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Abstract. We prove a necessary and sufficient condition for the automorphisms of a
coherent sheaf to be representable by a group scheme.
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The main result of this note is the following theorem.

Theorem 1. (Representability of the functorGLE). Let S be a noetherian scheme,
andE a coherentOS-module. LetGLE denote the contrafunctor onS-schemes which
associates to anyS-schemef : T → S the group of allOT -linear automorphisms of
the pullbackET = f ∗E (this functor is a sheaf in the fpqc topology). ThenGLE is
representable by a group scheme overS if and only ifE is locally free.

The ‘if’ part is obvious. The main work is in proving the ‘only if’ part, for which we
need various preliminaries. The following lemma is standard, and is the first step in the
construction of a flattening stratification of a noetherian schemeS for a coherent sheaf on
PnS .

Lemma2. If R is a noetherian local ring andE a finiteR-module, there exists an ideal
I ⊂ m with the following property: the moduleE/IE is free overR/I , and for any ideal
J ⊂ R, the moduleE/JE is free overR/J if and only ifI ⊂ J . By its property, I is unique.

Proof. DefineI to be the ideal generated by the matrix entries of the mapϕ : Rq → Rp

whereRq
ϕ→ Rp → E → 0 is an exact sequence in whichp is minimal (equal to the

dimension of the vector spaceE/mE overR/m, wherem denotes the maximal ideal in
R). It can be seen that thisI has the desired property. 2

Remark 3. As a consequence, ifR is a noetherian local ring andE a finiteR-module such
thatE/mnE is a free module overR/mn for eachn ≥ 2, thenE is free overR. By the
above lemma,I ⊂ mn for eachn ≥ 2, henceI = 0.

Lemma4. (Srinivas). LetR be an artin local ring with maximal idealm, and letE be a
finiteR-module, with corresponding idealI as in Lemma2. Suppose that the idealI is a
principal ideal andmI = 0. ThenE is isomorphic to a direct sum of the formRm⊕(R/I)n,
wherem, n are non-negative integers.

Proof. Let Rq
ϕ→ Rp → E → 0 be an exact sequence ofR-modules such thatp =

dimR/m(E/mE). The idealI is generated by the matrix entries of the mapϕ : Rq → Rp.
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By assumption, there exists somea ∈ m with I = (a) andma = 0. If a = 0 thenE is
free, so now assumea 6= 0. Hence every non-zero element ofI is of the formua where
u ∈ R− m is some unit ofR. Hence the non-zero matrix entries ofϕ : Rq → Rp (if any)
are of the formua. Hence there is another matrixψ whose non-zero entries are units of
R, with φ = aψ . Changing the free basis ofRq andRp gives row and column operations
onψ , which can be used to put it in a block form

(
1m×m 0m×(q−m)
0(p−m)×m 0(p−m)×(q−m)

)

The lemma follows. 2

Lemma5. LetS be a noetherian scheme, and letE be a coherentOS-module. LetE′ be a
coherent subsheaf ofE,such that the quotientE/E′ is locally free. IfGLE is representable,
then the subfunctorP ofGLE which consists of automorphisms ofE (over base changes)
which preserveE′ is also representable, and is represented by a closed subgroup scheme
ofGLE overS.

Proof. If f : F ′ → F is a homomorphism of coherent sheaves on a schemeT such that
F is locally free, thenT has a closed subschemeT0 ↪→ T with the universal property that
f vanishes identically under a base-changeT ′ → T if and only if it factors viaT0 ↪→ T .
Applying this withT = GLE , F ′ = E′

T , F = (E/E′)T , and withf : E′
T → (E/E′)T

the compositeE′
T → ET

u→ ET → (E/E′)T whereu : ET → ET is the universal
family of automorphisms overT = GLE , we get a closed subschemeP ⊂ GLE which
has the desired properties. 2

Lemma6. LetX be a scheme, andI ⊂ OX a quasi-coherent ideal sheaf, with In = 0 for
somen ≥ 1. Suppose that the closed subschemeY ⊂ X defined byI is affine. ThenX is
affine.

Proof. By induction onn, we can reduce to the case whereI2 = 0. As I2 = 0, I
becomes anOY -module. AsI is quasi-coherent overOX, it is quasi-coherent overOY .
If F is any quasi-coherent sheaf onX, then we have a short exact sequence 0→ IF →
F → F/IF → 0. As I2 = 0, both IF andF/IF are OY -modules, and these are
quasi-coherent. Hence asY is affine,H 1(Y, IF ) = H 1(Y, F/IF ) = 0. But these are just
cohomologies over the spaceX, as topologicallyY isX. Hence by the long exact sequence
of 0 → IF → F → F/IF → 0, it follows thatH 1(X, F ) = 0. As this holds for every
quasi-coherentOX-module,X is affine by Serre’s theorem. 2

Lemma7. LetA be a ring andI ⊂ A an ideal withIn = 0 for somen ≥ 1. LetB be anA-
algebra,such thatB/IB is finite-type overA (equivalently,overA/I ). Letb1, . . . , bm ∈ B
such thatB/I = A[b1, . . . , bm], wherebi ∈ B/I is the residue ofbi . ThenB is generated
as anA-algebra byb1, . . . , bm.

Proof. By induction onn, we are reduced to the case whereI2 = 0. As B/I =
A[b1, . . . , bm], any x ∈ B can be written asx = f (b1, . . . , bm) + uy wheref is a
polynomial inm variables overA, u ∈ I , andy ∈ B. Similarly,y = g(b1, . . . , bm)+ vz

whereg is a polynomial inm variables overA, v ∈ I , andz ∈ B. As I2 = 0, we get
x = f (b1, . . . , bm)+ ug(b1, . . . , bm). HenceB = A[b1, . . . , bm]. 2
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Lemma8. LetR be an artin local ring with maximal idealm, and let0 6= I ⊂ m be a
non-zero proper ideal. LetE = (R/I)n ⊕ Rm wheren ≥ 1 andm ≥ 0. Then the functor
GLE is not representable.

Proof. By Nakayama,mI 6= I , so we can base-change toR/mI and assume thatmI = 0,
in particular,I2 = 0. SupposeGLE is represented by a group-schemeG overR. The
restriction ofG to R/I is the affine schemeGLn+m,R/I overR/I , andI is a nilpotent
ideal. HenceGmust be affine by Lemma 6, and finite-type overR by Lemma 7. By Lemma
5, the automorphisms which preserve(R/I)n ⊂ E are represented by a closed subgroup
schemeP ⊂ G. LetP = Spec(A) whereA is a finitely generatedR-algebra.

The elements of the groupP(R) are matrices with the block form

(
X Y

0 Z

)
where

X ∈ GLn(R/I), Y ∈ Hom(Rm, (R/I)n) = (R/I)mn, andZ ∈ GLm(R). Hence the
elementsg ∈ P(R) which restrict to the identity inP(R/I), that is, elements of the

kernel ofP(R) → P(R/I), are exactly the elements of the form

(
1 0
0 1+W

)
where

W ∈ Mm(I) is an arbitrary matrix with all entries inI .
The restriction ofP toR/I is the parabolic subgroup schemeH ⊂ GLn+m,R/I which

preserves(R/I)n ⊂ (R/I)n+m, with coordinate ring

B = R/I [xi,j , yi,β, zα,β, det(xi,j )
−1, det(zα,β)

−1]

where 1≤ i, j ≤ n, and 1≤ α, β ≤ m. AsB = A/IA whereI2 = 0, by Lemma 7 we
get that

A = R [xi,j , yi,β, zα,β, det(xi,j )
−1, det(zα,β)

−1]/J

for some idealJ ⊂ IR [xi,j , yi,β, zα,β, det(xi,j )−1, det(zα,β)−1]. Let V ∈ Mn(I) be
any arbitraryn×n-matrix overI . We can define anR-algebra homomorphismA → R by

xi,j 7→ δi,j + vi,j , yi,β 7→ 0 and zα,β 7→ δα,β .

Modulo I , this specializes to identity, hence this contradicts the above description of the
kernel ofP(R) → P(R/I). This contradiction proves the lemma. 2

Now all the necessary preliminaries are in place for completing the proof of the main
result.

Proof of Theorem1. Suppose thatE is not locally free. By first passing to the local ring
of S at some point whereE is not locally free and then going modulo a high power of
the maximal ideal (see Remark 3), we can assume thatS = Spec(R) whereR is an artin
local ring, andE is a finiteR module which is not free. Let 06= I ⊂ m be the ideal
defined byE as in Lemma 2, wherem is the maximal ideal ofR. Let I = (a1, . . . , ar )

wherer is the smallest number of generators needed to generate the idealI . If r ≥ 2, let
J = (a1, . . . , ar−1) ⊂ I . Then going moduloJ (that is, by base-changing toR/J ), we
are reduced to the case whereI is a principal ideal. By further going modulomI , we can
assumemI = 0. Hence by Lemma 4,E splits as a direct sumRm ⊕ (R/I)n, wheren ≥ 1
asE is not free. HenceGLE is not representable by Lemma 8, which completes the proof
of the theorem. 2
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Example9. The functor on commutative rings, defined byR 7→ (R/2R)× (the multiplica-
tive group of units in the ringR/2R), is not representable by a scheme. This follows by
takingS = Spec(Z) andE = Z/2Z in Theorem 1. A shorter direct proof is also possible
in this example, by using discrete valuation rings instead of artin local rings.

Direct proof. If a group schemeG → Spec(Z) represents this functor, then the fiber ofG

over the closed point(2)will be Gm,F2, while over the open complement Spec(Z)−(2), the
restriction ofG will be trivial. Let U be an affine open neighborhood inG of the identity
point 1∈ Gm,F2 ⊂ G, and letx ∈ Gm,F2 be a closed point other than 1 which is inU (the
purpose of using an affine openU is to avoid any assumption about separatedness ofG).
The residue fieldκ(x) atx is a finite extension ofF2, hence separable overF2. LetA be the
henselization of the local ringZ(2) with respect to the residue field extensionF2 ⊂ κ(x).
This is a discrete valuation ring of characteristic zero, with maximal ideal 2A asA is étale
over Z(2), and residue fieldκ(x). Therefore,G(κ(x)) = κ(x)× = (A/2A)× = G(A),
and sox uniquely prolongs to anA-valued point ofG, which we denote byx′. Note
that x′ : SpecA → G factors throughU ⊂ G. Therefore we have points 1 andx′ of
U(A) which coincide over the generic point ofA, but differ over the special point. This
contradicts the separatedness ofU → Spec(Z). 2
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