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Abstract. Using divisors, an analog of the Jacobian for a compact connected nonori-
entable Klein surfaceY is constructed. The Jacobian is identified with the dual of the
space of all harmonic real one-forms onY quotiented by the torsion-free part of the first
integral homology ofY . Denote byX the double cover ofY given by orientation. The
Jacobian ofY is identified with the space of all degree zero holomorphic line bundlesL

overX with the property thatL is isomorphic toσ ∗L, whereσ is the involution ofX.
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1. Introduction

LetY be a compact connected nonorientable Riemann surface, that is, each transition func-
tion is either holomorphic or anti-holomorphic. We consider surfaces without boundary.
Let X denote the double cover ofY given by the local orientations. SoX is a compact
connected Riemann surface.

In §2, we define a morphism fromY to H, the closure of the upper half-plane in the
Riemann spherêC. Let Div0(Y ) denote the group defined by all formal finite sums of the
form

∑
niyi , whereni ∈ Z with

∑
ni = 0 andyi ∈ Y . We call such a divisorD to be

principal if there is a morphism (see §2 for the definition of morphism)u fromY to H with
the property that

D = u−1(0)− u−1(∞) .

LetJ0(Y )denote the quotient of Div0(Y )by its subgroup consisting of all principal divisors.
ThisJ0(Y ) is the analog of the Jacobian for a nonorientable Riemann surface.

Harmonic one-forms are defined onY . LetH 1
R
(Y ) denote the space of all harmonic real

one-forms onY . The torsion-free part ofH1(Y,Z) is a subgroup ofH1
R
(Y )∗. The quotient

is identified withJ0(Y ). This is proved by showing thatH1
R
(Y ) is identified with the space

of all holomorphic one-formsω onX satisfying the identityω = σ ∗ω, whereσ is the
nontrivial automorphism of the double coverX of Y (Theorem 2.7).

For a holomorphic line bundleL overX, the pullbackσ ∗L is again a holomorphic
line bundle overX. We show thatJ0(Y ) is identified with the group of all holomorphic
line bundlesL overX for which the holomorphic line bundleσ ∗L is isomorphic toL
(Theorem 4.2).

A compact Riemann surface is a smooth projective curve overC. Conversly, every
smooth projective curve overC corresponds to a compact Riemann surface. If we take
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a smooth projective curveXR defined overR, then using the inclusion ofR in C we
get a smooth projective curveXC over C. Now, since the involution ofC defined by
conjugation fixesR, the complex curveXC is equipped with an anti-holomorphic involution
that reverses the orientation. Conversely, every complex projective curve equipped with an
anti-holomorphic involution is actually defined overR. If the involution does not have any
fixed points, that is, the curve does not have any real points, then it is called an imaginary
curve.

Therefore, a nonorientable Riemann surfaceY (without boundary) corresponds to an
imaginary algebraic curve defined overR. The Jacobian of the complexificationYC is also
the complexification of a variety defined overR. The JacobianJ0(Y ) coincides with this
variety defined overR.

2. Divisors on a nonorientable surface

Let Y be a compact connected nonorientable surface. In other words,Y is a compact
connected nonorientable smooth manifold of dimension two, andY has a covering by
smooth coordinate charts such that each transition function is either holomorphic or anti-
holomorphic. Any coordinate chart in the maximal atlas satisfying the above condition
on transition functions will be calledcompatible. Such a nonorientable surface is called a
Klein surface.

DEFINITION 2.1

A divisorD onY is a formal sum of type

D =
∑
y∈Y

nyy ,

whereny ∈ Z andny = 0 except for a finitely many points ofY .

DEFINITION 2.2

Thedegreeof a divisorD = ∑
y∈Y nyy is defined to be the integer deg(D) := ∑

y∈Y ny .

We will denote by Div(Y ) the set of all divisors onY . Let Divd(Y ) ⊂ Div(Y ) be the
divisors of degreed.

Let π : X → Y be a double cover ofY given by local orientations onY . So for a
contractible open subsetU ⊂ Y , the inverse imageπ−1(U) is two copies ofU with the
two possible orientations onU (see [1] for more details on Klein surfaces and their double
covers).

Therefore,X is a Riemann surface, and the change of orientation defines an anti-
holomorphic involutionσ : X → X that commutes withπ .

The involutionσ induces in a natural way a mapping on the set of divisors on the
Riemann surfaceX as follows

σ ∗ : Div(X) −→ Div(X)∑
mj xj 7−→

∑
mj σ(xj ).

Observe thatσ ∗ preserves the degree.
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Similarly, the quotient mapπ : X → Y induces mappings between the divisors on
X andY . To define those mappings we first set up some notation. For any pointy ∈ Y

we will denote byπ−1(y) the divisor given by the inverse image ofy. In other words,
π−1(y) = x+ σ(x), wherex ∈ X is a point satisfyingπ(x) = y. Then we can define two
mappings as follows:

π∗ : Div(Y ) → Div(X), π∗ : Div(X) → Div(Y ),
s∑
j=1

nj yj 7→
s∑
j=1

nj π
−1(yj ),

s∑
j=1

mj xj 7→
s∑
j=1

mj π(xj ).

Observe that(π∗ ◦ π∗)(D) = 2D and(π∗ ◦ π∗)(E) = E + σ ∗(E) for D ∈ Div(Y ) and
E ∈ Div(X).

Let Div(X)σ
∗

denote the set of fixed points ofσ ∗ on Div(X).
The following lemma follows immediately from the above definitions.

Lemma2.3. The groupDiv(Y ) is identified withDiv(X)σ
∗
. The isomorphism takes the

subgroupDiv0(Y ) to Div(X)σ
∗

0 = Div0(X) ∩ Div(X)σ
∗
.

Let j : Ĉ → Ĉ denote the mapping induced by conjugation on the Riemann sphere
Ĉ, so thatj (z) = z̄ and j (∞) = ∞. The quotient space is a surface with boundary,
H = Ĉ/〈j〉. We can also identifyH with the closure ofH (the upper half-plane) in the
Riemann sphere. Let

p : Ĉ −→ H

denote the quotient map. After identifyingH with the closure ofH the mapp coincides
with the one defined byp(x + √−1y) = x + √−1|y| andp(∞) = ∞.

A morphismfrom Y to H is a continuous mapping

u : Y −→ H

such that if(U,w) is a local coordinate function defined onY , compatible with the Riemann
surface structure, withw(U) ⊂ H, then there exists a holomorphic functionF : w(U) →
C that makes the following diagram commutative:

U
u //

w

��

H

H
F

// C

p

OO

,

wherep is defined above.
Let u be a morphism, as above, fromY to H which is not identically equal to 0 or∞. If

z0 is a point ofH, then byu−1(z0) we understand the divisor given by the inverse image
of z0 underu (so the integersnj in Definition 2.1 are given by the multiplicities ofu at
the corresponding points). Since 0 and∞ in Ĉ project to two different points onH,

div(u) := u−1(0)− u−1(∞) ∈ Div(Y )

is a divisor onY .
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DEFINITION 2.4

A divisorD ∈ Div(Y ) is calledprincipal if D = div(u) for some morphismu : Y → H

of the above type. The set of principal divisors ofY will be denoted by DivP (Y ).

PROPOSITION 2.5

A divisorD onY is principal if and only if there exists a divisorE ∈ DivP (X)∩Div(X)σ
∗

with π∗D = E.

Proof. Let E = div(f ) be a principal divisor in Div(X)σ
∗
, wheref is a non-constant

meromorphic function onX. Consider the functionψ onX defined byψ(x) = f (σ(x))

onX. This functionψ is clearly meromorphic.
SinceE ∈ Div(X)σ

∗
, we have div(ψ) = div(f ). Consequently, there exists a constant

c ∈ C \ {0} such thatψ = cf .
Therefore, we havef (x) = ψ(x)/c = f (σ(x))/c = ψ(σ(x))/|c|2 = f (x)/|c|2. Take

c0 ∈ C with c2
0 = c. Setf0 = c0f .

The divisor for the meromorphic functionf0 coincides withE. Furthermore,f0 satisfies
the condition

f0 ◦ σ = f0 .

Therefore, it induces a map

f̂ : Y := X/σ −→ H := Ĉ/〈j〉

with div(f̂ ) = D.
Conversely, letD = div(u) be a principal divisor onY . Consider the composition

u ◦ π : X −→ H. It is straight-forward to see that the functionu ◦ p lifts to a smooth
function

f : X −→ Ĉ

such thatp◦f = u◦π . There are two such smooth lifts; one is holomorphic and the other is
anti-holomorphic (u◦p also has a continuous lift, defined by the inclusion ofH in Ĉ which
is not smooth). Letf denote the holomorphic one. Since div(f ) = π∗(D) ∈ Div(X)σ

∗
,

the proof of the proposition is complete. �
DEFINITION 2.6

The quotient of Div0(Y ), the group of all degree zero divisors onY , by the subgroup of
all principal divisors onY is called theJacobianof Y . The Jacobian ofY will be denoted
by J0(Y ).

From Proposition 2.5, it follows immediately that by sending any divisorD on Y to
the divisorπ∗D onX we obtain an injective homomorphism fromJ0(Y ) to the Jacobian
J0(X) of X. From Lemma 2.3, it follows thatJ0(Y ) coincides with the fixed point set of
the involution ofJ0(X) defined byσ .

A functionf : W → R, defined on an open subset ofY is calledharmonicif for every
pointy ∈ W , there exists a compatible coordinate chart(U,w), with

y ∈ U ⊆ W ,



Jacobian of a Klein surface 143

such that the functionf ◦ w−1 is harmonic. Since precomposition with holomorphic and
anti-holomorphic functions preserve harmonicity, we conclude that harmonic functions
are well-defined onY .

We say that a real one-formη onY is harmonicif it is locally given by df , wheref is
a harmonic function.

Let � denote the holomorphic cotangent bundle of the Riemann surfaceX. If ω ∈
H 0(X,�) is given locally byω = f dz, wheref is a holomorphic function, then define

σ ∗ω := (f ◦ σ) d(z ◦ σ) .

So ifω is defined overU , thenσ ∗ω is a holomorphic one-form defined overσ(U). More
generally, for a one-formα = u dz+ v dz̄, set

σ ∗α = (u ◦ σ) d(z ◦ σ)+ (v ◦ σ) d(z ◦ σ) .

Let H1
R
(Y ) andH1

R
(X) denote the space of all real harmonic one-forms onY andX

respectively. Using the mapπ : X → Y , we can lift harmonic forms onY to smooth forms
onX. It is easy to see that the pullback of a harmonic form onY is a harmonic form onX.
Therefore, there is a well-defined injective homomorphismπ∗ : H1

R
(Y ) −→ H1

R
(X).

The complex structure onX defines a Hodge-∗ operator on one-forms onX. In local
holomorphic coordinates the Hodge-∗ operator is

∗(u dz+ v dz̄) = −√−1u dz+ √−1vdz̄

or ∗(a dx + b dy) = −b dx + a dy.
A holomorphic one-formω onX will be calledσ -invariant if σ ∗ω = ω. The space of

all σ -invariant forms onX will be denoted byH 0(X,�)σ
∗
.

Theorem 2.7. A holomorphic formω ∈ H 0(X,�) isσ -invariant if and only if there exists
a formη ∈ H1

R
(Y ) such thatω = β + √−1(∗β), whereβ = π∗η.

The homomorphismH 1
R
(Y ) −→ H 0(X,�)σ

∗
defined by

η 7−→ π∗η + √−1(∗π∗η)

is an isomorphism of real vector spaces.

Proof. Take anyω ∈ H 0(X,�). Let ω = β + √−1(∗β), whereβ is a real one-form.
Now the conditionσ ∗ω = ω immediately implies thatσ ∗β = β. Therefore,β is the
pullback of a form onY . For anyη ∈ H1

R
(Y ), the formπ∗η+√−1(∗π∗η) is aσ -invariant

holomorphic one-form.
Let

ϕ : H1
R
(Y ) −→ H 0(X,�)σ

∗

be the homomorphism that sends any harmonic formη ∈ H1
R
(Y ) to the holomorphic form

π∗η+ √−1(∗π∗η). This homomorphism is injective since a holomorphic one-form with
vanishing real part must be identically zero.

The inverse homomorphism

H 0(X,�)σ
∗ −→ H1

R
(Y )
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sends aσ -invariant formω onY to η with the property

π∗η = ω + ω

2
.

This completes the proof of the theorem. �

3. The Jacobian

A closed oriented smooth pathγ onX gives an elementLγ ∈ H 0(X,�)∗ defined by

Lγ (ω) =
∫
γ

ω,

whereω ∈ H 0(X,�). Using Stokes’ theorem we get a mapping fromH1(X,Z) to
H 0(X,�)∗. The quotient spaceH 0(X,�)∗/H1(X,Z) will be denoted byJ1(X).

As we saw in the previous section, for a holomorphic one-formω onX, the formσ ∗ω
is again a holomorphic one-form. This involution ofH 0(X,�) induces an involution

σ1 : H 0(X,�)∗ −→ H 0(X,�)∗ .

In other words,(σ1(L))(ω) = L(σ ∗(ω)). It is easy to check that for any closed smooth-
oriented pathγ onX, the identity

σ1(Lγ ) = Lσ(γ )

is valid. So, the involutionσ1 preserves the subgroupH1(X,Z) ⊂ H 0(X,�)∗.
Consequently, the involutionσ1 of H 0(X,�)∗ induces an involution on the quotient

spaceJ1(X). The involution ofJ1(X) obtained this way will also be denoted byσ1.
Let g be the genus of the compact connected Riemann surfaceX. Suppose we have

a canonical basis ofH1(X,Z), say{α1, . . . , αg, β1, . . . , βg}. This means that the corre-
sponding intersection matrix is

J =
(

0 −I
I 0

)
,

whereI is the identity matrix of rankg. Then there exists a unique basis ofH 0(X,�),
say{ω1, . . . , ωg}, such that

∫
αk
ωj = δjk ([2], Proposition III.2.8). We say that this basis

is adaptedto the given basis of homology.
Using this adapted basis we can identifyH 0(X,�)∗ with C

g by sending the elementL
of H 0(X,�)∗ to the vector(L(ω1), . . . , L(ωg)).

Therefore, for anyγ ∈ H1(X,Z), we may identify the elementLγ ∈ H 0(X,�)∗ with

(Lγ (ω1), . . . , Lγ (ωg)) ∈ C
g .

Denote byL the lattice inC
g defined byH1(X,Z) using this identification. The quotient

spaceJ1(X) defined earlier is clearly identified with the quotientC
g/L.

Assume that the basis{ωj } is σ -invariant, that is,σ ∗(ωj ) = ωj for eachj ∈ [1 , g]. It
is easy to check that by the above isomorphism ofH 0(X,�)∗ with C

g the involutionσ1 of
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H 0(X,�)∗ (defined earlier) coincides with the conjugation defined as(z1, . . . , zg) 7−→
(z1, . . . , zg).

We will denote byσ# the involution ofH1(X,Z) induced by the involutionσ of X. Let

{γ1, . . . , γg, δ1, . . . , δg}
be a canonical basis ofH1(X,Z) satisfying the conditionσ#(γj ) = γj for all j ∈ [1 , g].
Let {ω1, . . . , ωg} denote the corresponding adapted basis.

PROPOSITION 3.1

The above adapted basis{ω1, . . . , ωg} is σ -invariant.

Proof. Since∫
σ#γ

ω =
∫
γ

σ ∗ω =
∫
γ

σ ∗ω

(asσ is an involution), the proposition follows immediately. �
As in §2, letJ0(X) denote the quotient Div0(X)/DivP (X). For a meromorphic func-

tion f we haveσ ∗(div(f )) = div(f ◦ σ). Soσ ∗ induces an involution onJ0(X). This
involution ofJ0(X) will be denoted byσ0.

Let{ω1 . . . , ωg} be the basis in Proposition 3.1. Recall the quotientJ1(X)ofH 0(X,�)∗
defined earlier. TheAbel–Jacobi mapA : X → J1(X) is defined as follows: choose a point
x0 of X and setA(x) = [ ∫ x

x0
ω1, . . . ,

∫ x
x0
ωg

]
, where the brackets denote the equivalence

class inJ1(X). We have

A(σ(x)) =
[∫ σ(x)

x0

ω1, . . . ,

∫ σ(x)

x0

ωg

]
=

[∫ σ(x0)

x0

ω1, . . . ,

∫ σ(x0)

x0

ωg

]

+
[∫ σ(x)

σ (x0)

ω1, . . . ,

∫ σ(x)

σ (x0)

ωg

]

= c0 +
[∫ σ(x)

σ (x0)

σ ∗(ω1), . . . ,

∫ σ(x)

σ (x0)

σ ∗(ω1)

]

= c0 +
[∫ x

x0

ω1, . . . ,

∫ x

x0

ωg

]
= c0 + A(x),

wherec0 = A(σ(x0)). For a divisorD = ∑r
j=1 nj xj , we define

A(D) =
r∑
j=1

nj A(xj ) .

If D has degree equal to 0 then we can write it asD = ∑s
j=1 xj−

∑s
j=1 yj , wherexj 6= yk

(though we can have repetitions among thexjs or theyks). Then it is easy to check that

A(σ0(D)) = A(D) = σ1(A(D)) , (1)

whereσ1 andσ0 are the earlier defined involutions ofH 0(X,�)∗ andJ0(X) respectively.
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By Abel’s theorem, the mapA can be extended to a map fromJ0(X) to J1(X). By the
Abel–Jacobi inversion problem, the mapA : J0(X) → J1(X) is surjective. Thus (1) says
thatσ0 andσ1 are equivalent underA, that is, the following diagram commutes:

J0(X)

σ0

��

A // J1(X)

σ1

��

J0(X)
A

// J1(X).

(2)

In the paragraph following Definition 2.6 we noted that the JacobianJ0(Y ) coincides
with the fixed point set ofJ0(X) for the action of the involutionσ0. LetJ1(X)

σ1 ⊂ J1(X)

be the fixed point set for the action of the involutionσ1 onJ1(X). From the commutativity
of the diagram in (2) it follows immediately thatJ0(Y ) is identified withJ1(X)

σ1. Finally
using Theorem 2.7, the JacobianJ0(Y ) is identified with the quotient ofH1

R
(Y ) by the

torsion-free part ofH1(Y,Z).

4. Line bundles on a Klein surface

Let L be a holomorphic line bundle over a Riemann surfaceX. By L we will mean
the C∞ complex line bundle overX whose transition functions are the conjuga-
tions of the transition functions forL. To explain this, letUi , i ∈ I , be an open
covering ofX and assume that over eachUi we are given a holomorphic trivializa-
tion of L. So for any ordered pairi, j ∈ I , we have the corresponding transition
function

fi,j : Ui ∩ Uj −→ C
∗

which is holomorphic. TheC∞ complex line bundleL hasC∞ trivializations over each
Ui , i ∈ I , and for any ordered pairi, j ∈ I the corresponding transition function isfi,j .
It is easy to see that the collection{fi,j }i,j∈I satisfy the cocycle condition to define aC∞
complex line bundle.

The line bundleL can also be defined without using local trivializations.AC∞ complex
line bundle is aC∞ real vector bundle of rank two together with a smoothly varying
complex structure on the fibers (which are real vector spaces of dimension two). The
underlying real vector bundle of rank two forL coincides with the one forL. For any
x ∈ X, if Jx is the complex structure on the fiberLx , then the complex structure of the
fiberLx is −Jx .

As in §2, letY be a nonorientable Klein surface andX its double cover, which is a
connected Riemann surface of genusg.

LetL be a holomorphic line bundle overX. The complex line bundleσ ∗L has a natural
holomorphic structure, whereσ , as before, is the involution ofX. To construct the holo-
morphic structure onσ ∗L, observe that iff is a holomorphic function on an open subset
U of X, thenf ◦ σ is a holomorphic function ofσ(U). We can choose the above open
subsetsUi (sets over whichL is trivialized) in such a way thatσ(Ui) = Ui . Now, since
eachfi,j ◦ σ is a holomorphic function onUi ∩ Uj , the complex line bundleσ ∗L gets
equipped with a holomorphic structure.
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PROPOSITION 4.1.

LetD be a divisor onX of degreed andL the corresponding holomorphic line bundle
OX(D) overX of degreed. Then the holomorphic line bundleσ ∗L corresponds to the
divisorσ(D), that is, σ ∗L ∼= OX(σ(D)).

Proof. SinceL ∼= OX(D), we have a meromorphic sections of L with the positive part
of D as the zeros ofs (of order given by multiplicity) and the negative part ofD as the
poles ofs (of order given by multiplicity). SinceL andL are identified as real rank two
vector bundles, the pullbackσ ∗s defines a smooth section ofσ ∗L over the complement
(in X) of the support ofD.

It is straight-forward to check that the sectionσ ∗s of σ ∗L is meromorphic. The divisor
defined by the meromorphic sectionσ ∗s clearly coincides withσ(D). Consequently,σ ∗L
is holomorphically isomorphic to the line bundle overX defined by the divisorσ(D). This
completes the proof of the proposition. �

Recall the quotient spaceJ0(X) := Div0(X)/DivP (X) considered in §2. The Jacobian
J0(X) is identified with the space of all isomorphism classes of degree zero holomorphic
line bundles overX. The isomorphism sends any divisorD to the line bundleOX(D). As
in §3, letσ0 denote the involution ofJ0(X) defined byσ . From Proposition 4.1, it follows
immediately that the above identification ofJ0(X) with degree zero line bundles takes the
involution σ0 to the involution defined byL 7−→ σ ∗L on the space of all isomorphism
classes of degree zero line bundles.

LetD be a divisor of degree zero on the nonorientable Klein surfaceY . From Proposi-
tion 2.5, it follows immediately thatD is principal if and only ifπ∗D is principal. There-
fore, we have an injective homomorphism

ρ :
Div0(Y )

DivP (Y )
−→ Div0(X)

DivP (X)
= J0(X) (3)

defined byD 7−→ π∗D, where DivP (Y ) denotes the group of principal divisors onY (as
before, Div0 denotes degree zero divisors).

Theorem 4.2. The image of the homomorphismρ in (3) coincides with the subgroup of
J0(X) defined by all holomorphic line bundleL with σ ∗L holomorphically isomorphic
toL.

Proof. LetD be a divisor onY of degree zero. The divisorπ∗D onX is left invariant by
the action of the involutionσ . From the above remark that the involutionσ0 is taken into
the involution defined byL 7−→ σ ∗L, it follows immediately that the holomorphic line
bundleL = OX(π

∗D) overX corresponding to the divisorπ∗D satisfies the condition
L ∼= σ ∗L.

For the converse direction, take a holomorphic line bundleL overX which has the
property thatσ ∗L is isomorphic toL. Let s be a nonzero meromorphic section ofL. If the
divisor div(s) is left invariant by the involutionσ , thenL is in the image ofρ.

If div(s) is not left invariant by the involutionσ , then consider the meromorphic section
of σ ∗L defined byσ ∗s. (Recall thatσ ∗L andσ ∗L are identified as real rank twoC∞
bundles, and the section ofσ ∗L defined byσ ∗s using this identification is meromorphic.)

Now, fix a holomorphic isomorphism

α : L −→ σ ∗L (4)
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such that the composition

L
α−→ σ ∗L σ ∗α−→ σ ∗σ ∗L = L (5)

is the identity automorphism ofL, whereα is the isomorphism ofL with σ ∗L induced by
α. Note that such an isomorphism exists. Indeed, if

α′ : L −→ σ ∗L

is any isomorphism, then the automorphismσ ∗α′ ◦ α′ of L (defined as in (5)) is the
multiplication by a nonzero scalarc ∈ C. Take anyc0 ∈ C such thatc2

0 = c. Now the
isomorphismα = α′/c0 satisfies the condition that the composition in (5) is the identity
automorphism ofL.

Let s′ be the meromorphic section ofL defined by the above sectionσ ∗s using this
isomorphism. Consider the meromorphic sections′+s ofL. Since div(s) is not left invariant
by σ , this meromorphic sections′ + s is not identically zero. The divisor div(s + s′) is
clearly left invariant by the involutionσ . HenceL ∈ J0(X) is in the image ofρ. This
completes the proof of the theorem. �

5. Nonorientable line bundle

In this section we will define a line bundle onY intrinsically without usingX.
Let {Ui}i∈I be a covering ofY by open subsets and for eachUi ,

φi : Ui −→ R
2,

aC∞ coordinate chart. Consider the trivial (real) line bundleUi × R on eachUi . Using

det d(φj ◦ φ−1
i )

|det d(φj ◦ φ−1
i )| ∈ ±1 ⊂ Aut(R)

as the transition function overUi ∩ Uj for the pair(i , j), we get a real line bundle over
Y . This line bundle will be denoted byξ . Since the transition functions are±1, the line
bundleξ⊗2 has a natural isomorphism with the trivial line bundleY × R. Let

λ : ξ⊗2 −→ Y × R (6)

be the isomorphism.
We will give a construction of the line bundleξ without using coordinate charts. Consider

the complement
∧2

T Y \ {0Y } of the zero section of the real line bundle
∧2

T Y , where
T Y is the real tangent bundle ofY . The multiplicative group

R
+ := {c ∈ R | c > 0}

acts on
∧2

T Y \ {0}. The action of anyc ∈ R
∗ sends anyv ∈ ∧2

T Y \ {0} to cv. Also,
the multiplicative group±1 acts on

∧2
T Y \ {0} by sending anyv to ±v. Since these two

actions commute, we have an action of the multiplicative group±1 on

Z :=
∧2

T Y \ {0Y }
R+ .
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Now, we have

ξ = Z × R

±1
,

where±1 acts diagonally and it acts onR as multiplication by±1.
We will show that the Klein surface (nonorientable complex) structure onY gives an

isomorphism ofT Y with T Y ⊗ ξ , whereT Y as before is the (real) tangent bundle ofY .
To construct the isomorphism, take a compatible coordinate chart

φi : Ui −→ C

compatible with the nonorientable complex structure. The orientation of the complex line
C induces an orientation ofUi usingφi . This gives a trivialization ofξ overUi (this induced
trivialization is also clear from the first construction ofξ ). Usingφi we have a complex
structure onUi obtained from the complex structure ofC. Let

γi : T Ui −→ T Ui ⊗ ξ |Ui
be the isomorphism defined by the almost complex structure ofUi and the trivialization
of ξ |Ui . If φj is another compatible coordinate chart then the functionφi ◦ φ−1

j is either
holomorphic or anti-holomorphic. This immediately implies that the isomorphism

γj : T Uj −→ T Uj ⊗ ξ |Uj
(obtained by repeating the construction ofγi for the new compatible coordinate chart)
coincides withγi overUi ∩Uj . Consequently, the locally defined isomorphisms{γi} patch
together compatibly to give a global isomorphism

γ : T Y −→ T Y ⊗ ξ (7)

overY .
A nonorientable complex line bundleoverY is aC∞ real vector bundle of rank two

overY together with aC∞ isomorphism of vector bundles

τ : E −→ E ⊗ ξ (8)

satisfying the condition that the composition

E
τ−→ E ⊗ ξ

τ⊗Idξ−→ (E ⊗ ξ)⊗ ξ = E ⊗ ξ⊗2 IdE⊗λ−→ E (9)

coincides with the automorphism ofE defined by multiplication with−1, whereλ is
defined in (6).

Therefore, if for a pointy ∈ Y we fixw ∈ ξy withλ(w⊗w) = 1, then the automorphism
of the fiberEy defined by

v 7−→ 〈τ(v) , w∗〉
is an almost complex structure onEy , where〈− ,−〉 denotes the contraction ofξy with its
dual lineξ∗

y andw∗ ∈ ξ∗
y is the dual element ofw, that is,〈w ,w∗〉 = 1.

Let (E, τ) be a nonorientable complex line bundle overY as above. It is easy to see that
theC∞ vector bundleE isnotorientable. Indeed, the two orientations on a two-dimensional
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real vector spaceV defined byJ and−J , whereJ is an almost complex structure onV ,
are opposite to each other. To explain this, note that an orientation of the tangent space
TyY , wherey ∈ Y , induces an orientation of the fiberEy and conversely. Indeed, giving
an orientation ofTyY is equivalent to giving a vector inw ∈ ξy with λ(w ⊗ w) = 1. As
it was shown above, such an elementw gives an almost complex structure onEy . Hence
Ey gets an orientation. Conversely, if we have an orientation of the fiberEy , then choose
the elementw ∈ ξy , with λ(w ⊗ w) = 1, that induces this orientation usingτ . Now,w
gives an orientation ofTyY . Therefore, giving an orientation ofEy is equivalent to giving
an orientation ofTyY . Since the tangent bundleT Y is not orientable, we conclude that the
vector bundleE is not orientable.

The total space of the vector bundleE will also be denoted byE. Let

f : E −→ Y

be the natural projection. Note that the relative tangent bundle forf (that is, the kernel of
the differential df ) is identified withf ∗E. So we have the following exact sequence of
vector bundle

0 −→ f ∗E −→ T E −→ f ∗T Y −→ 0 (10)

over the manifoldE.
The line bundlef ∗ξ will be denoted bŷξ . Let

J : T E −→ T E ⊗ ξ̂

be an isomorphism such that the composition

T E
J−→ T E ⊗ ξ̂

J⊗Id
ξ̂−→ (T E ⊗ ξ̂ )⊗ ξ̂ = T E ⊗ ξ̂⊗2 IdE⊗f ∗λ−→ T E

coincides with the automorphism ofE defined by multiplication with−1. Assume that the
isomorphismJ satisfies the following further conditions:

(1) The subbundlef ∗E in (10) is preserved byJ andJ |f ∗E coincides with the isomor-
phismf ∗τ , whereτ is defined in (8).

(2) The action ofJ on the quotientf ∗T Y in (10) coincides with the isomorphismf ∗γ ,
whereγ is constructed in (7).

A holomorphic structure on the nonorientable complex line bundleE is an isomorphism
J as above satisfying the following conditions (apart from the above conditions) described
below.

If we take a coordinate chart(U, φ) onY compatible with the nonorientable Riemann
surface structure, then as we saw before, the restrictionξ |U gets a trivialization. This
in turn gives a trivialization of̂ξ overf−1(U). Using this trivialization ofξ̂ |f−1(U), the
isomorphismJ |f−1(U) becomes an automorphismJφ of (T E)f−1(U) with the property
thatJφ ◦Jφ coincides with the automorphism of(T E)f−1(U) given by multiplication with
−1. In other words,Jφ is an almost complex structure onf−1(U).

A holomorphic structureon the nonorientable complex line bundleE is an isomorphism
J satisfying the following two conditions (apart from the earlier conditions):



Jacobian of a Klein surface 151

(1) The almost complex structureJφ onf−1(U) is integrable for every compatible coor-
dinate chart.

(2) There is a homomorphic isomorphism

fφ : f−1(U) −→ φ(U)× C ⊂ C × C

that fits in a commutative diagram

f−1(U)
fφ−→ φ(U)× Cyf y

U
φ−→ φ(U)

(the right vertical arrow is the projection to the first coordinate), and the restriction
of fφ to any fiber off is a complex linear isomorphism withC.

A holomorphic line bundleoverY is defined to be a complex line bundle equipped with
a holomorphic structure.

As in §2, letπ : X −→ Y be the double cover of the nonorientable Riemann surface
Y given by local orientations. As before, letσ denote the anti-holomorphic involution of
the Riemann surfaceX.

Theorem 5.1. The space of all holomorphic line bundles overY are in bijective corre-
spondence with the holomorphic line bundlesL overX with the property thatσ ∗L is
holomorphically isomorphic toL.

Proof. Let L be a holomorphic line bundle overX such thatσ ∗L is holomorphically
isomorphic toL. Fix an isomorphism

α : L −→ σ ∗L

as in (4) such that the composition in (5) is the identity automorphism ofL.
Since the underlyingC∞ line bundle forL is identified with that ofL, the isomorphism

α gives aC∞ isomorphism ofL with σ ∗L whose composition with itself is the identity
automorphism ofL. In other words,α is aC∞ lift to L of the involutionσ ofX. Therefore,
the quotientL/α is a real vector bundle of rank two overX/σ = Y . This real vector
bundle of rank two overY will be denoted byE.

To construct a complex structure onE, first note that the (real) line bundleπ∗ξ overX
is canonically trivialized, i.e., there is a natural isomorphism ofπ∗ξ with the trivial line
bundleX × R overX. Indeed, this follows immediately from the definitions ofX andξ .
The complex structure on the fibers onL give an isomorphism

L −→ L

defined by multiplication by
√−1. Consider the composition

L −→ L −→ L⊗R (X × R) −→ L⊗R π
∗ξ

which we denote byJ0. Sinceπ∗ξ is the pullback of a line bundle overY , there is a natural
lift of the involution σ to π∗ξ . On the other hand,α is aC∞ lift of the involution σ to
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L. Therefore, we have a lift of the involutionσ to L ⊗R π
∗ξ . It is straight-forward to

check that the isomorphismJ0 defined above commutes with the lifts of the involutionσ
to L andL ⊗R π

∗ξ . This immediately implies that the isomorphismJ0 descends to an
isomorphism ofE with E ⊗R ξ overY . This isomorphism ofE with E ⊗R ξ , which we
denote byJ , clearly satisfies the condition that the composition in (9) is multiplication by
−1. Therefore,(E, J ) is a nonorientable complex line bundle.

It is easy to see thatJ defines a holomorphic structure onE. Indeed, this is an imme-
diate consequence of the fact that the almost complex structure on the total space ofL is
integrable.

For the converse direction, take a holomorphic line bundle(E, J ) overY . Consider the
(real) rank twoC∞ vector bundleπ∗E overX. Sinceπ∗ξ is identified with the trivial line
bundle, the complex structureτ onE (defined in (8)) gives a complex structure onπ∗E.
For the same reason,J defines an integrable complex structure on the total space ofπ∗E.
Using the conditions onJ the vector bundleπ∗E gets the structure of a holomorphic line
bundle overX.

Sinceπ∗E is the pullback of a vector bundle overY , the involutionσ ofX has a natural
C∞ lift to π∗E. The isomorphism ofπ∗E with σ ∗π∗E defined by this lift gives a holo-
morphic isomorphism of the holomorphic line bundleπ∗E with σ ∗π∗E. This completes
the proof of the theorem.
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