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Abstract. In the present paper, we obtain three unified fractional derivative formulae
(FDF). The first involves the product of a general class of polynomials and the multi-
variable H-function. The second involves the product of a general class of polynomials
and two multivariableH -functions and has been obtained with the help of the general-
ized Leibniz rule for fractional derivatives. The last FDF also involves the product of a
general class of polynomials and the multivariaHl€unction but it is obtained by the
application of the first FDF twice and it involves two independent variables instead of
one. The polynomials and the functions involved in all our fractional derivative formulae
as well as their arguments which are of the typg [;_, (xi + ;)" are quite general

in nature. These formulae, besides being of very general character have been put in a
compact form avoiding the occurrence of infinite series and thus making them useful in
applications. Our findings provide interesting unifications and extensions of a number
of (new and known) results. For the sake of illustration, we give here exact references to
the results (in essence) of five research papers [2, 3, 10, 12, 13] that follow as particular
cases of our findings. In the end, we record a new fractional derivative formula involving
the product of the Hermite polynomials, the Laguerre polynomials and the product of
different Whittaker functions as a simple special case of our first formula.

Keywords. Riemann-Liouville and Erelyi—Kober fractional operators; fractional
derivative formulae; general class of polynomials; multivariatsléunction; genera-
lized Leibniz rule.

1. Introduction

We shall define the fractional integrals and derivatives of a funcfion ([10], pp. 528—
529) (see also [6-8]) as follows:

Leta, B8 andy be complex numbers. The fractional integifb(«) > 0) and derivative
(Re(e) < 0) of a function f (x) defined on(0, co) is given by

a2l /x(x — 0 1F (a +B —yial— 5) f@dr,
r@ Jo p
Ig’f’yf(x) 1 (Re(ar) > 0),
Elg’;—q,ﬁ—qw—qf(x)’ (Re(w) < 0,0 < Re(a) +¢ < 1,
g=123..),
@)

whereF is the Gauss hypergeometric function.
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The operatol includes both the Riemann—Liouville and the &yd—Kober fractional
operators as follows:
The Riemann-Liouville operator

B o= i [t
RESO= g REO=00 g
dquo f(x), (Re(w) <0,0 < Re(aw) +¢g <1,
gq=123...).
The Ercelyi-Kober operators

ey

INCY

B £ = 1507 10 = " [ =0t o o Retw) 2 0.
3)
Also, )" [x] occurring in the sequel denotes the general class of polynomials introduced
by Srivastava ([11], p. 1, eq. (1))

i = s Cmky k012 4
n [x] - Z kl An,kx ’ n = 9 ==y Loy oo ey ( )
k=0 ’

wherem is an arbitrary positive integer and the coefficieAts, (n, k > 0) are arbitrary
constants, real or complex. On suitably specializing the coeffici&nis S [x] yields a
number of known polynomials as its special cases. These include, among others, the Her-
mite polynomials, the Jacobi polynomials, the Laguerre polynomials, the Bessel polyno-
mials, the Gould—Hopper polynomials, the Brafman polynomials and several others ([16],
pp. 158-161).

The H-function of r complex variablesgy, ... , z; was introduced by Srivastava and
Panda [15]. We shall define and represent it in the following form ([14], p. 251, eq. (C. 1)]:

O,N:M',N';...;M®) N©
H [z, 2l =Hp hpl o oo
) (r) A . ) ()
'Zl ((l],()lj, ce ,Olj )l,P . (Cj’ )Q)LP, PR (C/ s Vj )1,P(r>
: o O\ (g s R S5 NS
Zr <b/"3j"" Bj )1,Q ' <df’6f>1,Q/ Y <dj %) )l,Q"‘>
1 & 3
= Loozordér. .. d
Zrw) /Ll /L $1(61) - .- D EP) Y (51 §)zy ...z 06 5
)
wherew = +/—1,
5T (df = o6 ) TS T (1= 4+ %)
¢i (&) =

ow @ (@) P @O _ 0
Hj:M(i)+1F<1_djl +8jl éz) Hj:N(i)+1F< l ¢ Ez)

Vie{l....r} (6)
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W(Slv ﬂ%‘f)
vazl r (1 —aj+ Z;:l O!j-i)%'i)
P oo () 0 A IOPAY (7)
[Tj=n+1T (aj —2im1; 51’) [T7=2T (1— bj+ 2 i—1B; 5:')

The nature of contourks, ... , L, in (5), the various special cases and other details of
the above function can be found in the book referred to above.

It may be remarked here that all the Greek letters occurring in the left-hand side of (5)
are assumed to be positive real numbers for standardization purposes. The definition of
this function will, however, be meaningful even if some of these quantities are zero.

Again, it is assumed that the various multivariablefunctions occurring in the paper

always satisfy their appropriate conditions of convergence ([14], pp. 252-253, egs (C.5
and C.6)).

2. Main results

2.1 Fractional derivative formula 1

s S j
i=1 J

j=1 i=1
- ; J ®
" |:le”1 1_[ () 1_[ (x4 a;) " “
i=1 i=1
[n1/m1]

= ail .. .ot;’“?xpfﬂ
k1=0

[ne/m(] (—nl)mlkl .. (—nt)m,k, Al A(t)
kl! kt| niky s Ak,

k=0

(1) , ®
ell e efta]_l L e O[gs 1 s Ix)‘lkl'i' +Arks

- L
z100 t.oLog CxMl
_ NG
O,N+s+2:M',N';...;M® N©);10;...;1,0 Zray Ty ™ xtr
P+s+2,Q+s+22P’,Q’;...;P(’),Q(r);oib-v-?o-l 1
‘ oy ~x
1
| oyt
(=p —Aiks— - = Mksua, ..o up tr, o t), (B—Y —p —Atky
— = Ak U1, o Up 1, . T,
(B—p—Artky— - = Aksua, ... up 1, ... t), (—o —y — p— Atk

— = Akgug, Ut L),
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<l+al+r;’1k1~|- +17¥)kt;v’1,...,vir),l,u),...,
<1+Us+n§k1+-~-+n§t)kt;v;,... ,vs(’),o’sn—"o,l>,
<1+al+n’1k1+ +n§’)kt;u’l,...,vg”,o’”s—"o),...,

o,...,0
<1+os+n§k1+-~-+n§t)k,;v;,... ,vs(r),T>,

L @ 0....0 .</ /) . (r (r)) ]
(a.,,aj,...,aj T )1p. i ¥; 1,P””" Y Lpo

—_ R

0,...,.0
Y (r) . Y . . (r) o) .
<bj,ﬂj,.. ﬂ —S )LQ.(dj,Sj)l’Q/,...,(dj ’Sj >1,Q(’)’

0,1);...;(0,1

8
provided that

(i) Re(e) > O;thequantitiesy, ..., t, Az, 1fs oo, Moy oot Ary n(lt), oo u, v, ..
Vg, Uy, vi ... v are all posmve (some of them may however decrease to zero
prowded that the resulting integral has a meaning),

(i) Re(p) + ¥j_yu; min [Re(d](’)/a;’))] +1-0

<j=M"

Also the number occurring below the line at any place on the right-hand side of (8) and
throughout the paper indicates the total number of zeros/ones/pairs covered by it. Thus
0,...,01,...,10,1...:0,1

I

would mean- zerosf onest pairs, and so on.

2.2 Fractional derivative formula 2

s t

i=1 j=1 i=1
o —v! o —o®
H Z1x“11_[(x’+ozi) ’,...,zrx“’]_[(x’+ai) ’
i=1 i=1
s=1 ) NG s—1 . _prto
H* | zp41x"r+1 H (Xt’ + Oli) L X 1_[ (Xt’ + Oli) !
i=1 i=1

oo [n1/mi1] n,/m,
. p— Z —B (= nl)m ki (CRO)mk
:Olzl...()tgxp B _E [ 15 kl| =

k1=0
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(0 ki

ntktel ce

e ay

K nikietnk

0)
) .oz;’;k1+"'+ns ktxA1k1+~--+A,k,

...;1,0
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P+P1425+3,0+014+25+3:P,Q';..; PO, 0); 0Lei0L pO+D) (4D, pr+D) gr40); 01201

ziog tag Ux
G ")
ZrOllvl S_US xtr
aflxtl
oy txt
_yrtD _prtD
Ir4+10q ! 'as—iil xltrt
L r+D) _prto
Ir4+10 . -O‘s—vfl Xt
C(letl
_0‘;—11)‘[“1
o,....,0
—Mky — o — Mkgsur, . up 1, ..ty ———— ),
( 1K1 tKes Ul rafl Sr+s—1)
l ok ok . , o,...,0
_ — —_— . — ;u,...,u, gy by, T/~ ’
Yy —Atky tkisuy r 11 Yr4s—1
o ok . . 0,...,0
_ . — sUL, . Uy 11, Gy, ],
1K1 1R 11 i Pr4s—1
o,....,0
<—(x—y—X1k1—~'~—)nzkt§ul,~~,urvtlv-”’ts’m)’
0,. 0
l+ /k + .. 4+ (’)k;v’,...,v(r), N . ’ ) )
( N1k N Kes Vg1 1 T+25—2
o,...,0 o,. 0
' Ok ! (2t —
(1+Us+nskl+ +ns kt’vS""’vs ’ s—1 ’ ’T+S—1
0,...0
140tk +---+ (’)k;v’,...,vmv’— ) ’
( k1 I Lrry2s-1
0,. 0
1 "k (l)k; Lo (r) ’ ’
< + o5 + ngk1 + + 1y ke v »Us T4 25 -1

L
(aj,(xj,...

s

K

B

Mo

o,...
P25 —1)1

,0

0,...,0
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P T r+1
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0,...,0
b; /'7"‘5 ('r)7; B
(] Fi p T+2-1/1,

0,...,0
ﬂ—l—mﬁ,uul,u.,Mr+r,l‘17~-~,tsfl )
0,...,0
<ﬂ_l_y;ﬁyur+ly---,ur+rvtlv-~-sts1>,
0,...,0 (+1) (r+r) O,...,O
140 ——— v, 7, ..., v AL ).,
< b s L ! s—2
0,...,0
—U—V—P;ﬁ»ur+1,---,Mr—o-r»tly-uts—l )
0,...,0 (r+l) (r_;’_-[) 0,...,0
1401, —,v Y s T )i
( ! r+s ! ! s—1
0,....0 (r+1) (r+7) 0, .0
(1+Us—l§ rt yUg 1 5o Ug 17 T _2 1),

0,...,0 (r_;’_l) (r+-[) 0,...,0
<1+as_1;ﬁ,vs_l ""’v_&‘—l ’s——l ,

<b/" u ,3(_r+1) ﬁ§r+r) o,..., O)
7 r+s J J s _1 Lo,

0,....,0
aio;, ... o, ST :(c’., ’.) S
(ry ) . . .
O

A s Y (S W0 (0, 1);...50,1)
(d]’(s./)l’Ql’7(d] ’8] )LQ(")’ s )

)

(c<_r+1> (r+1>) . (c(r+f> §r+r>) . .

J *7] 1’P(r+l)’”" J *h 1’P(r+r)7_’”"_

(d(.’“), 5(.’“)) _ (d(.’“), 3(.’+f)> 0. 0D
J J 1,00+D J J 1,00+0) s—1

9)

hereH*[z,41, ... , Zr+:] Stands for the following multivariabl& -function oft complex
variablesz, 11, - .. , zr+¢ ([14], p. 251, eq. (C.1)):
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* i O,NliM(’+1),N("+l);... ;M(i‘+r)’N(r+r)
H[zp41, s Tr4e] = le’Q1:P<r+1)’Q(r+1);m . pUr+0) Qr+7)

B s D <r+r>) . ( (r+1) (r+1)> . ]
(aj,otj e O 1p, cj Y Lpein
Zr41 0y )
(C] ’ 7/] 1, P+

7. pr+1) (r+7) . r+1) o(r+1)
(bj,ﬁj - ) .(dj 5

:0; )1,Q<f+1>;”' ;
(r+7) o(r+7)
(a7 8577

Zret 1Lo1

1,00+ |
(10)

The function occurring on the right-hand side of (9) is #iidunction ofr +2s + v — 1
variables provided that

() Re(a) > O;thequantities, ... , fy, A1, 07, ... M5, ...y As, ny), e nft), ug, vy, ..

(r) (r) (r+1) (r+1) (r+7) (r+7)
VgoUp, Vg s oee 3 Us s Up g1, Vg yeen s U g 3 Upgg, Vg, ..., v, are all pos-

itive (some of them may however decrease to zero provided that the resulting integral
has a meaning),

. T . i) ,5@)
(i) Re(p) + X u; min [Re(dj /5 )] +1>0.

L)

2.3 Fractional derivative formula 3
) oar Pt , o AL .
g b T v (78) 1150
i=1 j=1
s @, el
|:eq,~x)‘fy§j l_[ (x4 a;)" (yt" + ,31') l :|
i=1

;P v ’ _wl{ ’
H[le”ly”l (x4 ) " (ytf +ﬁi) O o

i=1
. — _(r) / —wfr)
[T+ a)™ (o7 +5) }}
i=1
o! o! [n1/m1]
(% s _ Y
=o' . al Bt B xP By’ =P
k1=0
[ne/mi] (_nl)mlkl - (_nl)mtk; A N A(t)
k=0 kil .. k! n1.ky neks

k1 3 n’lk1+~~~+17¥)k1 n§k1+~~-+n,5')k, tik1+~~+r{’)k, r_;k1+-~~+r§”k,
e ... elay ... O Bi ... Bs

Mk hke Sk Gk
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O,N+2s+4:M',N';...;M® N®;1,0;...:1,0
P+25+4,0+425+4:P',Q';...; P(),Q(); 015301

- —U/ / w/ o ,
T A
Q) ) ™) )
v —vy w —wy oo
Zr0 cog By Bs T xtrytr
oel_lxtl
ocs_lxt3
-1t
.31 yi
ﬁfl ts/
L Ps ™Y
0,...,0
_P_)\lkl—"'_)ttkﬁul,---,MnT,tl,---,fs ,
o,...,0
<ﬁ_y_p_)\'lkl_"'_)\'lkl;ul"" s Ur, T’tl"" 7t.Y )

0,...,0
<ﬂ_p_)"lkl_"'_)"lkl;uli""ur3Tst11"'

sts)s

0,...,0
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@ 0,....,0
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(1+01+n/1k1+-~-+77¥)k,;v’l,...,vl P , 1,

0,...,0

<1+US+n§k1+-~-+n§”k,;v§,... Lo, 51

0,...,0
<l+al+n’1k1+---+n§t)kt;v’l,... ,vi”,—),...

2s

1).

’

o,...,0
<1+0S+n;k1+~-~+n§’)k,;v§.,... ,v@,—),

2s

0,....0
<_p/_§1kl_"'_glkl;uéb""u;wtiv"'st_;vT B

<ﬁ/—y’—p’—€1k1—--~—§zkz;u/1,...,u§,t1,...

o,...
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0,...,0
<l+ai+rikl+..-+rl(')kt;w’l,... ,w&”,l,—),...,

0,...,0 o,...,0
(1+a;+r;k1+...+f;k,;w;,...,w§f>, 0 B )

o,...,0
<1+U£+Tik1++fj(_t)k1,u);_, ,wir),T),...,

,...,0
<1+0S’+rs’k1+~-~+ts/k,;w;,...,ws T)

0,...,0 7]
ai o, ... o 2 :(c/., f) T
</ J 9j 2 1p Y 1P

9 e ey

/ )1,P(’) —

0,...,0
bl .. p0, :(d/. AT
(wﬁ,, A=) Digi
(d(‘r) S(r)) (0,1);...5(0,1)
J 77 1,Q(r)’ 2¢ i

11)

provided that

() Re(w) > 0; Rel@’) > 0; the quantitiesr, 17, ..., fy, 1, A1, 075 oo s Mgy oo v s Ar,y

®) ®) ’ () ®) ’ oy
M s s fls 2 8L Tgseee s Tgaevn s 8ia Ty yeee s Ty UL, Vs een y Vg, U, WYy o en, WY,

U, vi’), o) ul, wi’), ..., w!” are all positive (some of them may however
decrease to zero provided that the resulting integral has a meaning),

. ’ _ . @) ;o) ’ r / ;
(i) Re(p) + X i_jui i [Re(dj /8] )] +1>0andRep) + 3 iy u; L

[Re(d;i)/ﬁﬁ.i))] +1>0.

Proof of(8). To prove the fractional derivative formula (FDF) 1, we first express the prod-
uct of a general class of polynomials occurring on its left-hand side in the series form given
by (4), replace the multivariabld -function occurring therein by its well-known Mellin—
Barnes contour integral given by (5), interchange the order of summatians, . , &)-
integrals and taking the fractional derivative operator inside (which is permissible under
the conditions stated with (8)) and make a little simplification. Next, we express the terms
(le + al)01+?7’1k1+~~+'7¥)kr—viél—w—vir)ér N (xzs + as)as+n§k1+~~+n,5')kt—v.§§1—~~—v§”€r
so obtained in terms of Mellin—Barnes contour integral ([14], p. 18, eq. (2.6.4); p. 10,
eg. (2.1.1)). Now, interchanging the orderg®f, 1, ... , &4+5) and(&, ... , &)-integrals
(which is also permissible under the conditions stated with (8)), and evaluating the
x-integral thus obtained by using the known formula ([9], p. 16, Lemma 1)
Ig,xﬁm {XA} _ FrA+Mrad-g+y+2a) B
’ FA—B+MNIA4+a+y+21)
Re(h) > max[0 Re(f — y)] — 1 (12)
and reinterpreting the multivariable Mellin—Barnes contour integral so obtained in terms
of the H-function ofr + s variables, we easily arrive at the desired formula (8) after a little
simplification.

)
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Proof of(9). To prove FDF 2, we take

s—1
fe) =x"TT(" +a)”
i=1

sl D
H* Zr+1‘x”r+l 1_[ (x[i + Oli) i e, Zr-l—'[-xurJrT
i=1
s—1

[TG"+ ai)_”"(m)}

i=1

and

g(x) xl‘; +as 1_[ |: i l_[ xl; +C¥ n; :|
s , ) S (r)
H [leul 1_[ (xt,' + al.)_”i sz 1_[ (x” + Ol,‘)_vi :|
i=1

i=1

in the left-hand side of (9); and apply the following generalized Leibniz rule for the
fractional integrals

1557 f(x)g(x)}— [ ﬂ] P oy ISR (e (o)) (13)

we easily obtain FDF 2 after a little simplification on making use of FDF 1 and a known
result ([4], p. 91, eq. (6)).

Proof of (11). To prove FDF 3, we use the formula FDF 1 twice, first with respect to the
variabley, and then with respect to the variable herex andy are independent variables.

3. Special cases and applications

The fractional derivative formulae 1, 2 and 3 established here are unified in nature and
act as key formulae. Thus the general class of polynomials involved in FDF 1, 2 and 3
reduce to a large spectrum of polynomials listed by Srivastava and Singh ([16], pp. 158—
161), and so from formulae 1, 2 and 3 we can further obtain various fractional derivative
formulae involving a number of simpler polynomials. Again, the multivaridbl&unction
occurring in these formulae can be suitably specialized to a remarkably wide variety of
useful functions (or product of several such functions) which are expressible in terms of
E, F, G andH -functions of one, two or more variables. For exampl&j i P = Q =0
(or Ny = Py = Q1 = 0), the multivariableH -function occurring in the left-hand side of
these formulae would reduce immediately to the produet(of t) different H-functions
of Fox [1]. Thus the table listing various special cases offhfunction ([5], pp. 145-159)
can be used to derive from these fractional derivative formulae a number of other FDF
involving any of these simpler special functions.

On reducing the operator defined by (1) to the Riemann-Liouville operator given by (2)
we arrive at three fractional derivative formulae involving these operators but we do not
record them here explicitly. Again, our FDF 1, 2 and 3 will also give rise in essence to a
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number of other FDF lying scattered in the literature (see [12], pp. 563-564, eqs (2.1)—
(2.3), [13], pp. 644—645, egs (2.1)—(2.3), [3], pp. 71-72,eq. (2.1) and [2], p. 171, eq. (3.1))
on making suitable substitutions.

Also, if we takes; = 0=/ = ... = v(” i=1..,sandn; =0,j=1,...,tin
(8) (the polynomialssy™, ... , Sg" WI|| reduce toAg o - A(’)0 respectively WhICh can
be taken to be unity Wlthout loss of generality), we arrive at the formula given by ([10],
p. 532, eq. (4.1)).

If in FDF 1, we taker = 2 and reduce the polynomia};* to the Hermite polynomial
([16], p. 158, eq. (1.4)), the polynomidal;;? to the Laguerre polynomial ([16], p. 159,
eg. (1.8)), the multivariablé/-function to the product of different Whittaker functions
([24], p. 18, eq. (2.6.7)), we arrive at the following new and interesting special case of the
FDF 1 after a little simplification

Pty b+ S . 1
By = X+ ;)" H, [—] (9)()6)
0,x ,1:!_( ’) ni Zﬁ
r %
[TED™ = Wy, (z1x>}
=1
1_[1 1 (@) i xpp a2l e n1) 2k, (— n2)k2
[ z1x
+6 1 0,2:20:..:2,0:1,%....1,1 | “r*
1 ky [ T2 k1+k2H
(-1 ( no —(9+1)k2x 2212 12, 11511 O{l_lxtl
oy et
(_,O_kl_kZ;l,'n 71’t1"" 7tS)7(ﬁ_y_p_kl_k2; 17"- 717

11, ...,t):

1,....1,
ﬂ_p_kl_kz;fvtlv"-sts ) _057_)/_)0_k1_k2§

1,....,1
PR 2 PP O

r

(bl—M1+1,1);...;(br—Mr+1,1);(1+01,1);...;(1+6s,1)}

(blivﬁ—%,l);...;(b,j:vr 1 1) ©.1:..;(0.D
(14)

The conditions of validity of (14) can be easily obtained from those of (8).

Several other interesting and useful special cases of our main fractional derivative for-
mulae 1, 2 and 3 involving the product of a large variety of polynomials (which are special
cases ofSy;', ..., Sp') and numerous simple special functions involving one or more
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variables (which are particular cases of the multivaridbtéunction) can also be obtained
but we do not record them here for lack of space.
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