. SinceE P, (| X;]) < oo, Bochner integrability follows. For
Yy eSS, pes,

<1/f,/fx<0 pz(x)dx> = /(xﬁ, Te@) pi(x)dx
=/pt(x)deW(y)<p(y—X)dy
sz(y)dyfgo(y — x)pi(x)dx
=/¢(y)<p*pz(y)dy

= <w7€0*pt)

The result forp € S, follows by a continuity argument: Let, € S, ¢, — ¢ in S,.
Henceg, * p; — ¢ * p, weakly inS’. Hence,

(Y, *pr) = nleOOW, ©n * Pr)
= nli_)moo / Y (¥)en * p(y)dy

— lim [ (W Txn) pr (1) dx

n—oo

= /(w, Tx) pr (x)dx

- <w, [ v pf<x>dx>,

where we have used DCT in the last but one equality. ThatS, — S, is a (uniformly)
bounded operator follows:
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ITiellp = llo* pellp = | Etx, @llp

_ H / o Py < / el ppe ()
P

< ||<p||prk<|x|>p,<x)dx <C loll,.

whereC = sup 7 [ Pi(|x]) ps(x)dx < oo.
(b) Let (X;) be the standard Brownian motion so that, X/) = 0 fori # j. Equa-
tion (2.1) thenreads, fay € S, p € R,

t 1 t
X9 =¢— fo V(tx,¢) - dX; + 5/0 A(tx, p)ds. (3.2)
The stochastic integral is a martingaleSp_;:

t ] 2
E ”/ 0; (‘L’xx(p)dXé,
0

t
<CLE /0 19: (rx, @) I2_yds

t
—a ( / ||a,-(rx<o>||§,1ps<x>dx) ds
0
t
< ( [ 1ol ps(X)dx> ds
0
t
< Callpl | ( / Pk(|x|>ps(x>dx> ds

< Q.

p—1

Lety;, = Etx,¢. Taking expected values in (3.2) we get eq. (2.4). Hends the solution
to the heat equation with initial valyee S,,. The uniqueness of the solution is well-known
and also follows from the remarks preceeding the statement of Theorem 2.4.

To complete the proof of the theorem, we need to showghat- ¢ in S, asr | 0.
Let F denote the Fourier transform, i£.f (&) = [e™@% f(x)dx for f € S. ThenF
extends taS’ by duality, where we consid&¥’ as a complex vector space. SinEér,,) =
(—v/=1)"h, ([10], p. 5, Lemma 1.1.3)F acts as a bounded operator fréinto S,,, for
all p. Lety € S).

¢ —¢ =T —¢=F HS(Fp)),
where
Sip(x) = F(T; — NF Yp(x) = (€21 — 1)p(x).
Clearly,S; : S, — S, is a bounded operator and
lo: — @llp = IS (Fe)llp.
The following proposition completes the proof of the theorem.

PROPOSITICN 3.4
Lety € Sp, p € R. Then||S;¢|, — Oast — O.
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Proof. We prove the proposition by showing thatgj): S, — S, are uniformly bounded,
0 <t < T and (i) |S;¢ll , — O for everyp € S, ast — 0. Let us assume these results
for a moment and complete the proof.

Lete > 0 be given. By (i), there is a constafit> 0 such that

sup 1S: fllp = C Ilfllp, f € Sp.

O<t<T

Choosey € S, so that|| f — ¢ll, < (35)- Then,

1St fllp < 1S:(f = @)llp + 1Sl
<€/2+1Slp-

Now chooseS > 0 such thaf|S;¢|, < e/2forall 0 <t < §, to get||S; fIl, < e for all
0<t <.

SinceS;, = F(T, — NF1, (i) follows from the fact thatl; : S, — S, are uniformly
bounded (Theorem 2.4a) atid: S, — S, is a unitary operator. The proof of (i) is by a
direct calculation whep = m is a non-negative integer.

ISipllm = 1H"Siollo<C1 > Ix*3*Sipllo.
la|+]B|<2m

SinceS; ¢(x) = (e~ /27 _ 1)p(x), by Leibniz rule

_ 2
Ix*3®Sipllo < D Cuyllx®d*(e 2T — )97 glo.
ll+1y =181

Whenpu # 0, we have
_ 2
1x“ 9% (e~ — 1)87 pllo < Cat™ gl
and wheru = 0, using the elementary inequality — e™*| < Cau, u > 0 we get
_ 2
Ix* (e~ /PN" — )87 gllo < Catlpllm1-

Therefore||S;¢|lm < C t||¢|m+1 for some constar@, which shows thatS;¢|l,,, — 0 as
t — 0. If pisreal andn is a non-negative integer such that m, we have

ISiellp < 1Si@lm < Ctll@llmt1

and so||S;¢|l, — 0 ast — 0 in this case as well. ]
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