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Abstract.  In a series of papers of which this is the first we study how to solve
elliptic problems on polygonal domains using spectral methods on parallel computers.
To overcome the singularities that arise in a neighborhood of the corners we use a
geometrical mesh. With this mesh we seek a solution which minimizes a weighted
squared norm of the residuals in the partial differential equation and a fractional Sobolev
norm of the residuals in the boundary conditions and enforce continuity by adding a term
which measures the jump in the function and its derivatives at inter-element boundaries,
in an appropriate fractional Sobolev norm, to the functional being minimized. Since the
second derivatives of the actual solution are not square integrable in a neighborhood of
the corners we have to multiply the residuals in the partial differential equation by an
appropriate power of;, wherer, measures the distance between the pfirgind the
vertex A, in a sectoral neighborhood of each of these vertices. In each of these sectoral
neighborhoods we use a local coordinate systent,) wheret, = Inr, and(ri, 6;)

are polar coordinates with origin dt,, as first proposed by Kondratiev. We then derive
differentiability estimates with respect to these new variables and a stability estimate for
the functional we minimize.

In [6] we will show that we can use the stability estimate to obtain parallel precondi-
tioners and error estimates for the solution of the minimization problem which are nearly
optimal as the condition number of the preconditioned system is polylogarithmi¢ in
the number of processors and the number of degrees of freedom in each variable on each
element. Moreover if the data is analytic then the error is exponentially smill.in

Keywords. Corner singularities; geometrical mesh; modified polar coordinates; quasi-
uniform mesh; fractional Sobolev norms; stability estimate; polylogarithmic bounds.

1. Introduction

This is the first part of a series of four papers, the other three being, h-p Spectral element
methods for Dirichlet problems on parallel computers [6], h-p Spectral element methods
for mixed problems on parallel computers [7] and h-p Spectral element methods for elliptic
boundary value problems — The general case [8].

Current formulations of spectral methods to solve elliptic problems in honsmooth
domains allow us to recover only algebraic convergence [10]. One method, which yields
relatively fast convergence, makes use of a conformal mapping of thezfeaTé® to
smooth out the singularity that occurs at the corner and is referred to as the method of
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auxiliary mapping. However, ‘even though the conformal mapping is an effective way of
enhancing convergence, exponential convergence cannot be fully recovered’ [10].

A method for obtaining a numerical solution to exponential accuracy for elliptic prob-
lems with analytic coefficients posed on curvilinear polygons whose boundary is piece-
wise analytic with mixed Neumann and Dirichlet boundary conditions, was first proposed
by Babuska and Guo [1,2] within the framework of the finite element method. They
were able to resolve the singularities which arise at the corners by using a geometrical
mesh.

We also use a geometrical mesh to solve the same class of problems to exponential accu-
racy using h-p spectral element methods but with an important difference. The geometrical
mesh becomes geometrically fine in a neighborhood of each of the corners. In a neighbor-
hood of the corneA; we switch to new variable&y, ;) wheret, = Inr, and (rg, 6x)
are polar coordinates with origin at. In doing so the geometrical mesh is reduced to a
quasi-uniform mesh in a sectoral neighborhood of the corners and so Sobolev's embedding
theorems and the trace theorems for Sobolev spaces apply for functions defined on mesh
elements in these new variables with a uniform constant. These new variables, which we
shall refer to as modified polar coordinates, were first used by Kondratiev in his seminal
paper [11]. Away from these sectoral neighborhoods of the corners we (etainvari-
ables for our coordinate system. Thus we also use the auxiliaryraalpg & to remove
the singularities at the origin and this enables us to obtain the solution with exponential
accuracy.

By subtracting an analytic function from the solution if necessary, we may assume that
the Dirichlet data vanishes at the corners. We seek an approximate solution which vanishes
at the corner-most elements and is a sum of tensor product of polynomials of dégree
in 7, and6y in the remaining elements of the sectoral neighborhood of the corners. The
remaining quadrilateral elements are mapped to the unit sguaral the approximate
solution is represented as a sum of tensor products of polynomials of dégnegands,
the transformed variables. If Neumann boundary conditions are imposed on both the sides
which meet at the corner, the approximate solution at corner-most elements is represented
by a constant, instead of zero.

We now seek a solution as in [4] which minimizes the sum of the squares of a weighted
squared norm of the residuals in the partial differential equation and the sum of the squares
of the residuals in the Dirichlet boundary conditions in an appropriate Sobolev norm and
enforce continuity by adding a term which measures the sum of the squares of the jump in
the function and the squares of the jump in its derivatives across inter-element boundaries
in appropriate Sobolev norms to the functional being minimized as a penalty term. Since
the residuals in the partial differential equation blow up in a neighborhood of the corners,
we have to multiply these residuals by an appropriate power, afherer, measures the
distance between the poiit and A;. All these computations are done using modified
polar coordinates in a sectoral neighborhood of the corners and a global coordinate system
elsewhere.

In [6,7] we restrict ourselves to examining the Poisson’s equation with Dirichlet bound-
ary conditions on a polygon. In this paper we obtain differentiability estimates in modified
polar coordinates and prove the stability theorem 3.3 on which our method is based. Since
the statement of this theorem may appear complicated we try and provide motivation for
it by stating the stability theorem 3.1 for a simpler case.

For the Dirichlet problem we use spectral element functions which are nonconforming.
To solve the minimization problem we have defined, we need to solve the normal equations
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for the least-squares problem corresponding to collocating the partial differential equation
and boundary conditions at an over-determined set of collocation points and enforcing
continuity of the function and its derivatives at the collocation points at inter-element
boundaries, suitably weighted. However, we do not need to compute and store any matrices,
like the mass and stiffness matrices, to compute the residual in the normal equations [5].

We can precondition the normal equations by using a preconditioner which is of block
diagonal form and which allows the solutions for different elements to decouple completely.
Moreover, this is nearly optimal as the condition number of the preconditioned system is
polylogarithmic inN, which is proportional to the number of processors and the number
of degrees of freedom in each variable on each element. Finally we show that the error
we commit is exponentially small iv and provide computational results for a model
problem.

In [7] we will examine how to solve the Poisson’s equation with mixed Dirichlet and
Neumann boundary conditions. For the purely Dirichlet problem our spectral element
functions were nonconforming and hence there were no common boundary values to solve
for. This no longer holds for problems with mixed boundary conditions. Here our spectral
element functions are essentially nhonconforming except that they are continuous at the
vertices of the elements on which they are defined. Hence our set of common boundary
values are the values of the function at the vertices of the elements. Thus the cardinality of
the set of common boundary values is proportional to the number of elements and is much
smaller than the cardinality of common boundary values for the finite element method,
which is the set of values of the functions along the edges of their elements.

In order to solve the system of nhormal equations we need to be able to compute a pre-
conditioner for the Schur complement system corresponding to the common boundary
values. Since the dimension of the system is small we can compute an accurate approx-
imation to the Schur complement. This is in contrast to the methodology for the finite
element method where complex techniques have to be used to obtain a preconditioner for
the Schur complement matrix. Moreover the computational complexity for our scheme is
less than for finite element methods. Thus the method we propose can be thought of as a
vertex based method. Once again we provide computational results for a model problem.

In [8] we will generalize all our results to elliptic problems with analytic coefficients,
posed on curvilinear polygons with piecewise analytic boundaries, which satisfy the
Babuska—Brezzi inf-sup conditions. We should mention that once we have obtained our
approximate solution consisting of nonconforming spectral element functions we can
make a correction to it so that the corrected solution is conforming and is an expo-
nentially accurate approximation to the actual solution in Zenorm over the whole
domain.

Computational results for a model problem with Dirichlet boundary conditions have
been provided in [6]. Again in 85 of [7] computational results have been provided for a
model problem with mixed Neumann and Dirichlet boundary conditions.

2. Function spaces ana priori estimates

Let Q2 be a polygon with veticeds, Ay, ... , A, and corresponding sidég, I'p, ... , T,
wherel’; joins the pointsA;_; andA; (figure 1). In addition let the angle subtendediat
bew;. In this paper we shall examine the solution of the problem

Au=f for (x,y) € @, (2.1a)
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Figure 1.

with Dirichlet boundary conditions
u=g;j for (x,y) €Ty,
or
u= g[O] for (x,y) e I'% = 3Q. (2.1b)

Let Z denote the poinZ = (x, y). We now need to review a set afpriori estimates
proved in [1]. LetH™ (Q2) denote the completion of the space of infinitely differentiable
functions with respect to the norm

||v||,§1,9= Z //|Do‘v|2dxdy.

lee]<m

Let p; denote the Euclidean distance betwegrandZ, i.e.,p; = |Z — A;|. We then
definer; = min(l, p;). We shall letg denote the multi-inded = (81, Ba. ... , Bp).

Further, we definebg (Z) = l.zlrf" (2). By Hg”’l () we denote the completion of
infinitely differentiable functions with respect to the norm

m
1ol gy = 10Wa@y+ 3 1D 0@piatlfogy . 121

k=1, |a|=k
as defined in [1].
Let H;”_l/z’l_l/z (') be the space of functios; such that there existé € ng”’l (Q)
so thatf|r, = ¢; and define
||¢ i ” m=1/21-1/2 /v \ = |nf ”f” m,l .
! ng (F./) fEHgLI(Q) Hﬁ )

Let

V(@) = {u(2) lu € H"' (Q),m > 1)
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and

By () = (U (2) lu € Y (). I D*ul®pii—ill 2y < Cd*! (k — D)
for lw|=k=1,1+1,...,d > 1, Cindependent ok}.

Let 0 C R? be an open set with a piecewise analytic boundayand lety be part or
whole of the boundary Q. Finally Iet%l 12 (y),0 <1 < 2, be the space of all functions
¢ for which there existy € ‘B’ (Q) such thatf = p ony.

We now cite the |mportant regularity theorem 2.1 of [1]. Lgt % g e
852 (), 8 = (1. 2.... .fp).0 < fi < L. > 1— 7/w;. Then Problem (2.1)
has a unique solution iF1(Q2) andu € %/23 (Q).

Now in §4 of [2] it has been shown that whel! is analytic on every closed afg and
g% is continuous o"[¥ thengl® e %2/2(1“[0]). Further if f is analytic then it belongs
to BY.

Next as in [2] we introduce the spaﬁ%:

€% ={u e HY? () ||D"u(2)| < Cd*kN(Pp1p-1(2) 7",
lal=k=12,...,C >1,d > 1lindependent of}.

The relationship betwee®? and%7 is given by Theorem 2.2 of [2] which we state as
follows:

B2 (Q) C €3,

Finally we need one last result from [2], viz. Lemma 2.1 which is stated below.
Letu € H (Q) Thenu is continuous orf2 and

lulle) < € Nl 22,

Since we are assuming that the data,. . . , g, are analytic and compatible at the vertices
the values of; at the verticesiy, Ay, ... , A, are well-defined. Thus if we subtract from
u an analytic function which assumes these values at the vertices then the difference would
satisfy (2.1) with a modified set of analytic data and the Dirichlet boundary data would
assumethe value zero4t, Az, ... , A,. Hence without loss of generality we may assume
gj-1(Aj) =gj(A;) =0for; > 1andgp (A;) =0.

We now define one last norm which will be needed in the sequel. Let

Vi pinp
a1 2,12 R X
lu(t;, 0 )||m( oI ) =Y / /_ | D¢ DG2uldz; d6;.
ja=m o0
(2.2)

LetS) ={(x,y): O0<rj <, wlj <0 < ﬁ}andle@}‘ denoteitsimageifr;, 6;)
coordinates. We now obtain an asymptotic estimatebo(rj, Gj) ||f1 v asp — 0.
i
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Theorem 2.1. There exists a positive constamp such that for all0 < u < ug the
estimate

luzj, 012 = Cu?FD(Cd™ 2 (m — 2)1)? (2.3)
holds, whereC andd are constants independentmf

We estimate the terms in the right-hand side of eq. (2.2) wher 2.

For
Vi rlnp
/ / (utelgéz)zdtjdéj
2<|al<m —oo

Inw
< Mz(liﬂ/) / / (ur?19?2)2672(17ﬂj)t_,~ d‘L’jd@j
oo i

2<|a|<m

wll M
< 4208 / / (rj)z“l(ur71972)2(rj Y2y drjde
0

2<|a|<m

< p2EBD(cd™=? (m — 2)1)2. (2.4)

Here we have used the fact that %% () and Theorem 1.1 of [1] to obtain the above
result. Next we bound the terms whigr} = 1. Sinceu € 6/23 (R2) we have

|D%u (Z)| < Cd(®g (Z))"* when|a| =1 (2.5)

Moreover we have

v pinp
/ / (u?i + ugj)dtjdéj = / /(uf + u%)dx dy.
—0o0 : ’ Sf i

Sﬁ%:{(x,y):0<rj</L,¢lj<9j<%{}-

Hence by the above relation

Vi pu _on.
/Sﬂ/(u)zc—i-ui)dxdy < ZCZdZ/W_ /0 r; 2ﬂ]rjdrjdé?j
j i

< (Kd)? u2=#p. (2.6)

Here

Finally we have to estimate

vl pinp
/ / lu(zj, 6;)] dr]de
v/

Sinceu vanishes a# ;

7
u(rj,ej):f uy(n, 6;)dn.
—00
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Hence

lu(tj, 0;)] <

rj
/0 up(p,Gj)dp‘.

Herep = e andr; = ¢%. Sinceu € Q:% (©2) we obtain

-Bj+1

ST = cdeMPIT
J

lu(z;.6,)] < Cdr

And integrating the above with respectitpand6; gives

%, Inu 2 2, 21
/wf / lu(t;, 0))1%dr;d6; < (Kd)? u?=F0). (2.7)
I —0Q

Combining (2.4), (2.6) and (2.7) we get the required estimate

Vi pinp
> /wf' [ |u,71972|2dr,-d9,- < 2 Bcd"?m -2)H2. 0 (2.8)
i —0Q

lee|]<m

Remark. Estimate (2.8) can be proved directly using the relaticn D— 8; < m/w;.

3. Stability estimate

We first need to divideQ2 into subdomains. Thus we divid@ into p subdomains
st s2 ..., S{’, wheresS' denotes a domain which contains the verfexand no other,
and on eacl$’ we define a geometric mesh as has been done in [2].

Let&* = {Qf,, j=1...,J i =1,..., I} be apartition ofs* and let& =
Ur_, 6. Then& satisfies the following conditions :

1. Qf} are curvilinear quadrilaterals or triangles and the intersection of an;@(ﬂgyds
one common vertex or one entire side or is empty.

2. Leth} ; andhj ; be the maximal and minimal length of the sidescf;. We shall
assume there is a constant independeiit pfk and of the partition suclin that

iJ

3. LetM = (M1 <i <1, 1<j<J,1<k< p}inwhich M/, is aone-to-
one mapping of the closed standard master sqiate[0, 1] x [0, 1] {respectively
standard master trianglé = {(€,7)|0 < n < 1-§,0 < & < 1} ontoﬁf’j.
Let Pf;, andy/;, denote the vertices and sides@f ;, then(M/ )~*(P}; ) and
(M )y}, ) denote the vertices and sidesSofrespectivelyl’), 1 < I < 4 (respec-

tively 1 < I < 3). Moreover ifMl.’fj and M! map the closed standard square

m,n

onto eIements_ij andﬁin,n with common sidey = Py P, then for anyP € y,
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dist((M; ) ~H(P), (M )~H(Py) = dist(My, ,)"H(P), (M, )" (P)), 1<t < 2.
We will assumeI\/I{fj can be written in the form

x = X[ &, (€, 1) € S (respectivelyI") (3.2)
y= Yi’fj(é, m,

with Xf‘ - and Yl.kj being analytic functions o8 (respectivelyrl). Further we assume
that for|x| < 2

|D%x|,|D®y| < Ch (3.33)

and

Ca(hf ) < Jf; < Calhf )? (3.30)

for all i, j andk with constants”, C1, C2 independent of, j andk andJi’fj being the
Jacobian of the mappinyf;’ ;.

Letu = (m, .. ,Mp) with 0 < u; < 1. Then&,, is called a geometrical mesh
with ratiosy = (u1, ... , 1) When in addition the following condition is fulfilled.

4. LetQ} ; € & andd;; denote the distance betwe®] ; and Ax. Thend)’; andh; ;
satisfy
Cr(uV ™ <df; <Cou)" T, 1<j<N,1<i<h; (34a)
Cap<di;<Cap, N<j<J, 1<i<h,, 1<k<p, (3.4b)
dfy=0, 1<i<Ri 1<k<p, (3.4¢)
koo ok k k
Kid; j < h; ; < h; ; < Kod; ; (3.4d)

forl <j<J1<i<I;1=<k<=< p whereC,forl <! < 4 andk; for
1 <[ < 2 are constants independentipf andk. MoreoverJ; = N + O(1).

We now put some restrictions a@. Let (¢, 6;) denote polar coordinates with center at
Ap. Lett, = Inr;. We choose so that the sect(ﬂ’p‘ with sidesl’;, andl"y1, center atA;
and radiuso satisfies

k —k
sse | @y
QiﬁjGG"
S’; may be represented as
Sf) ={(x,y):0<rp < p, w,k <6 < 1#5}. (3.5a)

Let{y*}i=1. . 1., beanincreasing sequence of points suchyffat vf andw}‘m = yk,
Let Ayt = yf, | — ¥F. We choose these points so that

mkax(m_awai") < A min(min Ay (3.5b)
1 1
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for some constarit. Let

ok =0, (3.5¢)
and

of =p ()"t for2<j<N+1 (3.5d)
Finally we define

Wy =Ingj for 1<j<N+1 (3.6)
Let

Qf ={x,y) 0] <m<of . ¥ <O <yfy) forl<i<h,
1<j<N. (3.7)

We assume there exists a numbesuch that
Ly =l ip<m<vyf < <yl forl<i<h. (3.8)
In other wordsly ; is independent of for j < N + 1. We shall leto* denote
O =1{Q}; . 1<i<h 1<j<N} forl<k<p. (3.9)
Let
ortt=(Qf i1<i<h; N+1<j<J. 1<k<p} (3.10)
We shall relabel the elements 6P*1 and write

ortt=(/tt 1< <1}, (3.11)

whereL denotes the cardinality ab?+1. We shall let2* denote the sector with vertex at
Ay given by

QF ={x,y):0<m <p,¥f <6 <yl (3.12a)
and
P —k
Qrtl=Q\ {U Q ] . (3.12b)
k=1

Note that all the set®* are open sets.

Henceforth to keep our notation simple we will assume fzf%ayt are quadrilaterals for
l1<k<p, N+1<j<J,1<i < I. Moreoverwe assur’ns(,j < [ forall k and
j. Herel is a small integer, and this fact plays a fundamental role in allowing us to use
nonconforming spectral elements to solve the Dirichlet problem. Furthef}gtdenote

the sides of the quadrilater@]jﬁj, 1 <1 < 4. Then we assume (figure 2)
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Figure 2.
x =ht ¢f (),

vEio { ST 0ce<11=1.3 (3.13)
y = hi,jl//,',j,[@)y
x =ht ¢k ),

vhi { ST 0<p<1i=24 (3.14)
y = hi,jw,-,jyl(n),

where¢{fj’,, wi]fj,l are analytic functions for all j, k and/. We wish to obtain a stability
estimate for the functiom, given by a nonconformingfinite dimensional representaifg.n
oneach domaimf.‘j, for the entire polygonal domai. Now, as stated in the introduction

we partition the open sétinto p open sets®, $2, ..., S” such that each’ contains only
the singularity atthe verte; . Let S* be one of these open sets. Tt#én= Q* | B (J T*

whereQ* is the open sector with center at and radiusp, B is the circular arc which
boundsQ¥, andT* is the open set defined & = % \ (Q* | BY).

The domairs* is as shown in figure 3. Two of its sides are the straight lifeg () 8.5
andrI'y () 8. The remaining sid8S* consists of piecewise analytic arcs. The subscript

cin 8S(’§ denotes curvilineals” is partitioned by a set of ardg; }; into subdomains.
Now

k .k k k k
Qi,j ={(x,y): 0j <Tk <0j41, Y < bk <l[f,'+1}

forl<i<Il,1<j<N.

1:.k+l

Figure 3.
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Let tx = Inr,. Define
Q= {00t < <ubg. v <o <yl (3.15)

forl<i<l,1<j<N.
Let w be a smooth function. Then

o 1 8 aa) -2
Wxx + Wyy = - Ik Ik + W6, | = e (wtk‘rk + w9k9k)~
i ory  org

Hence

5 ) Vi 5
) i (Wxx + wyy)“dxdy = . (Wg 7, + wo,6,) dridO.
QF . ¥ n
i,j i

k
J
Now using integration by parts repeatedly we can show that
‘/’ik+1 "_I;+1 2 2 2
[ @nn)? + 2@ + @na) et (3.16)
‘//i mj
l/fik+1 ’7,;'4—1 2 ]//ik*-l k
= / / (a)tk‘rk + w9k9k) dfkd@k + 2/ wrké‘kak(nj+11 Qk)dek
vE o Il vt

1/fikJrl k nlj{'+1 k
-2 " wo o0, (1}, )6 — 2 , 0,00, (Th, ¥iy 1) AT
i i

k

M1 %

+2 L W1y 1, W, (Tk, 1//‘1' )dfk-
j

Moreover

/Qk /—a)(wxx + wyy)dxdy
ij

wk K
i+1 [Tj+1
= —/k /k w(wyq + a)gkgk)d‘tkdek
‘p,' nj
Vi [ 2 2 Vi ‘
= (0r)* + (wg,)*)dridOy — 0wy, (101, Ok)dOk
k k k J
% m;j W,‘
‘ﬁik+1 k ’7’}+1 K
+ . Wwy, (nj, Or)do, — ) wweg, (t%, 1//i+1)dtk
Wi nj

k
Tjt1 k
+ /. wwg, (tx, ¥; )drg.
nj

And this gives us the following inequality:

1//k r;k,
i+1 Jj+1 2 2
/ / (07)* + (wg,)7)drx Aok
yk n



612 Pravir Dutt, Satyendra Tomar and Rathish Kumar

K Vi '7,+1 1 Vi ’7§+1
< E / zdfkdek 4+ — f (a)fkfk + a)gkgk)zdl'kdek
vi 2K Syt s

Vi . Vi L
+/k wwg (1M1, 9k)d9k—/k wwe (0, O)dok

i i

’7§+1 k ’7§+1 x
+ fk wwg, (T, Iﬂi+1)dfk — /k wwg, (T, lﬂi )dzy. (3.17)

j j

Let uk (7, 6x) be a set of nonconforming elements, deﬂned}ﬁr} the image oﬁzk
(Tk, ek) coordinates, given by

uf ;(tr, 0r) = Z Zamnrk oF

n=0m=

for j > 1. We shall choose/ ; = 0 for all k andi.
Let

[uf 10840 00) = @f ;g — uf (1S40 00),
[uf 1 ¥l ) = g — ub (e v,

denote the jump im across inter-element boundaries. ~

Recollect thaB’g denotes the circular arc with radipsind centerty. LetB’; denotes its
representation iz, 6;) coordinates, i.eBX = (%, 60 © w =Inp, ¥f <6 < ¥l
Similarly let Fk, ’f:k+1 dengte the representation~ of the sidgsand 'y in (tx, 6k)
coordinates. Recollect th&t* is an open set angiQ* denotes its boundary. Lej be a
side on" i for somei and; and lety; denotes its representation(iy, 6;) coordinates.

We now state and prove a stability theorem which will help to motivate the stability
theorem 3.3 on which our numerical scheme is based.

Theorem 3.1. For the sectoral domai®F the following stability estimate holds.
Ii

2
Z ,,(rk,ewumff

i=1

uMz

< C(InN)? ZZ | Auf ; (zi 60113 :y

j=2i=
+ ) ALEONG 5 + 1L I5 25 + MT@)a]1E2.5)
Pk
+ > UEHIG 5 + 165611 25)
ncBk
k+1
+ >0 Y MG+ 1@ lE 05 ¢ - (3.18)

m=k %ga’{zk N Fm

Here|.||; 5 denotes the fractional Sobolev norm as defing@jmwhens is not an integer.
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Adding a weighted combination of (3.16) and (3.17) and summingoaad ; gives

z+1 '7]+1 2 k2
/ / (W 2+ 20 )2 g+ b )2 )iy

j= lz
i+l j+1
* R/wk /kj (@] )g)?+ ((Mf,j)ek)z)drkdek}
i 77_/'

< )+ AD) + A + (V) + (V) 4+ (V1) + (VD) + (VI + (X) . (3.19)

Here the terms indicated by roman numerals given above are as follows:

KR i+
(|)—Zz< /Wk l/ (uf])zdfkdek

j=1i
i+1 ’ij+1 % x 2
+(1+ ﬁ /k /k ((uiyj)rkrk + (ui,j)ekek) drdoy | .
w,’ mj
N-1 I 1//1.]‘+1
an=>>% ( /w o =20 e s O, ek)dek) :
j=1li=1 i
U Vi
i) = szw (o e ) (N p, 6) A6
i=1 i
¥ T k k k
(Iv) = Z /k 2[(“["]')91((ui’j)‘fk‘[k](rkﬂ ¢i+l)dfk ,
i=1 j=2 \Y";

4

_ i1 k k k
V) = 2 (Ml,j)ek(ul,j)rkzk(fk, 1,01)d"-'k
i n

k
Jj=1 j

k
Tj+1
_2‘/)\#\ (ulk ])91((“1/\ ])‘[k‘[k(rk ‘g//[]‘+l)d-[k)

N_l [k Vi
Vh=-RY > (/w (GDITHIAICY 9k>d9k) :

j=1i=1
b vy
VIh=RY" p (uef ) @ef ) (I, 6B,
i=1 i
N ;-1 n§+l
Vi =rY Y (- /n Uk el vk Do ).
j=1i=1 j

and

miy
- / O ) e (s wl>drk) (3.20)
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Now using Lemma 4.1 we can conclude that
N '7k'+1 Wik 1
D / Tl p2dnds,
j=li—l ; vt

”/+1 z+1
/ / ,,)9,) 2dz,d 6y
j= 11 77

N Ix—

Y fn (k)2 (o, v, el

jll

k
'+1 Mj+1
+Z / @k D2ty pdr+ / (u’i,,-)z(rk,w’;)drk),
j=11; j
(3.21)

where
ko k2
cC=2 mkax{max(M, (I + 1)(1M‘kJrl - 1//’1‘)> } )

ChoosingRr large enough and adding

N ’7_,;+1 ’7f’+1

2c (Z / o DA Y du+ / o A vdn
J=1"7; "

N

+2

j=1

—1 i=

Li—1

i
) /n k Pk D, w{cH)drk)

to both sides of (3.19) and then applying (3.21) and chookirggnall enough we get the
inequality

N K i+l Mj+1
Z :/ /k/ (((I/ti'(,j)'fk'fk)2 + 2((uﬁj)rk9k)2
j=li=1 nj
+ ((u ij)9k0k) 2)dr,.d 6,
z+l n1+1
/k / (uf %+ (uf HF)drd b
v, m;
‘l/z+l '7]+1 2
+/ / (ui,j) d‘l.’kdek
v Jub

N I ok
1+1 Jj+1

=733 / / (W ey + ()02l

: i=1
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N n§+l
+2C (Z fn oWl P g dn
J=11;

k
M1
+ f W P v

+ Z Z/ﬂ i{j)]z(fks ‘lfik.:,.l)dfk)

i=1j
F A+ A+ AV) + (V) + (VD + (VI + (VD + (1X) . (3.22)

We shall now estimate the terms indicated by roman numerals on the right hand side of
(3.22) using Theorem 4.1. We begin by estimating

N-1 I

(| =

.k
( / "2 a1 a0 41, 0000

j=1i=1

k
1’//Hrl

|
\

2L e e (041, 606
v/

1//ik+l k k k
- /;//k 2(ui,j)0k[(u,;j)rkek](ﬂj+1, ek)dek) .

i

Now by Theorem 4.1

Vi ' . .
o, 2[(u Do g oo, (041, O) O (3.23)

< 2C (NN 1[G Do J 01100 12,0 )
x| (uf‘cj)‘[k (77];'+17 9k)||1/2,(¢‘,k,¢lk+l)

CInN)?
< O )t 3,001 1 40

+ K||(u, Dk 1,001

z+1)
1/2,.(F k)

for any postivek .
By the trace theorem for Sobolev spaces there exists a comgtasuch that

(NS PR (T RICATEP

Choosingk = 1/32M we have

Vi k k k
ok 2[(1"1',]‘)91(](”,"]')17(91((nj+1» O )by

i

< 700 N I a0 e 000 g g

1 % 2
+ == IIu; ) (k. 6 Sk 3.24
310 e B2 51 (3.24)
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And so we conclude that

N-1 I
[IEXICINED DS (||[<u, Pl O 5 g
j=1i=1 !
I ol 1. 6015 e )
-1 I 1
+ Z Z 6l (T 0015 g - (3.25)
j=li=

Similarly we have

N
2 k kyp2
1= CAn MY (1 e VDI 2. 06 0t

j=1

k k 2
I Do VD e )
u 1 k 2 k 2
+j§=lﬁE(n(ul,j)(rk,9k>||2,5§j+||(u,k,,-><rk,ek>||2,5¢kvl_). (3.26)

We can estimate the terni®/), (VI1), (VI ) and(IX) in the right-hand side of (3.20) in a
similar manner. Putting all these estimates together we can write (3.22) in the form

3 Z Z (RICAAT

jll

NI "
< C(InN)? {Z Z/ /k +1(Aufﬁj)zdrkdek
—1i=1 0

N-1 I
Z > (I el a8 5
: i—1 i+

I 10 1 8015 e gt )

.S Z (0t e v DI 0

j=1i=

k
+ ”[(ui,j)ek](":kv I/fi+l)||l/2’(nﬁyﬂ§+l))
N
k ky 12
+ ; (e o vDIZ 5 o
k k 2
10, ) 0 v 01 e )|

[k Vi
+ 2(1% /w o ) )7 (0 p, 6)d6
1= i

k

W
12 /w 00 g (0 . BT, (3.27)

i
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Estimating the last two terms in the same way we get the result. O

Remark. Thea priori stability estimate for sectoral domains (3.18), in a sense, replicates
the estimates, known as the shift theorems, for elliptic problems on smooth domains. These
estimates are valid, however, only in modified polar coordinates and only for spectral ele-
ment functions which are polynomials of degréén each variable separately. Moreover,
the constant multiplying the right-hand side is not independeit lodit grows slowly with
N like (In N)2. Thus, Theorem 3.1 states that the sum of the squares éftr®rms of
the spectral element functions depends continuously on a quadratic form, which consists
of the sum of the squares of tHe&® norms of the differential operators in their respec-
tive elements plus the sum of the squares of the tangential derivatives i3Rerorm
along the image of the sectoral boundary plus a penalty term. The penalty term consists
of the sum of the squares of tli& norms of the jumps in the the function elements plus
the sum of the squares &f/2 norms of the jumps in the derivatives across inter-element
boundaries.

Consider the functiofu} ;}; ; defined orfzi."j C Q. Then the inequality

N Ik
ZZ f (i ek)ng,ngj
j=2i=1 ’

< C(nN)? {ZZ I Au (o O g g

j=2i
k+1

D DD DR (T PR A )

m=k yICFm man

+ > U TG 5 + N 115 25 + N 1525
pasey

[k Ui
+Z; (R /]//k (Wf \) @ p)7 (N p, 600
1= i

Ui ) '
+2/1/fk (”i,N)Qk(Mi,N)erk(ln P, Or)dby (3-28)

i

is valid.

The estimate (3.28) follows immediately from (3.27). The reader may now directly
proceed to Theorem 3.3 which is a generalization of Theorem 3.1 and refer back to the
proof, which is quite involved, later.

We need to obtain a similar estimate f6f. On eacm . C 7 a functlonu" (x,y)
is defined. Now, thig2} ; < ! and hence; ; = Q,”+1 for somel. We shall us@fﬁ/

andQl”+1 interchangeably in what follows.
We now need to obtain an energy inequality similar to Theorem 3I*omntegrating
by parts repeatedly we get
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// (axz W)dey
2 2
([ (G +2 () () oo
a5

Heres denotes arc length alordg) measured from some point on it and the line integral is
evaluated in the clockwise direction amdenotes the outward normala®, the boundary

of O. Hence
52 2
/ / u; N+l ”z N+1 drdy
dx2 9y2

1N+1

2 2k 2 2k 2
9°u” 94u"
— 0 /k / ( 1N+1> +2< al,;wrl) +( az,A21+1> Ivdy
Q Xoy y

i,N+1

+2p2 (/ +/ ) 8”{'(,N+11 (8”§,N+1) ds
o2k, N(8s) Jokyan(sg)) Oy ds | dx

Here BX denotes the boundary of the circle of radjusvith center atd;. Now a simple
calculation yields

k k
2p2/ Ouiya d (Ouiyia) o
ooy, nBp YOS\ dx

e,

=2 ‘ (ui,NJrl)@k (ui,NJrl)@ka (In P, Qk)dgk

v
k

Vi g 2 k 2
- /w 2 DB (N . B

i

k

+ 2Bk, ¥ i D @ e (N, 2l (3.30)
Here
sin 29 sin 29 .
B(0,a,b) = <a2 > —b? 5 —2absm2(9) (3.31)
and
9y 139
ong  p o

Next suppos€@’ ' is such thab” ** T, # ¢. Thend Q™ MT,, is the straight line
joining the pointsD?l andD?ﬁrl for m € {k, k + 1} and for some Xk j < M,, as shown
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Figure 4.

in figure 4. HereM,, = J,, — N. Now we can show that

p+1 p+1
2,02 / du, i ou, ds
3Q]l’+1 N T 8y ds dx

2 +1 +1
= 2/) / 1 (M]p )vm (u[p )amo*m doy,
QT N T

DI?1
. (3.32)

1 1
+ OB ] ), )|
J

Here d/do,, denotes the tangential derivative angdd,, the normal derivative along
.

2 2
81/!]4C Bu].‘
R/ / N\ (MiNe dedly
Qk ox dy
i, N+1

2k 2k 2
<£/ / 9 ui,N+1+8 Ui N+1 drdy
T 2K Jok 9x2 dy2

(u

+ T/S;k / i N1) dxdy
k

i N+1

Vier ‘
- R/k (’41’,1\/4.1)(”,',1\/4_1)1/( (In p, Ox)do;
v

i

I
+R/ ) ) (u{.ﬁN+l)l’—Z+ds. (3.33)
0 y 41 N(BR©
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Similarly for Qf” = Qf ; with j > N + 1 we get

2
u p+l 3Mp+1
/;zm—l/ (( > ( 3ly dXdy
92y p+1 82uf+1 2
/Qm—l/ ayZ dXdy

p+1

d
/ /(MPH )2dxdy + R/ » uf+1 ua ds.
Elolg n

Let Lk = {l ; Qf“ c Tk}. We can now prove the following lemma:

Lemna 3.1

82 p+l 92,71 2
/ / +2 L
leLk of*t 0xdy

+1\ 2 +1 +1
N 92ul dedy +R au” au,P
a 2 y 11+1 8y

(3.34)

N

<)+ dAD) + A1) 4+ AV) + (V) + (VD + (VID + (VIIT) + (IX) + (X)) .

The terms indicated by roman numerals are as follows:

(= (p + —) > /p+1/(Aup+1(x,y))2dxdy,

leLk

(H)—— / f W/ (x, y))2dxdy,

leLk

[1\ 1//[_
any = Z {_2/://1( (ui,NJrl)@k (uﬁNJrl)rka (In p, 6;)d6;

i=1

i

Via .
- R/k (ui’N+1)(Mi,N+1)rk(|n P, 00 ¢,
v

Iy
(IV>=pZ/

k 2 k 2
g /((ui,N+1)x + (U y40)5)ds,

1N+l

V=rY > + x|/ L Al

lelt | \ysconr™ N1k yconl N ask

k+1

+> > @@, dow ¢

m=k y;§39f+l " Vs

(3.35)
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V) =-20% )" oo+ X

lelk | \yyconrt™* Nk ycoolttnost

+1 +1
/ Bulp d Bulp q
x — s
. dy ds\ ox
k+1

> / @, @l oo Gom ¢

= 1
m=k ngBQ]er mrm

I

VI == > 2Bk, (W y o) @k yopn) (N p, 9k>
i=1

k+1 My, —1

Vil = — Z > D 10 Z N (Tl P

=1 9t AT, i#¢

+1
W ) o
k

(IX) = —p?BWf. i y 1o @3 n )l i
k

2 kel Dk+l
and (X) B(I// (ulk N+l)f7k+l’ (u],\ N+1)W<+1)|Gk . (336)

By y; we denote an arc which is a side m;’“ for | € L*. Hered/dr; denotes the
radial derivative andd/dn; the tangential derivative to the circle with center4t and
radiusp, i.e., d9/dn; = (1/p)(9/36;). Moreover d/do; denotes the tangential derivative
anda/adv the normal derivative to the sid& (figure4). Finally T, ; is the open subset
of the straight lindl",, between the point®!" and D", andw’*> | | denotesi, ., if
m=p.

Using the estimates (3.30)—(3.34) we obtain (3.35). O
Recall from (3.2) that there exists a mappMﬁ 1 from the unit squaré to §,” +lgiven
by

x=x""E )

y=Y""eE .

Similarly there exists a mappin’gi’fNH from S to 5§N+1.
We now define another semi-norm in terms of the transformed varialdedy:

s = Y [ [10Epga e vy e e

|la|=m



622 Pravir Dutt, Satyendra Tomar and Rathish Kumar

Let

‘M,”*l) = ess sup (max( max(|D°‘X”+l|)

m,00,§ Emes lerl=

‘rr|1ax(|D°‘ Y/T)). (3.37a)

Then we have the following results [3]

2 2 2
|l/l (%‘7 r/)'o,s S | ]1+1| |M| Qp-%—l S C |M|O,Q]p+1 3 (337b)
| p+l|1 s
lu €. m)I3g < U—M‘T| |mp+1 <C |u|iglp+1, (3.37¢)
e ,
and
g < ——— (1M gl s+ IMPPR gl )
’ 2,8 = |JMP+1| 1,00,8 Z,Q[p+l 2,00,8 l,Q;hLl
< C(Iulm,,+l + |u|mp+1) (3.37d)

Here J upL denotes the Jacobian of the transformat,ﬁetﬁ+ as defined in (3.3a) and
(3.3b) and|JMp+1| = Ming, pes |J p+1(é}, n)|; note that we have used the bound given

in (3.3b) to arrive at the above results. Consider the pD(hin figure 4. Then there exist
two domains’** and2/,** on whose boundarp lies. Let

[w?*(DF) = whtH (D) — w! (DY),

whered Qﬁ'fl (T is traversed first if we travel alorig, from D’{ to DIM'
Moreover let

[w?*(GF) = wiy41(G) = wi_y y 1 (GD.
We now prove the following lemma.
Lemna 3.2

I(VID) 4+ (VIIT) + (IX) + (X)| = (XI)

60° 1 1
a5 2 (7 g T ). (3.38)
leLk i
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where

I
XI)=CInN (Z @™ GHP + [’ T™),1(GHI?

i=2
k+1  Mp—dmk+1
+>° ([P 1(D)?
m=k  i=2—8y k+1
+(@"h,1(D)?)
k+1
+ ) (U BT, s 16,0} (). (3.39)
m=k

Here P,, is D if m = k and P, isD’j;ki1 if m =k + 1.
We first estimate one of the terms in the right-hand side of (3.38). Now

|02 SInP (WO Wf_ gy Dn 1 vy D
— Uy Uy D J(GD)]
< P21 gy Dr (GONLEE o Dn (G

1@y D (GO DR I(GDD. (3.40)

Now by Corollary 4.80 of [12] we have thatifandb are real numbers such thet+ 5% = 1
andw is a smooth function defined cih,”“ such that

N N
wXE D YE D) =D anat" "

n=0m=0
then

|(aws +bw,) (P)[* < C (nN) ( [0l gpis + 1013 gpia)- (3.41)

Z,Q[pﬂ'
Using (3.41) we obtain

|02 SInP (WO _g yDn g gD
— Uy Wy D} (G

< CIn N{([@f y Dr (G2 + (Wf yyDn ] (GENH
/02 k 2 k 2 k 2
+ 3_2<|ui’N+l|l’Q{'c,N+l + |ui'N+1|2’QfN+l + |Mi_1’N+l|1’Qf'{—l,N+l
k 2
=+ |u; )
| ! 1’N+1|2*Qf'{—1,1v+1

Treating the other terms in the same way we obtain the result. O
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We now estimate the terV) in (3.36). Letw be a smooth function oftX Then

) Vi,

& (5 wds = o w* (p, Ok) pdOk

3y (1 Bp i
Vg v 9

zf ' f —p—< L 2) dre
wk org \v—p

1//," 1 v —
wk 2drkd9k + /wk * / —2p <1; _?) wwy, drydg
; o

i+1 2 ‘//ik+1 v
< wrdrdd; + 2 |wwy, |rrdrydok.
Ve Jyl o Jp vl o

And so we obtain

1 Wik 1 [V
/ wds < (— +a> / B / wzrkdrkdek
Bk ﬂaQ N+1 L ‘//ik P

1 ‘/fzk+1
+ —/ / (wrk) rrdrdo. (3.42)
o '//ik

i,N+1*

foranya > 0.
Hence using (3.42) we get

(V) =p fa ISR

i,N+1

(523 ), ottt

w2
o

Choosex so large thatp/«) < (p?/32) and choos&® > [p/(v — p)] + ap + (p?/2).
Then combining (3.43) with Lemma 3.2, we have the result

25 0
Z 3P p2lu p+1’2 Qrt T Z (R T — _O‘p) |“f+ }1 o/t

leLk leLk P
<M+ dD 4+ ) + V) + (VD) + (XI). (3.44)

We now obtain an estimate for the te(Wil ) as defined in (3.36).
We shall estimate the first term {i¥l). Now

au’t™td [ ul ™
2 2 l - l d
P Z Z /X dy ds ox g

leLk ngBQllH—lmTk

au’™td [l
<2 2 / el / ds! .
=P Z /}:s |: dy ds ox s

ys STk

/((uz N+1)xx + 2(ul N+1) + (M5N+1)§y)dxdy.

(3.43)

1N+l

(3.45)
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Let us get an upper bound on a typical element in the sum, in the right-hand side of the
above inequality, which is of the form

) / ault\ d (oul™\ [oult\ d [oultt 4
e — —_— S| .
3 ay ds ax dy ds 0x
We shall assume, to be specific, tﬁa:z”“
under the mapplngjl,ﬁ+1 andanf;l is the image of the side = 0 of S under the mapping

M”“. Recall from (3.10) and (3.11) that there existg andk such thain”+1 = ij for

somei, j with j > N. Hence the mapplngW’Jrl is the mapping\/li"j from S to §f] as
in (3.2). This representation is needed only fork < p, N < j < Jrand1<i < Iy
Now Jy = N + O (1) andl; ; < I and hence there are a fixed numbeﬂéf for WhICh
this representation is needed even if weNet> co. As such we may assume

2p (3.46)

is the image of the side = 1 of the square

max |Mk. <C 3.47
i,j,k,j>N| ,’]|m,oo,S =Um ( )
where the norm has been defined in (3.37a). Note@hais independent oV. We shall
impose further restrictions af,, in the second part of this paper where we shall examine
the accuracy of our numerical scheme. Here we shall only establish the stability of our
scheme and for that an estimate of the type (3.47) is adequate. Now

a”flﬁ_l p+1 p+1
9x = (um Debx + Wm yhxs (3.48a)
and
3“r€l+l p+1 p+1
3y = (um )Egy + (um )nny- (3.48b)

We have that

x = xbTHE )
y = ¥ieE

LetE, (£, 1), 7x (€, 1), &, (€, n) and7, (£, n) be the unique polynomials inand; which

are the orthogonal projections&f (¢, n) , nx (¢, n) , &, (£, n) andn, (£, n) into the space

of polynomials of degreéN — 1) in each variable separately with respect to the usual
inner product inH? ((O, 1)2), as defined in [12]. We now define approximations to the

derivativesdul ™t /ax andaul™ /3y as follows. Let

0<6§=<10=n=1

aub™\" p+1 Pl ~
ax = (um )ng + (upm )rﬂ?x, (3.498)

and

9 1[4)1+1
(ua)’ ) (upﬂ)f‘gy"‘(”m Inly- (3.49Db)
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Using the approximation results in [12] we have that
€ = Eclioo,s < KN &l - (3.50)
Now &, = (Y1), /751 . Moreover by (3.47)
|M{ lmcos < Cm forallj >N,
and by (3.3b)
A1p® < I} < Agp® forallj > N.
So itis easy to see that
|6 — Exlroos < CN 74 (3.51)

for all Ml.’fj with j > N, andN large enough. A similar result holds f&y, , andx,.
We are now in a position to prove the following lemma.

Lemma3.3. Lety, be contained if’¥. Then

2p2/ aup+l£ 8up+1 ds
L 0y ds ox
uPTI\* ? uPTI\* ?
<C(nN)? +
N ox ay
1/2,]/5 1/2a)/x
2 2
P 1 1
+ EZ(luﬁf 12 i Ll 2. (3.52a)
[:1 I m bl n

Here
JuPTI\? 2 B dultt\* € aul ™\’ . n) ?
ox - ox D dx N ’
1/2,ys 1/2,(0,1)
(3.52b)
and
2 a a 2
uPtIN? 3up+1 8up+l
Y 1/2, v, Y Y 1/2,(0,1)

(3.52¢)
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It is easy to see that

dulttd [oul™t aul ™\ d (aulH\’
. Oy ds 9x . dy ds dx

f {((Mp+l)§ & — &)+ h ™y, = 7))

((u"”)gsx + ™m0 | @ mdn
/ [(@h™e@) + @h™ @)
((u”“k(sx 0+ @l ™yt =)} @ e, (3.53)
Hence

2

au?t g 3u”+1
? TR ” i m 7,
g fy dy ds( ax /{((“ YeEy+ b,y

d
X d—n((up+1)g§x+(um )nnx)}(l n)dn)

2

+1,2 +1 +1
Z B P gs < N4<||<up )ell3 /2.5 + Ik Hnll3/0.5)
=1

+1
¥ (Z 17 i) (3.54)

m

I/\

| /\

by the trace theorem and an inequality for fractional Sobolev spaces we obtain below along
with (3.37a)—(3.37d). The inequality is as follows.
Let

w (€, ) = ZZamns n"

m=0n=

defined onS. Then
||w||1/2s <Clwlps llwllys < CN? Ilelos

by the interpolation inequality and the inverse inequality for differentiation in [12]. Thus
for N large enough

8u,’,’,+1 d 8u,’,’l+1 8uf1+1 “d 8up+1 ¢
— ds — — ds
v, 0y ds X ¥ ay ds X

2
12

Z ol 19”“ (3.55)

=1

2,02

(.;.)lb
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9 p+1 9 z+l a

L) & 050) oo
ap+l d ar;lﬂrl“

AN e
p+l 9 p+1\ ¢

{( )ﬂ >—(”a"y)<°’">}

Now

-(a )M)}

Clearly (3u? ™ /8x)(1, n), Gul/8v)2 (L, 1), BulTt/8x)(0, n) and
(au,ﬁ’“/ay)“ (0, n) are polynomials im of degree at most2. Hence by Theorem 4.1

Y ou?™\" d [oultt\”
2 ) == 1,7)d
fo {( By dr \ ox (1,m)dn
1 8u5+1 ¢ d 8u£+1 ¢
- /0 {( 3y ar \ ox (0, n) dn
_C dul T\ aul T\
= |nN)2{ ( 8”; ) 1,n - B’y ©, n)

2p

2

>§

1/2,(0,1)

2
aul ™\ aul ™\
+l—=—) @amn-|——) ©On
ox ox
1/2,(0,1)
2 2
dul ¢ aul T\
+K 1,mn + O, n) .
ox dy
1/2,(0,1) 1/2,(0,1)
(3.56)
foranyK > 0.
Now

=~ +1
< C1(ll&xl11,00,0,) Il e (L 12, 0,1)
1/2,(0,1)

3u5,+l a
( O ) (L)

~ +1
+ 17 11, 00,0, 1 el nll1/2,0,1))-



Stability estimates for h-p spectral element methods 629

Using the above estimate, the trace theorem and (3.37a)—(3.37d) we get

Buf,fl “
1,
‘ ( ox (L)
Substituting the above estimates into (3.56) and chodsiamall enough we can conclude
that
) fl 8u,’fl+1 a d 3”:'7)1“ a @
0 dy dn ax 10
1 ™\ d [oult\”
_ n - n 0 d
fo {( oy ar \ ox O, man
9 r1’71+1 a 9 1[1)+1 a
<cinm? i (E) @an-(Z2—) o
dy dy

2
aMp+1 a aMp-&-:l. a
+H( a”; ) 1,n) — a”x 0, 7)
1/2,(0,1)

2
P z : 1 1
+ 3_2 < | i |2S2p+1 + | n |2S2p+l) . (358)

Hence we get the required result. a

2 2
1.2
<SCY o lun 1 (357)

1/2, (0,1) =1

2p

2

1/2,(0,1)

Finally

2,02

+1 p+1
(up )v,,,([ )amamdam
anJrlm
1

2 / {(u”“)v,,, g (@ ”*1)0,,1)}(1, n)dn’

or a similar expression.
Now

W™, L) = A @™, @),
and
@™, @ = B! ™e (L) +C o) @™, @ ).

The form of the expressionB () andC (n) do not matter except that they are analytic
functions ofy involving X”+1, 71 and their derivatives atl, n). Hence we can bound
the derivatives oB andC as in (3 48a)—(3.51). Let (n) be the unique polynomial that
is the orthogonal projection of () into the space of polynomials of degréve— 1 with

respect to the usual norm defined B8 (0, 1). We now define

@!™he @,m) = A, ),
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and

@™ @) = B @ e ) + o™, @ ).

It is easy to prove as we did the estimate (3.52a)—(3.52c) that

1 1

202 | | 1@l ™), @l 600 1dom

Vs

2 +1 2 ,02 2 +1,.2
y4 P
< CAn N5, 152, + 35 (;w, 'm;’“)’ (3.59a)
wherey, C T, (02" for somem € {k, k + 1}.
Here

1 1

)8 125, = 1@l ™8 @ 0)IE)2.0.)- (3.59b)

Hence using the estimates (3.52a)—(3.52c) and (3.59a) and (3.59b) we obtain

2 2
VDl < XD+ Y % Sl R (3.60a)
leLk © i=1 i

where

(XIl) = C (InN)? Zk(n[(u“l)z]uiz,% + I ™41 2,,,)
ys ST

k+1

+1> S nafthe 12

= k 1
m=k leL ngagf+ mrm

8up+1 d 8up+1
— 20 L — (- ds. 3.60b
P Z Z /‘X dy ds ax g ( )

k . . +1
Il ycostnogf

Now using Lemma 4.1 and (3.3a) and (3.3b) we get

+1 2 17,2
>y g gra =T > M,

leLk yngk
k+1 1 1
p+1,2 p+ 2
2 DD DD DR A -V S S A ) Nt
m=k [eLk ysgaglp+lﬂrm leLk !

(3.61)

Here the constarf is independent oN.
Choose

R>L+ap+(T—|—l),02.
vV—p



Stability estimates for h-p spectral element methods 631

Adding

k+1 2

Tp? 1 > PG, + Z > >

yngk m=k leLk y;gaQIPJrlﬂFm

to both sides of (3.44) we obtain

1
> (p " g

leLk

+<R—vfp —oep—sz) uf e 2

1, Qp+l

21
p+1 2
+3 P |M (.X, )’) |2’le+l>

< () + (1) + (1) + (V) + (X1 + (XI1))
+Tp% 1 > w15,
ngTk

k+1

Z )RS DI 7 (3.62)

m=k |[eLk C39p+1ﬂl"

We now have to approximate

+1 +1
|Aul OQ,,H / /(Au{’ )2dx dy.

Now

Auf ™ = al Tl e + 267 @l ey + W

1 1 1 1
N (77 e VAN S e (77 G WO

Hence

/ . /(AupH' de dy — / /(L;J+lu;7+l)2d%. d?’],

o/t 0,1)%x(0,1)
where

Lp+1w = AP+1wgg + ZBer wey + Cp+1w,m + Dlp+1wg + Elp+1w,,,

and APT = 4Pt [P, etc. Let AP denote the unique polynomial which is the

orthogonal projection o,ﬁlerl into the space of polynomials of degrée— 1 in & andp

with respect to the usual inner producti? (S). We defineB”**, C7**, bP** andE" ™
in the same way.
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Let
(LY = AP e + 2B w4 -

Then it is easy to prove that fo¥ large enough

h=>y (,0 +—)/ /(Aup+l )2dx dy
leLk e

=22 (p +—) / f (L7 u™Pde dn

leLk

£E|’ p+12

155 (3.63)

Substitutingk = p2/2R in (I1) and estimating the terrfV) as before along with the
above estimates we obtain

2
P 2
Z 7H”f+l”2,s

leLk

< C(nN)? ((Z L Heul e, n)||3,s)

leLk

+ ) UG, + @™ 2, + L@ 2,,)
ngTk

k+1

+ > > AN, + @ the ||§/2%>)

m=k  y,CdT*¥ T
ubtl ouPtl d [ourtl
+ RuPt™t— ds—2 2/ — d
)/é:sk </v ! on P y, Oy ds \ ox '

+ () + (X1 (3.64)

Here(lll) is as defined in (3.36) angl) is as defined in (3.39).
We are now in a position to prove an energy inequality for the subdogfaivhich we
state in the following theorem.

Theorem 3.2. Consider the subdomaist. Then forN large enough

1 N I
gZleuf‘,/ (@00 e+ M LA ) I3 0+
= =1

leLk
<{DH+B+O3+ @B}, (3.65)
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where
N I
1) = C(nN)? (Z Dl (o 001G g5
j=2i=1 !
+ > U UG5 + Nb 0E 25 + Mg 115 /2.5
s
k+1
D D D (A PR AP
m=k 5T, MRk
@=cnn?( X Al + e o5
MCBk
k 2
+ I[(u )gk]”l/z,y,))a
(3) = C (In N)2< @ hul e mid g
leLk
+ ) PG, + @D 2, AL D0 2.,
ngTk
k+1
)IEEED'S <Hu"“n%,ys+||<u"+l>f,,,l||%/z,y)>’
m=k  y,COTk Ty
and
k+1
@ =" (D" B Ul b)) (P)
m=k
uk uk d [ ou*
RuF—— —2p?—— (=) ) ds.
+ 3 [ (e -2 (50))
Végast s

By (3.37a)—(3.37d) there exists a positive constastich that

+1 2 2y, pt+l 2
alluf e I35 < o2l ) 12 e
)34

for all @7 ** < T* and for allk.
Then combining (3.27) and (3.64) and using (3.66) we obtain

I

1 N o 1
- luf (e, 0012 5 + 5 > llul & I3
2 i—1 " 2’91.] 2

j:

i=1 leLk
<{D+G@+ @)+ Xl + XIV) + (XV).

633

(3.66)

(3.67)



634 Pravir Dutt, Satyendra Tomar and Rathish Kumar

Here

I
(Xlll) = Cln N(Zq[(u")fk](G{f)F +1[@)a 1 (GHIP)
i=2

k+1 My, *(Sm,kJrl

+> Y (|[(up+l>x](D;")|2+|[(up+1)y1<D;")|2)).

m=k i=2—8; k+1

The remaining two terms are

I ‘/’ik+1
(XIV) = R (Z /wk () W ),
=17V

— (Uf N Wl y D) (N p, 9k>d9k),

and

L vy
(XV) = 2(2 /w (e e )
i=1 i

— (Uf N D)o Uy D)7e) (N o, B)d 9k>.

Once more using Theorem 4.1 we can show that

I(XIV)] + [(XV)]

5 Bk
VIEB;

< C(InN)? ( > (II[(uk)]IIS,y,FII[(uk)?k]IIE/z,#II[(uk)Zk]IIE/Z,;,))

1 ¢ k 2 @ k 2
+ 3 ; oty (s 00 g + 55 ; i ysa G Mg - (3:68)

We now consider the terffi(u?+1),](D)[2. There exist two domair@” ™ andq?
such thatBQfH N 8&2{’“ = y; and D}" is an end point of the curvg. Let us assume
that ;9271 is the image of the mapping” ™ of the boundary; = 1 of S and

vi() BQ§’+1 is the image of the mappinlg[serl of the boundary; = 0 of S. Further let
D" correspond to the image of the point= 0 for both these cases.
Now

[P *,1(DM 2
< 3{((@!™HE D — @ THE. 0)]g—0)?
F (@ = @D E Dle—o)?
(@D = @ THYE 0)]g—0)?). (3.69)

Moreover((u” ™4 (&, 1) — w?*™)2(&, 0)) is a polynomial iré of degree at most/2.
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Now by Theorem 4.79 of [12] we have thatif(s) is polynomial of degre@/ defined
on|[0, 1] then

P10y < CA+INM) I plF/20. -
Hence we obtain

3! ™HaE, 1) — @l HE, 0)[e=0)?
< KInN|[@”™HA15,,,

Now
(@, — @30, 12
< 2(/(w!™eE =€) O, D2+ (@™, (e — 70)(©0, D).

Using (3.51) and the Sobolev’s embedding theorem we can conclude that

(e = @ THDO.DP = C e, 2

And as before we can show

(@™ = @ HDO.DP < 5 e miZs.
ChoosingN large enough we obtain

(@™ — @l TH9H 0, D12 < 32||u”“<s,n>||§,s.

And so we can conclude that

k+1
i (Zﬂ[(u”“)x]wf”nz + |[(uf'+1>y]<D£">'2))
m=k

k+1

smmmz(Z > @™,

m=k ysCE)Tkﬂl"
+||[<u1’+1>;]||§/2,y5>) = Z lul 13 . (3.70)
leLk

In the same way, we can conclude that

Ik
CInN Y ([ (GHE + [)g](GHIP)

i=2

<KInNZ [ Al 25 + IT@a]IE25) | - (3.71)
M Bk
Substituting (3.68), (3.70) and (3.71) into (3.67) we get the required result. o
We have now obtained an energy inequality for any ofrsibdomainss® into which
we had divided our original domain. Combining these estimates we can now prove the

main theorem of this paper which can be interpreted as a stability estimate for the whole
domain.
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Theorem 3.3. Consider the whole domaife. Then forN large enough there exists a
constantC such that

i Mu

N I
ZZ luf o OO 5 +Z||u”“(s,n)||§,s
j=2i=1
P N I
C(nN)? (ZZZMui{,»(rk,ek)ng@_
=1 i=2i=1 ML

+ Z > A5 + 1@ 51525 + L@ ]11Z 25)

k=1 pcQr

+> > (||<u">||oy,+||(u")fk||l/2y,))

+
/N

Z ||<(L;’“)“u;’“> & M3 s
=1

+ > @G, L@ DAL o, HI@ D 2,0

Vs car+l

)4
+> > <||<up+l>||%,%+||(u"+1)zk||§/2%)>. (3.72)

k=1 )/XQBQ!”:L m Tk

Here (L””)“ ptl &,n) is the approximate representation of the elliptic differen-
tial operatorL"’+ acting onu (g n) as defined immediately after (3.62). Moreover
(au”“/ax)a and (8up+l/8y)“ are the approximate representations of the derivatives
8up+l/8x and 8u /ay in (&, n) variables as defined in (3.48a)—(3.49b). Similarly
||(u1’+1) ||1/2y is the approximate representation Io(fw"“)gknl/zy as defined in

(3.59Db) Where(ul’“)gk denotes the tangential derivative:dft® alongI'x. This represen-

tation is obtained by replacing the coefficients of these differential operators, which are

analytic functions of ands, by polynomials approximations of degree at m@ét— 1)

in each of the degrees of freedom of the function elements in their respective domains.
Summing the estimate (3.65) in Theorem 3.2 dvand estimating terms as before the

result follows. |

4. Technical results

In this section we prove the results which we frequently refer to in 83.

Lemmad.1. Let w (9) be a piecewise smooth function defined ok [91, .. .9M+1]
which has discontinuities only at the poirs 03, .. .6). Then
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Om+1 ® — 67)? M rOr1 /g 2
2 M+1 1
w2 (@) do <2 LY / <—> db
/91 ( 2 0 do

k=1
M
+M (Op+1— 61) (w2<91) + ) (wEhH - w<9;>)2))) : (4.1)
j=2
Here
w(@j') - 9>9|-iry—>9- w©),
and

we;) =, _lim w@).

<0;.0—0;
Define a functions (9) as follows:

w (01) for6, <6 < 95,

HO= { w (O1) + T5_pw() —w ;) for 6 <0 < fs1,2<k <M

Thenw (6) may be written as
w () = h(0) + s(6)

whereh(0) is a continuous function which is differentiable a.e.
Moreoveri(61) = 0. Now

O+ Om+1 Om+1
/ w2 (0)do < 2 (/ h2(0) do +/ 52(6) de) .

61 61 61
Clearly

h(0) = 9 d—hd¢
B 01 d¢ )

Hence
5 Om+1 /dh 2d
W20) < (6 — 61) (—) 9
o \00
From which we can conclude that
Om+1 0 —0)2 [Om+1 /dh\2
/ h2 (0)do < M[ <—> do.
01 2 01 dg
Now
Om+1
/ $2(6)d6 < (w (61))% Ay

01
k

M
+) kAo, ((w(01>>2 + Y wOhH) - w(ej>>2>
k=2 j=2

= Jj=

M
< M (Oy41—61) ((w ORI CICIE w(e,-))2> :
j=2

Jj=
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And so we obtain the estimate. O

Theorem 4.1. Let a” (s) and b” (s) be polynomials of degre® on the finite interval

[a, B]. Then
B P
/ af () Mds
o ds

Here| | ;. denotes the fractional Sobolev norm A (2) as defined in [9], wheris not
an integer. Now for any & ¢ < % we have

B P
f at () b () ds
o ds

since the space of infinitely differentiable functions with compact supp¢st i) is dense
in W, (e, p) for 0 <t < 1/q by Theorem 1.4.2.4 of [9].

Next using Theorem 1.4.4.6 of [9] we have the result that the differentiation operator is
a continuous linear operator froW; (o, B) 1O Wé*l (o, B), except whenr = 1/¢, with

< CInPlla®lly2,wpllb” 11/2,@p)- (4.2)

d P
< la”l1/2-c.@pl EII&/Z%,(a,ﬁ) 4.3)

norm proportional to A’t — ql‘ Thus we can conclude that

dp” K
H < - 16711 (1/2)+¢, (e, - (4.4)

—1/2+4€,(a, B)
Now by the interpolation inequality from [9]

1" a2 4e.@py < CULT I35 50 o 1B7 13 p)- (4.5)
And by the inverse inequality for differentiation in [12]
157 12,@p) < C P27 |1, (@.p)- (4.6)

Once more by the interpolation inequatlity

1-1/3 1/3
16" 1.@.p) < CIBT 13210 10712 00 p)

and from (4.6) we can conclude that

167 ..y < CPPRILPITE, 5,167 112 1 5
This gives us the inverse inequality for fractional Sobolev norms

15711, @.p) < CPUIL" N1/2,@.p)- 4.7)
Using (4.5) and (4.7) we get

167 l1/2+e.@.p) < CPZNDP 172, (0.p)- (4.8)
Next it is easy to see that

la® Il 1/2)-e..p) < Clla® 172, @.p)- (4.9
Substituting the relations (4.4), (4.8) and (4.9) in (4.3) we get

p dbP( ) ds
/ P () Pzella I1/2,(.8) 167 111/2,(0.p)- (4.10)
o

Taking the minimum over positive we get the required result. O
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