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Abstract. The general theme of this note is illustrated by the following theorem:

Theorem 1. SupposeK is a compact set in the complex plane ahtbelongs to the
boundaryd K . Let A(K) denote the space of all functiorfson K such thatf is holo-
morphic in a neighborhood & and f(0) = 0. Also for any given positive integer, let
A(m, K)denote the space of gflsuch thatf is holomorphic in a neighborhood &f and
fO0) = f(0)=---= f™(0) =0. ThenA(m, K) is dense inAd(K) under the supre-
mum norm orK provided that there exists a sectdt = {ré?; 0<r < 6§,a <6 < B}
such thatW N K = {0}. (This is the well-known Poincare’s external cone condition).

We present various generalizations of this result in the context of higher dimensions
replacing holomorphic with harmonic.

Keywords.

1. Introduction

Axler and Ramey (personal communication) have obtained the following interesting result:
Let L2(S") denote the usual Lebesgue space on the unit spffewith respect to the
surface area measure 6f; xg be a fixed point inR". Let P(xo, m) denote the space of

all harmonic polynomials which vanish & together with all their derivatives of order
less than or equal ta, andm > 0. Then

Theorem AR. P(xo, m) is dense inL2(S") if and only if|xg| > 1.
They also posed the following questions:

(1) Does the above result remain validif(S") is replaced by any.” (5") with p > 2?
(2) CouldS" be replaced by more general surfaces?

We shall show here that the answer to the 1st question is ye8(kgtS") denote the
space of all continuous functions i that vanish akg and the space of all continuous
functions onS”.

Theorem 2. For any positive integet:, P (xg, m) is dense i€ (xg, $*) with the sup norm
if and only if|xg| > 1. Whenxg is not on the spherehenC(xg, ") is the same a§(S").
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Remark.We shall not prove that the density fails whep| < 1 since it is rather obvious
and we shall not explicitly deal with the case whegi > 1, because the proof farg] = 1
can be imitated without any problems.

We will derive Theorem 2 as a corollary of a more general result for which we need
to introduce some more notation. LEtbe any compact set iR", 9K its boundary. We
define a notion called ECC. (This is the well-known Poincare’s external cone condition.)
We say thaK satisfiesEECC at a pointxg if there exists a closed solid truncated coie
with vertex atrg such thatW N K = {xg}.

Itis clear that to satisfy ECC at, xo must be on the boundary & and also that the
set of points wher& satisfies ECC is dense in the boundarykafin order to see this,
take any poin€ on the boundary ok and a ball of radius with center a&, wherer is
arbitrary and positive. There must exist a pojmutsideK such thatn — &| < r/2 for
otherwiset would be an interior point oK. Now choose a nearest pointfon K, saya.
Clearly|» — n| = § < r/2 and the ball of radiué with center at; is entirely contained
in the ball of radius- with center at. Now A must belong to the boundary &f, must lie
within a distance of from & and satisfies ECC foK.

Let H(xo, K) denote the space of all functiorfson K such thatf vanishes atg and
is the restriction taK of a function harmonic in a neighborhood &f. Let H(m, xo, K)
denote the space of all functiorfson K such thatf is the restriction taK of a function,
harmonic in a neighborhood & and it, together with all its derivatives of order m
vanish atxg.

We shall assume the following well-known result:

LemmaA. Let K be any closed ball ilR" andxg belong toK. ThenP(xg, m) is dense
in H(m, xg, K).
Also we need

Theorem 3. AssumeX satisfiedECCat xg. Then for any positive integet, H(m, xg, K)
D H(xg, K) with the sup norm.

We shall supply a proof of this later.

Proof of Theoren2. Let K be the closed unit ball ilR" andxp belong toS" = 9K.
CertainlyK satisfies ECC atp. Let f belong toC (xg, S"). Lete be any positive number.
It is well-known that there exists a harmonic polynomfasuch that

|f(x) — P(x)]<e on S

Leth(x) = P(x) — P(xo). Then| f(x) — h(x)| < |f(x) — P(x)| + | P(x0)| < 2¢ on §"
and alsoz(x) belongs tdH (xp, K). But by Theorem 3, there existsgain H (m, xo, K)
such thath(x) — g(x)| < e and so| f (x) — g(x)| < 3¢. This proves Theorem 2 in view
of Lemma A. ]

SinceC(xp, §™) is dense in alL.?(S") for 0 < p < oo, from Theorem 2, we have

COROLLARY 4

For any p, 0 < p < oo; for any positive integem, and any pointxg on S, the space
‘P(m, xo) of harmonic polynomials that vanish together with all their derivatives of order
less than or equal te: is dense inL?(S").
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Proof of Theoren®. LetG(x) = In|x|, if n = 2 and|x|7", if n > 2. We may assume
without loss of generality thaty = 0, W = {z; |z| < p, z/|z| € a spherical cap}, and
WNK ={0].

Fix az outsideK. ThenG(x — z) is harmonic as a function af in a neighborhood of
K and in a neighborhood of the origin can be expanded in an absolutely convergent power
series

Gr—2) =) au(@)x"

wherex is a multi-index(a1, a2, ... , @,) and indices are allowed to run through all non-
negative integers. Lét| denotex; + a2 + - - - + ;. Further we notice that for any fixed
non-negative integet, the polynomia[jlal:k ay(z)x® is harmonic inc and for any fixed
a, ay () is harmonic inz except at the origin and if we set= |z|w wherew varies on the
unit sphere,

2—n—|a|

ay(w). 1)

We note thati, (@) is real-analytic on the unit sphere. Now let

Gm,x,2) =G(x —2) — Z aq(z)x?.

loe|<m

aq(z) = Iz|

Clearly for any fixedz # o, G(m, x, z) is harmonic in a neighborhood &f and vanishes
together with its derivatives of order less than or equattdhen if u is any finite Borel
measure ol K orthogonal tdH (m, O, K), it follows that

o forall zin
/G(x —9 et = ) a"‘(z)/x du() e cofnplement ok
la|<m ’

(0)

Let b, denote [ x* du(x) and p(k, z) denotez‘alzk aq(2)by. By (1) it follows that
pk,2) = 2|2 " *p(k, w) andp(k, w) is real-analytic on the unit sphere. We claim that

ptk,z)=0 forall k,1<k <m. (2)

Suppose not. Then there would exist a positive intégerch thatp(j, z) = 0forj > [
andp(l, z) # 0. Becausev(/, z) is homogeneous and is real-analytic, the set of its zeroes
on the unit sphere would be a closed set without any interior. Hence there would exist
sub-coneV of W and a positive numbérsuch that

Ip(L.2)| = 8lz>"~" forall zeV 3)

and further by choosing a sufficiently smgll< p, we have

0@ = Y ptko| = glP onu =Vl <) @)

O<k<l

Choose a hyper-plane sectiénof U through the origin and integrate(z) on S with
respect to the surface measure on it. Sin¢e stays away from 0 ol/, it has the same
sign everywhere and so from (4) it follows that

1)
/U(Z)dz E/IG(Z)IdZ > —/ 212" dz. (5)
s 2 /s




90 N V Rao

But the lastintegral is infinite fdr> 0. But on the other hanfl, |G (x —z)| dz is uniformly
bounded and s¢ | [ G (x —z) du(x)| dz is finite. This, (5), and (0) lead to a contradiction
establishing (2). Hence

/ G(x —z)du(x) = boG(z) foreveryz outsidek. (6)
If v = u — bodo Wheredy is the Dirac measure at the origin, (6) can be restated as
/ G(x —z)dv(x) =0 for all z outsidek. @)

(7) impliesv is orthogonal to any functiorf which is the restriction t& of a function
harmonic in a neighborhood @&f. This is a rather standard Runge argument and we omit
the proof. Hence for any in H(0, K), [ f(x) dv(x) = [ f(x) du(x) — bof(0) = 0 and
so [ f(x)du(x) = 0. Now by Hahn—-Banach, we have Theorem 3. O

Proof of Theoremi.. Fix az outsideK and write the Taylor formula of orden for the
Cauchy kernel:

1 X" xm+1
=" Z 1T 1 : (8)
X —z Zrz+ Zm—&- (x —Z)

O<k<m

Let u be any finite Borel measure &K such that
/f(x)d,u(x) =0 foranyf e A(m, K). 9)

So [ x™*1/zm+L(x — z) du(x) = 0 and consequently

1 [ x" du(x)
/ (x —2) == Z ol (10)

O<k<m

Leta;, = ka du(x),0 < k < m. Arguing as in the proof of Theorem 3, we find that
ar = 0,1 < k < m and u — agdo is orthogonal to all functions holomorphic in a
neighborhood oK and so taA(0, K). But §g is orthogonal te4(K) and hence follows
the theorem. ]

2. Conclusion

Several problems remain. One of them is whether ECC is really necessary. Another one
is what is the capacity of the set of points where the conclusion of either Theorem 3 or
Theorem 1 holds in analogy with the set of regular points for the Dirichlet problem? Lastly,
what would be an analogue of this Theorem 1 in the context of several complex variables?



