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Abstract. Using divisors, an analog of the Jacobian for a compact connected nonori-
entable Klein surfac& is constructed. The Jacobian is identified with the dual of the
space of all harmonic real one-forms Brguotiented by the torsion-free part of the first
integral homology off. Denote byX the double cover of given by orientation. The
Jacobian ot is identified with the space of all degree zero holomorphic line bunidles
over X with the property thaL is isomorphic tar*L, whereo is the involution ofX.
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1. Introduction

LetY be acompact connected nonorientable Riemann surface, that is, each transition func-
tion is either holomorphic or anti-holomorphic. We consider surfaces without boundary.
Let X denote the double cover &f given by the local orientations. S6 is a compact
connected Riemann surface.

In 82, we define a morphism from to H, the closure of the upper half-plane in the
Riemann spher€. Let Divg(Y) denote the group defined by all formal finite sums of the
form > n;y;, wheren; € Z with ) n; = 0 andy; € Y. We call such a divisoD to be
principal if there is a morphism (see §2 for the definition of morphigiinpm ¥ to H with
the property that

D = u10) — uY(00).

LetJo(Y) denote the quotient of DY) by its subgroup consisting of all principal divisors.
This Jo(Y) is the analog of the Jacobian for a nonorientable Riemann surface.

Harmonic one-forms are defined &nlLet HH%(Y) denote the space of all harmonic real
one-forms ort'. The torsion-free part off1(Y, Z) is a subgroup OHJ}Q(Y)*. The quotient
is identified withJo(Y). This is proved by showing that%&(Y) is identified with the space
of all holomorphic one-forms& on X satisfying the identitys = o*w, whereo is the
nontrivial automorphism of the double covErof Y (Theorem 2.7).

For a holomorphic line bundl& over X, the pullbacks*L is again a holomorphic
line bundle overX. We show that/y(Y) is identified with the group of all holomorphic
line bundlesL over X for which the holomorphic line bundle*L is isomorphic toL
(Theorem 4.2).

A compact Riemann surface is a smooth projective curve @veConversly, every
smooth projective curve oveél corresponds to a compact Riemann surface. If we take
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a smooth projective curv&r defined overR, then using the inclusion dR in C we
get a smooth projective curvEc over C. Now, since the involution ofC defined by
conjugation fixe®, the complex curv& ¢ is equipped with an anti-holomorphic involution
that reverses the orientation. Conversely, every complex projective curve equipped with an
anti-holomorphic involution is actually defined ouRr If the involution does not have any
fixed points, that is, the curve does not have any real points, then it is called an imaginary
curve.

Therefore, a nonorientable Riemann surfacéwithout boundary) corresponds to an
imaginary algebraic curve defined orThe Jacobian of the complexificati#iT is also
the complexification of a variety defined ovRr The Jacobiap(Y) coincides with this
variety defined oveR.

2. Divisors on a nonorientable surface

Let Y be a compact connected nonorientable surface. In other wirds,a compact
connected nonorientable smooth manifold of dimension two, Jarés a covering by
smooth coordinate charts such that each transition function is either holomorphic or anti-
holomorphic. Any coordinate chart in the maximal atlas satisfying the above condition
on transition functions will be callecdompatible Such a nonorientable surface is called a
Klein surface

DEFINITION 2.1
A divisor D onY is a formal sum of type

D = Z”yy,

yeY
wheren, € Z andn, = 0 except for a finitely many points of.

DEFINITION 2.2
Thedegreeof adivisorD =}y nyy is defined to be the integer dd) = >,y ny.

We will denote by DiY) the set of all divisors ofY. Let Div;(Y) C Div(Y) be the
divisors of degred.

Letw : X — Y be a double cover of given by local orientations olf. So for a
contractible open subsét c Y, the inverse image ~1(U) is two copies ofU with the
two possible orientations ati (see [1] for more details on Klein surfaces and their double
covers).

Therefore,X is a Riemann surface, and the change of orientation defines an anti-
holomorphic involutions : X — X that commutes withr .

The involutionos induces in a natural way a mapping on the set of divisors on the
Riemann surfac& as follows

o* : Div(X) — Div(X)
ijxj —> ija(xj).

Observe that * preserves the degree.
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Similarly, the quotient mapr : X — Y induces mappings between the divisors on
X andY. To define those mappings we first set up some notation. For any p@nY
we will denote by ~1(y) the divisor given by the inverse image of In other words,
7~ 1(y) = x + o (x), wherex € X is a point satisfyingr (x) = y. Then we can define two
mappings as follows:

7*:Div(Y) — Div(X), 7y :Div(X) — Div(Y),
N N N N
anyjHanﬂ_l(yj), ZMj)CjI—)ijT[(Xj).
=1 =1 =1 =1

Observe thatm, o 7*)(D) = 2D and(z* o ,)(E) = E + o*(E) for D € Div(Y) and
E € Div(X).

Let Div(X)°" denote the set of fixed points 6f on Div(X).

The following lemma follows immediately from the above definitions.

Lemma2.3. The groupDiv(Y) is identified withDiv(X)?". The isomorphism takes the
subgroupDivg(Y) to Div(X)3" = Divo(X) N Div(X)7".

Letj : C — C denote the mapping induced by conjugation on the Riemann sphere
C, so  thatj(z) = z and j(co) = oo. The quotient space is a surface with boundary,
H= (C/( ). We can also identif§il with the closure offl (the upper half-plane) in the
Riemann sphere. Let

p:C—H
denote the quotient map. After identifyifiy with the closure offl the mapp coincides
with the one defined by (x + +/—1y) = x + v—1[y| andp(co) =

A morphismfrom Y to H is a continuous mapping
u:Y — H

suchthatifU, w) is alocal coordinate function defined Bncompatible with the Riemann
surface structure, with (U) C H, then there exists a holomorphic functibn w(U) —
C that makes the following diagram commutative:

U
|
H =

u
—

a——H

wherep is defined above.
Let« be a morphism, as above, frafnto H which is not identically equal to 0 @x. If
zo is a point of H, then byu~1(z0) we understand the divisor given by the inverse image
of zo underu (so the integers; in Def|n|t|on 2.1 are given by the multiplicities af at
the corresponding points). Since 0 ardin C project to two different points oHI,

div(u) = u=1(0) — u"2(c0) € Div(Y)

is a divisor onyY'.
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DEFINITION 2.4

A divisor D € Div(Y) is calledprincipal if D = div(x) for some morphisn : ¥ — H
of the above type. The set of principal divisorsfotvill be denoted by Diy ().

PROPOSITION 2.5

Adivisor D onY is principal if and only if there exists a divisdt € Divp(X)N Div(X)°"
withn*D = E.

Proof. Let E = div(f) be a principal divisor in Di¢X)°", where f is a non-constant
meromorphic function oX. Consider the functior on X defined by (x) = f(o(x))
on X. This functiony is clearly meromorphic.

SinceE € Div(X)?", we have divy) = div(f). Consequently, there exists a constant
¢ € C\ {0} suchthaty = cf.

Therefore, we have (x) = ¥ (x)/c = f(o(x))/c = ¥(o(x)/|c]? = f(x)/|c|. Take
co € C with CS =c. Setfp = cof.

The divisor for the meromorphic functiofy coincides withe. Furthermore fj satisfies
the condition

fooo = %
Therefore, it induces a map
f:Y:=X/o — M :=C/{j)

with div(f) = D.

Conversely, letb = div(x) be a principal divisor or¥. Consider the composition
uom . X —> H. Itis straight-forward to see that the functierv p lifts to a smooth
function

f:X—>@

suchthapo f = wuom.There are two such smooth lifts; one is holomorphic and the otheris
anti-holomorphic o p also has a continuous lift, defined by the inclusiofilof C which

is not smooth). Leff denote the holomorphic one. Since@diy = 7*(D) € Div(X)?",

the proof of the proposition is complete.

DEFINITION 2.6

The quotient of Dig(Y), the group of all degree zero divisors &h by the subgroup of
all principal divisors orY is called theJacobianof Y. The Jacobian of will be denoted
by Jo(Y).

From Proposition 2.5, it follows immediately that by sending any diviBoon Y to
the divisorz*D on X we obtain an injective homomorphism frarp(Y) to the Jacobian
Jo(X) of X. From Lemma 2.3, it follows thafy(Y) coincides with the fixed point set of
the involution of Jo(X) defined byo.

A function f : W — R, defined on an open subsetlofs calledharmonicif for every
pointy € W, there exists a compatible coordinate clft w), with

yeUlUcWw,
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such that the functiorf o w1 is harmonic. Since precomposition with holomorphic and
anti-holomorphic functions preserve harmonicity, we conclude that harmonic functions
are well-defined of.

We say that a real one-formonY is harmonicif it is locally given by df, wheref is
a harmonic function.

Let Q denote the holomorphic cotangent bundle of the Riemann suadé w €
HO(X, Q) is given locally byw = fdz, wheref is a holomorphic function, then define

oc*w ;= (foo)d(Zoo).

So if w is defined ovel/, theno *w is a holomorphic one-form defined owe(U). More
generally, for a one-forre = u dz + v dz, set

oc*a=Wwoo)d(zoo)+ (voo)d(Zoo).

Let 1L (Y) andHi (X) denote the space of all real harmonic one-formsyoand X
respectively. Using the map: X — Y, we can lift harmonic forms ofi to smooth forms
onX. Itis easy to see that the pullback of a harmonic fornYda a harmonic form oiX .
Therefore, there is a well-defined injective homomorphis: Hi(Y) — HI}{{(X).

The complex structure o defines a Hodge-operator on one-forms oK. In local
holomorphic coordinates the Hodgesperator is

*(udz +vdz) = —+/—1udz + ~/—1vdz

orx(adx + bdy) = —bdx + ady.
A holomorphic one-formw on X will be calledo-invariantif o*» = . The space of
all o-invariant forms onX will be denoted byH%(X, ©)°".

Theorem 2.7. A holomorphic formw € H(X, Q) isc-invariant if and only if there exists
aformn € Hi (Y) such thaw = B + +/—1(xp), wherep = 7.

The homomorphismii(Y) — HO(X, Q)" defined by

n —> w¥n + /=17 *n)
is an isomorphism of real vector spaces.

Proof. Take anyw € HO(X, Q). Letw = B + +/—1(xB), wherep is a real one-form.
Now the conditionc*w = @ immediately implies that*8 = B. Therefore g is the
pullback of a form or¥'. For anyn € H]}K(Y), the formm*n + /—1(xr*n) is ac -invariant
holomorphic one-form.

Let

¢ HE(Y) — HOX, Q)"

be the homomorphism that sends any harmonic fxprezrﬂ-[ﬂl&(Y) to the holomorphic form
7*n + +/—1(x7*n). This homomorphism is injective since a holomorphic one-form with
vanishing real part must be identically zero.

The inverse homomorphism

HOX, @) — HL(Y)



144 Pablo ABs-Gastesi and Indranil Biswas

sends a -invariant formw on'Y to n with the property

. oF w
Tn = 2
This completes the proof of the theorem. O

3. The Jacobian

A closed oriented smooth pathon X gives an element, < HO(X, Q)* defined by

L) = /w
Y

wherew € HO(X, Q). Using Stokes’ theorem we get a mapping frd(X, Z) to
HO(X, Q)*. The quotient spac#%(X, Q)*/H1(X, Z) will be denoted by (X).

As we saw in the previous section, for a holomorphic one-faron X, the formo*w
is again a holomorphic one-form. This involution &P (X, ) induces an involution

o1 HO(X, ) — HOX, Q)*.

In other words(o1(L))(w) = L(c*(w)). It is easy to check that for any closed smooth-
oriented pathy on X, the identity

01(Ly) = Lo(y)

is valid. So, the involutiomr; preserves the subgroup (X, Z) ¢ HO(X, Q)*.
Consequently, the involutios; of H%(X, )* induces an involution on the quotient
space/1(X). The involution ofJ1(X) obtained this way will also be denoted by.
Let g be the genus of the compact connected Riemann su¥a@uppose we have
a canonical basis o1 (X, Z), say{aa, ... ,ag, B1, ... , Bg}. This means that the corre-
sponding intersection matrix is

0 -1
=(79)

wherel! is the identity matrix of rank. Then there exists a unique basisif(X, ),
say{ws, ... ,w,}, such thatfak w;j = 8k ([2], Proposition 111.2.8). We say that this basis
is adaptedto the given basis of homology.

Using this adapted basis we can ident#f{(X, ©)* with C$ by sending the elemetit
of HO(X, Q)* to the vectoL(w1), ... , L(wy)).

Therefore, for any e Hi(X, Z), we may identify the elemerit, HO(X, Q)* with

(Ly(®1), ..., Ly (wg)) € C5.

Denote byL the lattice inC8 defined byH1(X, Z) using this identification. The quotient
space/1(X) defined earlier is clearly identified with the quotigit/ L.

Assume that the bas{®;} is o-invariant, that isg*(w;) = w; for eachj € [1, g]. It
is easy to check that by the above isomorphist 8t X, ©)* with C# the involutiono; of
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HO(X, Q)* (defined earlier) coincides with the conjugation definedzas. . . ,Zg) >

L, - Zg)-
We will denote byox the involution of Hy (X, Z) induced by the involution of X. Let

{ylv'~-1yg7817~'- »83‘}

be a canonical basis &1 (X, Z) satisfying the conditiowy(y;) = y; forall j € [1, g].
Let {w1, ... , wg} denote the corresponding adapted basis.

PROPOSITION 3.1

The above adapted badi®y, . .. , w,} is o-invariant.
Proof. Since
/ w:/a*w:/o*@
o#y Y 14
(aso is an involution), the proposition follows immediately. ]

As in 82, letJo(X) denote the quotient Dg¢X)/Div p(X). For a meromorphic func-
tion f we haves*(div(f)) = div(f o o). Soc* induces an involution olp(X). This
involution of Jo(X) will be denoted by.

Let{ws ... , wg} bethe basisin Proposition 3.1. Recall the quotig(X) of HO(X, Q)*
defined earlier. The Abel-Jacobi map X — J1(X) is defined as follows: choose a point
xp of X and setA(x) = [ ;; w1, ... f;; w, |, where the brackets denote the equivalence
class inJ1(X). We have

o(x) o(x) o (x0) o (xo0)
A(o(x)) = / wl,...,/ wg | = / wl,...,/ wg
X0 X0 X0 X0
o(x) o(x)
+ / wi, ... ,/ wg
o (x0) o (xo0)
o(x) o(x)
=co+ / o*(w1), ... ,/ o*(w1)
o (x0) o (xo0)
X X
:CO+[/ aTlv"'s/ w_g]ZCO+A(x)s
X0 X0

wherecg = A(o (x0)). For a divisorD = Z;zlnj x;j, we define

A(D) = an Ax;).
=1

J

If D has degree equalto 0 thgn we can write iDas 3% _j x; — Zj‘?l yj, wherex; # y;
(though we can have repetitions among ths or they;s). Then it is easy to check that

A(oo(D)) = A(D) = 01(A(D)), @

whereo; andog are the earlier defined involutions 810(X, ©)* andJo(X) respectively.
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By Abel’s theorem, the mag can be extended to a map fraf(X) to J1(X). By the
Abel-Jacobi inversion problem, the map Jo(X) — J1(X) is surjective. Thus (1) says
thatog ando; are equivalent undet, that is, the following diagram commutes:

Jo(X) —2— 1n(x)

l l @

Jo(X) — J1(X).

In the paragraph following Definition 2.6 we noted that the Jacoligg#) coincides
with the fixed point set ofp(X) for the action of the involutiosag. Let J1(X)°t C J1(X)
be the fixed point set for the action of the involutiepnon J1(X). From the commutativity
of the diagram in (2) it follows immediately thdg(Y) is identified withJ1(X)°1. Finally
using Theorem 2.7, the Jacobidg(Y) is identified with the quotient OHHQ(Y) by the
torsion-free part oH1(Y, Z).

4. Line bundles on a Klein surface

Let L be a holomorphic line bundle over a Riemann surfaceBy L we will mean
the C*° complex line bundle overX whose transition functions are the conjuga-
tions of the transition functions fof. To explain this, letU;, i € I, be an open
covering of X and assume that over eath we are given a holomorphic trivializa-
tion of L. So for any ordered paii, j € I, we have the corresponding transition
function

fi,j . Ul'ﬂUj —> (C*

which is holomorphic. Th&€> complex line bundld. hasC® trivializations over each
U, i € I, and for any ordered pair j € I the corresponding transition function fs; .
Itis easy to see that the colIectit{)ﬁ~_J}i,j€1 satisfy the cocycle condition to definaC&°
complex line bundle.

The line bundld. can also be defined without using local trivializations#& complex
line bundle is aC* real vector bundle of rank two together with a smoothly varying
complex structure on the fibers (which are real vector spaces of dimension two). The
underlying real vector bundle of rank two fdr coincides with the one fof. For any
x € X, if J, is the complex structure on the fibgg, then the complex structure of the
fiber L, is —J,.

As in 82, letY be a nonorientable Klein surface aidits double cover, which is a
connected Riemann surface of gegus

Let L be a holomorphic line bundle ovér. The complex line bundle*L has a natural
holomorphic structure, wheke, as before, is the involution of. To construct the holo-
morphic structure oa*L, observe that iff is a holomorphic function on an open subset
U of X, then f o ¢ is a holomorphic function of (U). We can choose the above open
subsetd; (sets over whiclL is trivialized) in such a way that(U;) = U;. Now, since
eachf; ; o o is a holomorphic function ow/; N U;, the complex line bundle*L gets
equipped with a holomorphic structure.
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PROPOSITION 4.1.

Let D be a divisor onX of degreed and L the corresponding holomorphic line bundle
Ox (D) over X of degreed. Then the holomorphic line bundte* L corresponds to the
divisoro (D), thatis o*L = Ox(o(D)).

Proof. SinceL = Ox(D), we have a meromorphic sectierof L with the positive part
of D as the zeros of (of order given by multiplicity) and the negative part bfas the
poles ofs (of order given by multiplicity). Sincé. andL are identified as real rank two
vector bundles, the pullback*s defines a smooth section 6f'L over the complement
(in X) of the support oD.

It is straight-forward to check that the sectiotis of o * L is meromorphic. The divisor
defined by the meromorphic sectiofis clearly coincides witlr (D). Consequentlyy* L
is holomorphically isomorphic to the line bundle ovedefined by the divisos (D). This
completes the proof of the proposition.

Recall the quotient spack(X) := Divg(X)/Divp(X) considered in §2. The Jacobian
Jo(X) is identified with the space of all isomorphism classes of degree zero holomorphic
line bundles oveX . The isomorphism sends any divisbrto the line bundledx (D). As
in 83, letog denote the involution ofp(X) defined by . From Proposition 4.1, it follows
immediately that the above identification £f( X) with degree zero line bundles takes the
involution o to the involution defined by. — o*L on the space of all isomorphism
classes of degree zero line bundles.

Let D be a divisor of degree zero on the nonorientable Klein surfaderom Proposi-
tion 2.5, it follows immediately thab is principal if and only ifr* D is principal. There-
fore, we have an injective homomorphism

Divg(Y) Divo(X)
P = — —
Divp(Y) Divp(X)

= Jo(X) 3

defined byD —— 7*D, where Divp (Y) denotes the group of principal divisors Br{as
before, Diyy denotes degree zero divisors).

Theorem 4.2. The image of the homomorphissin (3) coincides with the subgroup of
Jo(X) defined by all holomorphic line bundle with o* L holomorphically isomorphic
to L.

Proof. Let D be a divisor or’ of degree zero. The divisar* D on X is left invariant by
the action of the involutiom. From the above remark that the involutiegis taken into
the involution defined by. — o*L, it follows immediately that the holomorphic line
bundleL = Ox(x*D) over X corresponding to the divisor* D satisfies the condition
L = o*L.

For the converse direction, take a holomorphic line burdlever X which has the
property that*L is isomorphic tal. Lets be a nonzero meromorphic section/oflf the
divisor div(s) is left invariant by the involutiow, thenL is in the image of.

If div (s) is not left invariant by the involutiorr, then consider the meromorphic section
of o*L defined byo*s. (Recall thato*L ando*L are identified as real rank twg>
bundles, and the section @f L defined by *s using this identification is meromorphic.)

Now, fix a holomorphic isomorphism

a: L — oL 4)
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such that the composition
L -% oL % g*o*L = L (5)

is the identity automorphism df, wherew is the isomorphism of with o *L induced by
a. Note that such an isomorphism exists. Indeed, if

o L — oL

is any isomorphism, then the automorphisrt’ o o’ of L (defined as in (5)) is the
multiplication by a nonzero scalare C. Take anycg € C such thatc(zJ = ¢. Now the
isomorphismx = o' /cq satisfies the condition that the composition in (5) is the identity
automorphism of_.

Let s’ be the meromorphic section &f defined by the above sectieri's using this
isomorphism. Consider the meromorphic sectiars of L. Since divs) is not leftinvariant
by o, this meromorphic sectiosl + s is not identically zero. The divisor div + s') is
clearly left invariant by the involutiom. HenceL € Jy(X) is in the image ofp. This
completes the proof of the theorem.

5. Nonorientable line bundle

In this section we will define a line bundle dhintrinsically without usingX.
Let {U;};c; be a covering o’ by open subsets and for ealth,

¢i : Ui — R?,

aC> coordinate chart. Consider the trivial (real) line buntljex R on eachU;. Using
detdg, o ¢ )

|detd¢; o ¢, )|

as the transition function ovér; N U; for the pair(i, j), we get a real line bundle over
Y. This line bundle will be denoted by. Since the transition functions at#gl, the line
bundleg®2 has a natural isomorphism with the trivial line bundflex R. Let

€ +1 C Aut(R)

A E®% 5 Y xR (6)

be the isomorphism.

We will give a construction of the line bundgavithout using coordinate charts. Consider
the complemenf\?> T'Y \ {Oy} of the zero section of the real line bung/e? TY, where
TY is the real tangent bundle &f The multiplicative group

Rt := {ceR|c> 0}

acts on/\2 TY \ {0}. The action of any € R* sends any ¢ /\2 TY \ {0} to cv. Also,
the multiplicative groupt1 acts on/\2 TY \ {0} by sending any to v. Since these two
actions commute, we have an action of the multiplicative grapon

_ NPTY\(Oy)

Z . RF
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Now, we have

Z xR
+1

E:

where+1 acts diagonally and it acts das multiplication by+1.

We will show that the Klein surface (nonorientable complex) structur& @ives an
isomorphism off'Y with TY ® &, whereTY as before is the (real) tangent bundleYof
To construct the isomorphism, take a compatible coordinate chart

(]5,‘ZU,‘—>(C

compatible with the nonorientable complex structure. The orientation of the complex line
Cinduces an orientation @f; usingg; . This gives a trivialization of overU; (this induced
trivialization is also clear from the first construction®f Using¢; we have a complex
structure orl; obtained from the complex structure ©f Let

vi 1 TU — TU; ® &y,

be the isomorphism defined by the almost complex structut @ind the trivialization
of £|y,. If ¢; is another compatible coordinate chart then the funagion d)j‘l is either
holomorphic or anti-holomorphic. This immediately implies that the isomorphism

Vi - TUj — TUj®§|Uj

(obtained by repeating the constructionjgffor the new compatible coordinate chart)
coincides withy; overU; NU;. Consequently, the locally defined isomorphigms patch
together compatibly to give a global isomorphism

y:TY — TY®E )

overYy.
A nonorientable complex line bundéer Y is a C* real vector bundle of rank two
overY together with aC°° isomorphism of vector bundles

Tt E— EQE 8)

satisfying the condition that the composition

T Id
E-> EQt o (E@6) @t = E@e® '3 )

coincides with the automorphism @ defined by multiplication with—1, wherea is
defined in (6).

Therefore, ifforapoiny € Y wefixw e &, withA(w®w) = 1, thenthe automorphism
of the fiberE,, defined by

v — (t(v), w")

is an almost complex structure @y, where(— , —) denotes the contraction &f with its
dual Iineé;‘ andw™* € 5; is the dual element ab, that is,(w , w*) = 1.

Let (E, ) be a nonorientable complex line bundle oVeas above. It is easy to see that
theC ™ vector bundlg isnotorientable. Indeed, the two orientations on a two-dimensional
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real vector spac® defined byJ and—J, whereJ is an almost complex structure én
are opposite to each other. To explain this, note that an orientation of the tangent space
T,Y, wherey € Y, induces an orientation of the fib&r, and conversely. Indeed, giving
an orientation off, Y is equivalent to giving a vector in € £, with A(w ® w) = 1. As
it was shown above, such an elemengives an almost complex structure . Hence
E, gets an orientation. Conversely, if we have an orientation of the fipethen choose
the elemenw € &, with A(w ® w) = 1, that induces this orientation usingNow, w
gives an orientation df, Y. Therefore, giving an orientation @&, is equivalent to giving
an orientation off} Y. Slnce the tangent bundlgy is not orientable, we conclude that the
vector bundleE is not orientable.

The total space of the vector bundiewill also be denoted b¥. Let

fIE—Y

be the natural projection. Note that the relative tangent bundlg {that is, the kernel of
the differential df) is identified with f*E. So we have the following exact sequence of
vector bundle

0— fE — TE — f*TY — 0 (10)

over the manifoldt. A
The line bundlef*¢ will be denoted byt. Let

J:TE — TE®E

be an isomorphism such that the composition

J®ld;

~ I® ~ ~ ~ d o
TE -5 TE®E — (TE®E) ®F = TE @£®2 52

TE

coincides with the automorphism éafdefined by multiplication with-1. Assume that the
isomorphism/ satisfies the following further conditions:

(1) The subbundlg*E in (10) is preserved by and/J| s«g coincides with the isomor-
phism f*z, wherer is defined in (8).

(2) The action of/ on the quotienyf*7Y in (10) coincides with the isomorphisifi‘y,
wherey is constructed in (7).

A holomorphic structure on the nonorientable complex line bufdean isomorphism
J as above satisfying the following conditions (apart from the above conditions) described
below.

If we take a coordinate chaft/, ) on Y compatible with the nonorientable Riemann
surface structure, then as we saw before, the restriétipngets a trivialization. This
in turn gives a trivialization of over f~1(U). Using this trivialization of§|f ~1yy, the
isomorphism/| ;-1(,;) becomes an automorphisiig of (7 E) ;-1 with the property
thatJ, o J, coincides with the automorphism Gf E) (-1, given by multiplication with
—1. In other words/Jy is an almost complex structure Q‘h_l(U).

A holomorphic structuren the nonorientable complex line bundiés an isomorphism
J satisfying the following two conditions (apart from the earlier conditions):
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(1) The almost complex structurg on f~Y(U) is integrable for every compatible coor-
dinate chart.
(2) There is a homomorphic isomorphism

fo 1 fTHU) — ¢(U)xC c CxC

that fits in a commutative diagram

) 2 gy xc
%
v 2 s

(the right vertical arrow is the projection to the first coordinate), and the restriction
of f, to any fiber off is a complex linear isomorphism with.

A holomorphic line bundleverY is defined to be a complex line bundle equipped with
a holomorphic structure.

Asin 82, letr : X — Y be the double cover of the nonorientable Riemann surface
Y given by local orientations. As before, letdenote the anti-holomorphic involution of
the Riemann surfack.

Theorem 5.1. The space of all holomorphic line bundles oveare in bijective corre-
spondence with the holomorphic line bundieover X with the property thab*L is
holomorphically isomorphic td..

Proof. Let L be a holomorphic line bundle ove¥ such thats*L is holomorphically
isomorphic toL. Fix an isomorphism

oL — o*L

as in (4) such that the composition in (5) is the identity automorphism of

Since the underlying ™ line bundle forL is identified with that of_, the isomorphism
a gives aC* isomorphism ofL with o*L whose composition with itself is the identity
automorphism oL. In other wordsg is aC liftto L of the involutiono of X. Therefore,
the quotientL /« is a real vector bundle of rank two ov&f/c = Y. This real vector
bundle of rank two oveF will be denoted byE.

To construct a complex structure @ first note that the (real) line bundte‘s over X
is canonically trivialized, i.e., there is a natural isomorphisnrt§ with the trivial line
bundleX x R over X. Indeed, this follows immediately from the definitionsXfandé.
The complex structure on the fibers prgive an isomorphism

L — L
defined by multiplication by/—1. Consider the composition
L— L — LIRXxR) — LQrr*E

which we denote byp. Sincer*¢ is the pullback of a line bundle ovér, there is a natural
lift of the involution o to 7w*&. On the other handy is a C* lift of the involution o to
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L. Therefore, we have a lift of the involution to L ®g 7 *&. It is straight-forward to
check that the isomorphistfy defined above commutes with the lifts of the involution
to L and L ®g 7*£. This immediately implies that the isomorphisiy descends to an
isomorphism ofE with E ®g & overY. This isomorphism oF with £ ®g &, which we
denote by/, clearly satisfies the condition that the composition in (9) is multiplication by
—1. Therefore(E, J) is a nonorientable complex line bundle.

It is easy to see that defines a holomorphic structure @h Indeed, this is an imme-
diate consequence of the fact that the almost complex structure on the total sjaise of
integrable.

For the converse direction, take a holomorphic line buidlle/) overY. Consider the
(real) rank twoC > vector bundler *E overX. Sincer *¢ is identified with the trivial line
bundle, the complex structuteon E (defined in (8)) gives a complex structure oHE.
For the same reasoni,defines an integrable complex structure on the total spacé Bf
Using the conditions od the vector bundler * E gets the structure of a holomorphic line
bundle overX.

Sincerr *E is the pullback of a vector bundle ovEr the involutions of X has a natural
C® liftto #*E. The isomorphism of*E with o *7* E defined by this lift gives a holo-
morphic isomorphism of the holomorphic line bundi&E with o*7*E. This completes
the proof of the theorem.
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