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Abstract. It is shown that the schematic image of the scheme of Azumaya algebra
structures on a vector bundle of rank 4 over any base scheme is separated, of finite type,
smooth of relative dimension 13 and geometrically irreducible over that base and that this
construction base-changes well. This fully generalizes Seshadri’s theorem in [16] that
the variety of specializations 62 x 2)-matrix algebras is smooth in characterisé@.

As an application, a construction of Seshadri in [16] is shown in a characteristic-free way
to desingularize the moduli space of rank 2 even degree semi-stable vector bundles on a
complete curve. As another application, a construction of Nori Bu¥gppendix, [16])

is extended to the case of a normal domain which is a universally Japanese (Nagata) ring
and is shown to desingularize the Artin moduli space [1] of invariants of several matrices
in rank 2. This desingularization is shown to have a good specialization property if the
Artin moduli space has geometrically reduced fibers — for example this happeris.over
Essential use is made of Kneser’s concept [8] of ‘semi-regular quadratic module’. For
any free quadratic module of odd rank, a formula linking the half-discriminant and the
values of the quadratic form on its radical is derived.

Keywords. Azumaya algebra,; Clifford algebra; desingularization, moduli space; semi-
regular quadratic form; simple module; vector bundle.

1. Introduction and overview

The present work consists of two parts: Part A shows the smoothness of the schematic
closure of Azumaya algebra structures on a fixed vector bundle of rank 4, while Part B
applies the results of A to obtain desingularizations of certain moduli spaces. Further
applications to quadratic modules are addressed in [20].

The problems addressed below arose from a study of Seshadri’s paper [16] in which
the base field is assumed to be an algebraically closed field of characteristic different
from two. In the following it is shown that the results of [16] extend over an arbitrary base
scheme, and in fact, the methods used are characteristic-free.

The central result of [16] can be described as follows: X die a smooth, irreducible,
complete curve of genys > 2 overk. LetUy® (n, 0) be the normal projective variety of
equivalence classes of semi-stable vector bundlés ofrankn and degree zero [15]. Let
M)S( (n, 0) be the smooth open subvarietwas(n, 0) consisting of isomorphism classes
of stable vector bundles. This subvariety is precisely the set of smooth polmf§ of, 0)
unless: = 2andg = 2inwhich casélff (n, 0) is smooth [13]. Two models describing the
desingularization cﬁ4§5(2, 0) are known. Narasimhan and Ramanan in [14] describe one
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model which works in characteristic zero. Seshadri in [16] defines (for any characteristic)
a varietyN (4, 0) whose closed points are certain stable parabolic vector bundles (in the
sense of Mehta—Seshadri [11]) of rank 4 and degree zepo. dfe also constructs a map
72t Nx (4,00 — U35(2, 0). This is seen to be a desingularization in characteristic zero.
Section 6 in B of the present work shows that the morphisnmay be constructed in
positive characteristic as well, and further that it is a desingularization.

Inthe construction of the above desingularization, one of the crucial steps is to prove that
the variety of specializations ¢2 x 2)-matrix algebras on a four-dimensional vector space
with a fixed (non-zero) vector for multiplicative identity is smooth over an algebraically
closed fieldk of characteristic 2, extending Seshadri’s result ([16], 82, Theorem 1) for
char) # 2. This is proved more generally, i.e., by showing over any base scheme that
the schematic image, of the scheme of Azumaya algebra structures on a vector bundle of
rank 4 with multiplicative identity a fixed nowhere vanishing global section, is separated,
of finite type, smooth and geometrically irreducible over the base, and that it behaves well
under base-change. In fact it is shown to be locally isomorphic over the base to relative
nine-dimensional affine space (Theorem 5.3). As a further generalization, the schematic
image of the scheme of Azumaya algebra structures with multiplicative identities varying is
also shown to be separated, of finite type, geometrically irreducible and smooth of relative
dimension 13 over the base (Theorem 3.8).

Artin in [1] defines aZ-scheme which is a coarse moduli space for the various module
structures over the non-commuting polynomial ring (in a fixed number of indeterminates)
on a fixed free finite rank module. This moduli space can be constructed over any com-
mutative noetherian base ring using Seshadri's Geometric Invariant Theory over a general
base [18] which further ensures that it has good properties (eg. being of finite type over the
base) when the base ring is a universally Japanese (Nagata) ring. Nori (Appendix, [16])
constructs a candidate which would desingularize the Artin moduli space in rank 2 over
the integers, and the smoothness of this candidate is a consequence of Theorem 3.8. In
fact, in 87, it is shown that a desingularization of the Artin moduli space in rank 2 can
be constructed over a normal domain which is a universally Japanese (Nagata) ring. This
desingularization is further shown to have a good specialization property provided the
Artin moduli space has geometrically reduced fibers, which for example is the case over
the integers by the result of Donkin [4].

Seshadri’s proof of Theorem 1 in [16] uses the existence of non-singular quadratic forms
on a three-dimensional vector space. But in char. 2, such forms do not exist. This can
be remedied by considerirgpmi-regularquadratic forms, which nevertheless do exist.
Generalities on semi-regularity are recalled in 84. The notion of a semi-regular quadratic
form was introduced by Kneser [8]. It is defined for a quadratic module of odd rank over
any commutative ring, allowing the results of this paper to be formulated over an arbitrary
base. Semi-regularity is studied in detail in [9], where it is shown to be the correct analogue
of non-singular quadratic form in characteristic two. Therefore, the methods of proof below
are characteristic-free.

The author came across another notion catled-degeneracgydefined by Dieudori
in [3], which is used by Borel in [2] to study orthogonal groups over fields of character-
istic two. While the definition of semi-regularity uses the notiomalf-discriminant the
definition of non-degeneracy involves the values of the quadratic form on the radical of
its associated symmetric bilinear form. Non-degeneracy is recalled and generalized in §4,
where further a formula linking the half-discriminant and the values of the quadratic form
on its radical (valid for any free quadratic module of finite odd rank over any commutative
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ring) is derived. This is used to show that the notion of non-degeneracy can be generalized,
to the case of quadratic modules that are finitely generated and projective of constant odd
rank over any commutative ring, and moreover that this generalized notion coincides with
the notion of semi-regularity.

A: Smoothness of limits of rank 4 Azumaya algebras
2. Algebra structures on a vector bundle

We fix a base schem¥ and a geometric vector bund& over X of constant rank>

2 which by definition is associated to a quasi-cohe@gtmodule )V locally free of
constant rank= 2. The purpose of this section is to define algebra structures and study
the relationship of associative unital algebra structures with those that have a fixed unit
element.

DEFINITION 2.1

Given anyX-schemeT', by aT-algebra structure oW := W xx T (also referred to
asT-algebra bundle), we mean a morphis$Wy xr Wy — W of vector bundles on

T arising from a morphism of the associated locally-free sheaves. So this is equivalent to
giving a morphism of07-modulesWr ® r Wr —> Wr, i.e., anOr-algebra structure

on the associated locally free shé&f-. Given such & -algebra structure anf’ — T

an X-morphism, it is clear that one gets by pullback (i.e., by base-change) a caribhical
algebra structure oW ;. Thus one has a contravariant ‘functor of algebra structures on
W’ from {X-schemes} to {Sets} denotedAlg,,, whose set of"-valued points is the set of
T-algebra structures oW 7, viz., Homp, Wr ® Wr, Wr) .

By Proposition 9.6.1, Chap. | of EGA[5], it follows that the funcédg,, is represented
by the X-scheme

Algy = Spec(Sme [(WXV ®Rx Wx"” Qx Wx)v]) .

Hence Algy, is affine (hence separated), of finite type o¥eand in fact smooth of relative
dimension rank(W)3. If X’ — X is an extension of base, then the constructionAlg
base-changes well, i.e., one may canonically identifyyAlgx X’ with Alg,, where
W’ =W xx X’ (cf. Proposition 9.4.11, Chap. |, EGA | [5]).

We next turn to algebra structures @ with identity. We call a global section e
(T, F) of a quasi-coherent she&f (locally free of positive rank ovef) nowhere van-
ishing if at each point of the bagg the image of its germ in the fiber over the residue field
is non-zero. It can be seen that a section is nowhere vanishing if and only if every one of
its pullbacks is non-zero and that the pullback of a nowhere vanishing section is again a
nowhere vanishing section.

DEFINITION 2.2

For any X-schemeT, let Id-Assocw (7)) denote the subset of Ajg(T) consisting of
associative algebra structures with multiplicative identity. Thus we obtain a contravariant
subfunctord-Assocy of Algyy.

We remark that a multiplicative identity for an associative algebra structure must be a
nowhere vanishing section as implied by the following lemma and the implicatios-(2)
(4) of the lemma following it.
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Lemma2.3. Let B be a ring(commutativewith 1) and A an associativeB-algebra with
multiplicative identitye4 € A. Suppose thad is finitely generated and projective as a
B-module. TherB - e4 is a B-direct summand of.

Lemma2.4. Let B be aring(commutativewith 1), W a finite freeB-module, andv € W.
Then the following conditions are equivalent:

(1) the B-linear maps(w) : B —> W given byb — b - w is a section to a-linear
mapp : W — B;
(2) the mape(w) defined above is injective and the short exact sequence

e(w)

O—B—W—W/B—0

is split exact

(3) the mape(w) defined above is injective arl/ B is projective

(4) for everyB-algebra S (commutativewith 1s # 0in ) w® 15 # 0 € W ®p
S;

(5) if {w;|1 < j < n}isaB-basisforW,andifw = >>"_; b; - w; then{p; | 1 <
Jj < n} generatess.

The proofs of the above results are elementary and hence omitted. The general linear
groupscheme associatedWs, viz., GLw naturally acts on Alg, on the left, so that for
eachX-schemer’, Alg,y (T) mod GLly (T') is the set of isomorphism classesloflgebra
structures oV x x T. It is also clear thatd-Assocy is a GLy-stable subfunctor of
Algyy. Itis in fact also representable.

PROPOSITION 2.5

Id-Assocyy is represented by ai -schemdd-Assogy which is separated and of finite
type overX so that the natural inclusion of functors induces a functorially injec®gy -
equivariantmorphisrtd-Assogy —> Algyy . Further the constructiofd-Assogy —> X
behaves well under base-change.

The functorld-Assocy behaves well under a base-chanfle — X because the
property of being an associative algebra with identity is preserved under base-change and
because Alg, itself behaves well under base-change as already noted. Therefore, it only
remains to prove the representability lofAssocy by a scheme Id-Assgg of finite
type overX. We shall achieve this by studying the case of algebras with a fixed identity.
Notice that the separatedness of Id-Asg@ver X would follow once Id-Assog is shown
to exist, for then the valuative criterion for separatedness is true for Id-f\sswer X
since it is true for Alg, over X and Id-Assog, —> Algyy is a functorially injective
morphism.

DEFINITION 2.6

Let w € TI'(X,W) be a nowhere vanishing section. For aiyschemeT, let
Id-w-Assocw (T') denote the subset of Ajg(T') consisting of associative algebra struc-
tures with multiplicative identity the nowhere vanishing sectignover 7T induced from
w. Thus we obtain a contravariant subfundibw-Assocw of Algyy .
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Let Staliw)(T) c GLw(T) denote the stabilizer subgroup of-, so that one gets a
subfunctor in subgroups Stab) c GLw. Itis in fact represented by a closed subgroup
scheme (also denoted by) Stal) and further behaves well under base-change relative
to X, i.e., Staldw) x x T can be canonically identified with Staby) for any X-scheme
T. These follow from para 9.6.6 of Chap. I, EGA | [5]. It is clear that the natural action
of GLw on Alg,, induces one of Staly) on Id-w-Assocw. It is easy to check that the
functorld-w-Assocy is a sheaf in the big Zariski site ov&rand further that this functor
is represented by a natural closed subscheme gf,Afghe case wheW is affine; hence
by Zariski glueing — Proposition 4.5.4, Corollary 4.5.5, Chap. 0 and 2.4.3, Chap. | of EGA
[5] — it follows thatld-w-Assocyy is represented by a closed subschemaidssogy —

Algy, which is Stalfw)-invariant. Stalw) acts on the fiber product Gl x x Id-w-Assogy

by the (right) action given on valued points by, A) - h := (gh, h~1- A) and with respect

to this action the natural morphism, : GLw x x ld-w-Assogy —> ld-Assocy (coming

from the action of Gly) is invariant. LetU(T) c W(T) be the subset corresponding

to nowhere vanishing global sections\W;. Thus we get a subfunctdy c W. It is
represented by the complement (also denotedbgf the zero section ofV which is

of finite type overX: it is easy to check that the functbris a sheaf in the big Zariski
site overX; hence by Zariski glueing the proof of representability can be reduced to the
case wherX is affine andw trivial, in which case, using the implications (43—

(5) of Lemma 2.4 it is seen théat is the union of the complements of the finitely many
hyperplanes. Notice that the orbit morphism corresponding iz., O,, : GLw — W
factors throughU. There is a natural morphisi : Id-Assocyy —> U (mapping an
algebra to its identity element) such that one has a commutative diagram of morphisms of
functors:

GLw Xy ld-w-Assogy —2—> GLw

Mwl l Oy

|d-AssoCyy %, u

The above diagram is in fact a fiber product square because givErsahemeT, it is
easy to see that the natural map

(GLw x x ld-w-Assoey)(T)
—> (GLw xy ld-Assocw)(T) : (g, A) —> (g, g - A)

is bijective and functorial irT".

Thus the study ofd-Assocyw reduces to the study @,,. The next result says that,,
is a Zariski-locally-trivial principal Stafaw)-bundle. Thug),, has local sections which are
closed immersions; from whigh,, therefore has local sections which are representable by
closed immersions. It will then follow thad-Assocyy is representable by Zariski glueing
since it is easily seen to be a sheaf on the big Zariski site X¥vaand it is covered by open
subfunctors that are represented by closed subschemes of open subschemgs-of GL
Id-w-Assogy . Further, sinceD,, is a faithfully-flat quasi-compact morphism, the proper-
ties of p1 in the above cartesian square such as affineness and finite-typeness will descend
to ¢ by Proposition 2.7.1 of EGA IV [6]. SWl being of finite type oveX would imply that
Id-Assogy is also of finite type oveK. The proof of Proposition 2.5 is thus reduced to the
following.
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PROPOSITION 2.7

TheStalqw)-invariant morphismo,, : GLw — U is a Zariski-locally-trivial principal
Stal{w)-bundle.

We sketch a proof. Itis enough to prove the above result for the caseXvheBpecR)
is affine and further whemw becomes a part of a global basis. tbe the freeR-module
of rankm corresponding taV. Let {X; | 0 < i < m — 1} be theR-basis of W" dual to
a chosemr-basis{w; | 0 <i < m — 1} of W with w = wg, so that one gets a canonical
identification with affine space ovét of dimensionn

W := Spe¢Symg(W")) = SpedR[Xo. ... , Xn-1]) = AR.

For each, 0 <i < m — 1, letU; denote the open subschemea/Mfcorresponding (under
the above identification) td’; — V(X;) whereV (X;) is the closed subscheme defined
by the vanishing of;. From Lemma 2.4 one sees tHat= u;?;;)lu,». Let S be anR-
algebra. Theri0,) 1(Uo)(S) (= the set ofS-valued points of the open subscheme which
is the inverse image of the open subschésgdy O,,) can be identified with the subset
of GL(m, S) consisting of matricess;;), 0 < i, j < m — 1 such thakqo is a unitinsS.
Given such a matrixs;;), it is clear that the matrix equation

soo 0 O 0 1 Xxo1 -+ Xom-1

si0 1. 0 --- 0 0 yu1 -+ Yyim-1

s0 01 - O |0 ya1 -+ yom- = (sif)
sm-1,0 0 0O 1 0 Yym—11 -+ Ym-1m—1

can be solved in Glzz, S) and in fact the solution lies in Stab)(S). We leave it to the
reader to verify that thisimplies th&,, restricted tdJg isisomorphic to the trivial Statw)-
bundle and a similar argument gives a $tapbundle trivialization of0,, : GLw — U
overU; for eachi with 1 <i < m — 1. The above proposition along with the discussion
preceeding it gives the following result.

COROLLARY 2.8

The morphismu,, : GLyw xx ld-w-Assogqy —> Id-Assogy is a Zariski-locally-trivial
principal Stal{w)-bundle.

3. Sheaves in Azumaya algebras and their limits

From now on we assume that the rank®fover X is a square. We intend to study sub-
functors of Algy, which are Azumaya and their specializations. Firstly, we therefore recall
the definition of being Azumaya and collect the necessary facts regarding such algebras.

DEFINITION 3.1

An algebra structurel € Id-Assogy (T') is said to beAzumayaf the naturalOr-algebra
homomorphism

AR A% — SndOT_mod(A) given on sections by ® b+ (x > (axb))

is an isomorphism, wherd®” denotes the algebra opposited4o
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We thus obtain subfunctotd-w-Azuy — ld-w-Assogy andAzuy < ld-Assogy cor-
responding to Azumaya algebras. That they are indeed subfunctors follows from property
(1) of the next result, which also lists other standard properties of Azumaya algebras that
will be used in the sequel.

PROPOSITICN 3.2

Let S and S’ be noetherian commutative rings with 1 affdan S-algebra. Further letA
be an associativé-algebra with identity.

(1) If Ais an Azumaya-algebra thenA ®g S’ is an Azumaya’-algebra.

(2) If Sis an algebraically closed fie]JdhenA is Azumaya oves iff it is isomorphic to
the algebratM (n, S) of (n x n)-matrices ovess for somen, i.e., over algebraically
closed fields the only Azumaya algebras are the matrix algebras.

(3) Aisan Azumayd#-algebra iffA, is an Azumaya,-algebra for every prime ideal
p of S and A is finitely generated as as-module.

(4) If Aisfinitely generated and locally-freand if A ® g S’ is an Azumaya’-algebra
and further ifS’ is faithfully-flat overs, thenA is an Azumayd&-algebra.

(5) If A islocally free of finite positive rank as aimodule thenA is an Azumaya-
algebra iff A ® s K is an Azumayd -algebra for every algebraically closed field
K which is anS-algebra.

(6) LetS be a complete local ring with maximal ideal If A is an Azumay&-algebra
such thatA/mA = M (n, S/m) thenA = M, S).

(7) Let P be afinitely generated projectivemodule. Then th§-algebraEnds(P) is
Azumaya.

Properties (1), (3) and (4) are easy. As for the non-trivial part of (2),if Azumaya over

S, then by [7], Chap. 9, Theorem 9.4,is isomorphic to an algebra of square matrices of
ordern (for somen) with entries in a finite-dimensional central division algelraver

S. But sinceS is an algebraically closed field) = S. Property (5) above can be deduced
from (3) and (4) and an application of Nakayama’s lemma. Property (6) isLemma5.1.16 in
Chap. Il of [9]. The proof of (7) uses (4), (5) and (2). The following results shall be used in
showing the representability of the subfunctors of Azumaya algebras by open subschemes.

PROPOSITION 3.3
(1) LetT be anX-scheme andi € Id-Assogy (7). Then the subset

U(T, A :={teT| A isan Azumay@r ,-algebrg

is an open (possibly empty) subset. WHBAIT', A) is hon-emptydenote by the
same symbol the canonical open subscheme structure. Then it/ — T
is an X-morphism such that the topological image intersetter, A), then
U(T', f*(A) = U(T, A) xg T' as open subschemes®t FurtherU (T, A) —
T is an affine morphism.

(2) U(T, A) is the maximal open subset restricted to whitls Azumaya.

(3) Further let f : T — T be a morphism ofX-schemes such that*(A) €
Azuw (T'), i.e, the induced algebra is Azumaya. Thgmmactors through the open
subschem& (T, A) defined above.
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The proof that/ (T, A) is open follows from an application of Nakayama'’s lemma. The
proof of (2) follows from (3) of Proposition 3.2. The proof of (3) uses assertions (1)—(5)
of Proposition 3.2. From these the second assertion of (1) follows. Hence for the third
assertion of (1), one may as well assume that Spe¢B) is affine and that4 is free;

in which caselU (T, A) is by definition the open subset where a homomorphism of free
B-modules of the same finite rank is an isomorphism and is hence a principal open subset.

Theorem 34

(1) Azuy (respectively Id-w-Azuy) is represented by aGLyy-stable (resp.
Stal{w)-stablg open subschemazuy < ld-Assogy (resp.ld-w-Azuy <
Id-w-Assogy) and the canonical open immersion is an affine morphism.

(2) Azuy (resp.ld-w-Azuyy) is separatedqresp. affing and of finite type ovek, and
the constructiorAzuy — X (resp.ld-w-Azuy — X) base-changes well.

(3) The restriction ofu,, : GLw x x ld-w-Assogy — ld-Assogy to the open sub-
schemeGLw x x Id-w-Azuy factors by a morphism),, into Azuy, which is a
Zariski-locally-trivial principal Stalqw)-bundle.

(4) Further, Azuy (resp.ld-w-Azuy) is smooth of relative dimension®* — m? + 1
(resp. of relative dimensiat? — 1)2) and geometrically irreducible ove¥, where
m? := ranky (W).

Proof. First of all notice that property (7) of Proposition 3.2 shows that theAsats, (T)
(resp.ld-w-Azuw (T)) are non-empty for an)-schemer to which the pull-back oV
becomes trivial (resp. and further the pull-bacludbecomes part of a global basis). Since
Algyy is represented by Alg, let B be the universal algebra structure WA ®x Algyy
corresponding to the identity morphism of Ajg A little bit of writing down shows that
the canonical algebra structure Breorresponds to the diagonal morphism

AAIgW/X . AIgW(—>A|gW Xx AlgW

Then the representability ¢fl-Assocw by Id-Assogy (Proposition 2.5) shows that the
pull-backB’ of Bto Id-Assogy (resp.3,, of Bto Id-w-Assogy) is the universal associative
algebra structure with identity (resp. with identity® x 1d-w-Assogy ). With the notations

of Proposition 3.3, it is routine using the assertions of that proposition to verify that
Azuw = U(ld-Assogy, B') (resp. ldw-Azuy = U(Id-w-Assogy, B,)) represents
Azuy (respld-w-Azuy) and the rest of the assertions of the theorem in the first statement.
Note therefore that the pull-back 8f (resp. of3,,) to Azuy (resp. to Idw-Azuw) is the
universal Azumaya algebra structure (resp. also with identjtyr he functorsAzuy and
Id-w-Azuw base-change well since the property of being Azumaya is preserved under
base-change (property (1) of Proposition 3.2) and sincg,Adad Idw-Assogy base-
change well; further Alg, is affine and of finite type ovek, Id-Assogy is separated

and of finite type ovetX by Proposition 2.5 and ld»-Assogy — Algyy is a closed
immersion. From these facts the assertions in the second statement of the theorem follow.
As for the third statement, it is easy to check functorially that the restriction,0f.

GLw xx ld-w-Assogqy —> Id-Assogy to the open subscheme GlLx x Id-w-Azuy
factors by a morphism,, into Azuy, which is in fact the base-change @f, to Azuy .
Hence by Corollary 2.8 which says tha, is a Zariski-locally-trivial principal Stafw)-
bundle, one may conclude the same«{f : GLw x x Id-w-Azuyy —> Azuw. Given this

and the easy fact that Stab) is smooth, surjective, affine and geometrically irreducible
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of relative dimensiom* — m? over X, it is clear that in order to prove the assertions in
the last statement of the theorem, it is enough to prove only those concerniné ik .

Since ldw-Azuy base-changes well, going to geometric pointX pin view of property

(2) of Proposition 3.2 the use of the theorem of Skolem—Noether shows thaflzliyy is
geometrically irreducible and has geometric fibers of the claimed dimension. When the base
X isintegral, by considering the orbit morphism Stalp — Id-w-Azuw corresponding
tothe universal Azumaya algebra structurtsiw-Azuy (Id-w-Azuy ) and noting that this
morphism is surjective and that Stad is integral, one gets that in this caseddAzuyy

is irreducible. Now using properties (6) and (2) of Proposition 3.2, sinae-Alzuyy is

of finite type overX, it is easy to check that ld~Azuyy — X is geometrically regular

by verifying the formal smoothness criterion at any closed point of any geometric fiber.
It follows that the fibers of this morphism are integral smooth varieties of the claimed
dimension. Finally only the flatness of td-Azuy over X remains to be checked. Since

X can be covered by affine opens restricted to each of whidlecomes trivial and part

of a global basis, and ld~Azuy base-changes well, we may assukhe- SpecZ). Now

we observe that the structure morphism ofueAzuyy is equidimensional (13.2.2 EGA

IV, Err. V.34, [6] — the smoothness, irreducibility and equidimensionality of the fibers is
used here); using this and applying Chevalley’s criterion (ii) of Corollary 14.4.4 of EGA
IV [6] shows that the structure morphism is universally open. Feeding this into Theorem
15.2.2 of EGA IV [6] shows that the structure morphism is actually flat. Q.E.D.

We are interested in studying the specializations of Azumaya algebra structures. In the
topological sense these are points of the closure of the space underlying (fesp.
Id-w-Azuw) in Id-Assogy (resp. in Idw-Assogy). To give a scheme-theoretic interpre-
tation for these spaces of limits, one naturally turns to the notion of schematic image. This
notion and its properties are recalled next, after which comes the theorem that the limiting
schemes of Azumaya algebras are smooth and base-change well in the ca¥€ istwdn
rank 4 overX.

DEFINITION 3.5 (Definitions 6.10.1-2 Chap |, EGA | [5])

Let f : X — Y be a morphism of schemes. If there exists the smallest closed subscheme
Y’ — Y such that the inverse image schegfie! (Y') := Y’ xy (rX) is equal toX, one
callsY’ the schematic imagef f (or of X in Y under f). If X were a subscheme af
and f the canonical immersion, and jf has a schematic imagg, thenY’ is called the

schematic limibr thelimiting schemef the subschem& Lf> Y.
PROPOSITICN 3.6 (Propositio 6.10.5 Chap I, EGA I)

The schematic imagg’ of X by a morphismf : X — Y exists in the following two
cases(1) f«(Ox) is a quasi-coheren®y-module which is for example the case wh¢n
is quasi-compact and quasi-separaté?) X is reduced.

PROPOSITICN 3.7

In each of the following statements whenever a schematic image is mentioned, we assume
that one of the two hypotheses of the above proposition is true so that the schematic image
does exist.

(1) LetY’ be the schematic image &f under a morphisny : X — Y and letf
factor asX —» ¥’ <> v. ThenY’ is topologically the closure of (X) in Y, the
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morphisny is schematically dominaffite., g : Oy — g.(Oy) is injective and
the schematic image &f in Y’ (underg) is Y’ itself. If X is reducedrespectively
integral) then the same is true af.

(2) The schematic image of a closed subscheme under its canonical closed immersion
is itself.

(3) (Transitivity of schematic imagelet there be given morphism’si> Yy -5 7,
such that the schematic imagé of X under f exists and further such that ig’
is the restriction ofg to Y’, the schematic imagg’ of Y’ by g’ exists. Then the
schematic image of underg o f exists and equalg’.

(4) Let f : X — Y be a morphism which factors through a closed subschegnué
Y by a morphismf; : X — Y3. Then the scheme-theoretic imageof X in Y
is the same as the scheme-theoretic imegef X in Y1 considered canonically as
closed subscheme bf

(5) If f : X —> Y has a schematic imagg’ then f is schematically dominant iff
Y =Y.

(6) The formation of schematic image commutes with flat base-chaegdf f :
X — Yisamorphism of-schemes which has a schematic im&#¢hen for a flat
morphismS’ — S, one has that the induceti-morphismf x5 8" : X x5 S’ —

Y x 58" has a schematic image and it may be canonically identifiedWithg S’. In
particular this means that the formation of schematic image is local over the base.

Assertions (1) and (3) are respectively Propositions 6.10.5 and 6.10.3 in EGA I. The
defining property of schematic image gives (2), while (4) can be deduced from the first
three. As for (5), from (1) it follows that’ = ¥ implies f = g is schematically dominant.

For the other way around, one uses the following characterization of a schematically
dominant morphism in Proposition 5.4.1 of EGA . ff: X — Y is a morphism of
schemes, theyfi is schematically dominant iff for every open subschdimaf Y and every

closed subschemg of U such that there exists a factorizatign®(U) LN Y1 i U, of
the restrictionf ~%(U) — U of f (wherejj is the canonical closed immersion), one has
Y1 = U —given f is schematically dominant, one just has to téke= Y, Y1 = Y’ and
g1 = g. Assertion (6) follows from statement (ii) (a) of Theorem 11.10.5 of EGA IV [6].

Theorem 3.8

(1) The open immersioAzuy < ld-Assogy (resp.ld-w-Azuy — Id-w-Assogy)
has a schematic image denot8g-Azy,, (resp.ld-w-Sp-Azyy) which is sep-
arated (resp. affing and of finite type oveX and is naturally aGLy-stable
(resp.Staljw)-stablg closed subschemelof Assogy (resp. ofld-w-Assogy), the
action extending the natural one on the open subschferog (resp.ld-w-Azuy).

(2a) Sp-Azy, isthe schematic image GiLy x x Id-w-Sp-Azy,, under the composition
of the canonical closed immersion inBlLy x x Id-w-Assogy followed byu,,.

(2b) The induced morphism/, : GLw xx ld-w-Sp-Azyy, —> Sp-Azyy is in fact
the base-change ¢f,, and is hence a Zariski-locally-trivial principabtaliw)-
bundle.

(3a) When the rank oW over X is 4, Id-w-Sp-Azy,, is locally (over X) isomor-
phic to relative nine-dimensional affine spaaefact over every open affine sub-
schemeJ of X whereW becomes trivial andv becomes part of a global basis
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ld-w-Sp-Azyy |y = A%. Thusld-w-Sp-Azy,, is smooth of relative dimensich
and geometrically irreducible ovex.

(3b) Whenranky (W) = 4, the constructionld-w-Sp-Azy, —> X base-changes
well.

(4a) Whenrankx (W) = 4, Sp-Azy, is smootlhi X of relative dimensiori3 and geo-
metrically irreducible X.
(4b) Whenranky (W) = 4, the constructiorSp-Azy, —> X base-changes well.

We remark that due to the fact that the formation of the schematic image is local on the
base (property (6) of Proposition 3.7), it is enough to prove property (3a) for the case when
X is affine,W is trivial over X andw becomes part of a global basis. This will require the

use of semi-regular quadratic forms which are recalled in the next section and will be the
goal of 85. Notice that (3b) (resp. (4b)) is a consequence of the smoothness and geometric
irreducibility asserted in (3a) (resp. (4a)), the defining property of schematic image and
the fact that the corresponding scheme of Azumaya algebras base-changes well (statement
(2) of Theorem 3.4). Further note that given the fact that @talis affine, geometrically
irreducible and smooth of relative dimension 12 oXein the case\ is of rank 4, (4a)

follows from (3a) and (2b). So, for now we shall only prove (1), (2a) and (2b), and only
(3a) will need to be proved for the affine case as noted above. Since an affine morphism is
quasi-compact and separated, the existence of the schematic images in (1) of the theorem
follow from (1) of Theorem 3.4 and case (1) of Proposition 3.6. The rest of the properties
like separatedness/affineness/finite-typeness now follow from (2) of Theorem 3.4, while
the assertions on the extension of the natural action on the open subscheme (by the relevant
groupscheme) to an action on the limiting scheme may be verified using the defining
property of the schematic image involved. In effect one may show that an automorphism
of a schem@&@ which leaves an open subschetstable will also leave stable the limiting
scheme ol in T (of course here one assumes that the canonical open immérsienT

is a quasi-compact open immersion, which ensures the existence of the limiting scheme).
The assertion of (2a) follows by using the properties (1)—(5) of the schematic image given
in Proposition 3.7. As for (2b), one immediately sees that there is a natural morphism of
X-schemes

GLw xx ld-w-Sp-Azyy
—> Sp-AZUy X|d-Assogy (. (Clw xx Id-w-Assoay))

whichis seen to be a closed immersion and which needs to be shown to be an isomorphism.
Hence it is enough to show that this morphism is functorially surjective. We shall deduce
it from the following more general result, which simply put, says that for a locally-trivial
principal G-bundle,G-stable closed subschemes of the top space descend, and the natural
candidate, viz., the schematic image under the restriction of the bundle projection, fits the
bill.

Theorem 3.9. Let S be a base schem@,an S-group scheme which is flat of finite type and
separated ovef, and f : B — T an S-morphism which is also a Zariski-locally-trivial

principal G-bundle(with theG-action onB on the righ). LetQ <% BbeaG-stable closed
subscheme. Then the schematic imZgé» T of Q under the compositiorf o i is the
descent of2 under f, i.e., there exists a natural isomorphisn: 0 — (Z,) Xt (fB)
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such that = pp o B. ThusQ is naturally identified with the locally-trivial principaf;-
bundle given by the pull back gfto Z. Moreover whenG is smooth oves, it follows
that Q is smooth oves iff Z is smooth oves.

Proof. Note that f o i is quasi-compact and separated and so the schematic ithage
of Q exists by case (1) of Proposition 3.6. Also note that under the given assumptions
on G, f is universally submersive and so tliestability of Q9 and theG-invariance of

f imply that Q is topologically the full inverse image of the closed set below which
by property (1) of Proposition 3.7 is seen to be the underlying topological space of the
schematicimag&. There is an obvious natural closed immerstonQ — (Z,) x7 (¢ B)

which we need to show is functorially surjective. Since this morphism is functorially
injective, and since the formation of schematic image is local over the base (property (6)
of Proposition 3.7), it can be seen that one may reduce to the case of a trivial principal
G-bundle, i.e.,B := T x5 G. Lets : T —> B be the section tgf induced by the
identity section ofG over S. Define Z1 to be the scheme-theoretic intersection of the
closed subscheme&8 andT in B, i.e.,Z1 := (Q,) xpg (;T). Lets’ : Z; — Q be the
base-change of. Definea : Z1 xg G — Q to be the compositiomp o (s' x idg)
wherewg : O xs G — Q is the canonical right action @ on Q induced from that on

B =T x5 G. Now using the language of valued points one checksdhstfunctorially
bijective, hence an isomorphism. Singe xs G = Z1 xr B canonically, a little bit of
routine writing-down shows thaf o i factors throughZ;. Due to the defining property

of the schematic imagg, this induces a closed immersidp: Z — Z1 which in turn
induces a closed immersiofi : (Z,) xr (yB) — Z1 xr B. Now using the facts that

Z1 x7 B — Zj is functorially surjective (being a trivial bundle) and tat xr B = Q

via o, one checks that is functorially surjective and therefore an isomorphism.Sis

also an isomorphism and from this one gets ha functorially surjective and hence an
isomorphism as wanted. Q.E.D. for Theorem 3.9

Now if in the above result, one takds:= GLyw x x ld-w-Assogy, T = ld-Assogy,
f = pw, Q := GLw xx ld-w-Sp-Azy, (and whence&Z = Sp-Azyy), G := Stal{w)
and bears in mind that,, is a locally-trivial principal Stabw)-bundle (Corollary 2.8),
one immediately gets that is indeed the base-change;of as wanted. We remind the
reader now that we only need to prove assertion (3a) of Theorem 3.8 for the case when
X = SpecR) is an affine schem@) corresponds to a triviak-moduleW of rank 4, and
w becomes part of a global basis f?t. We shall show in this case that id-Sp-Azy,,
is isomorphic to the nine-dimensional affine space given by the fiber-product of the six-
dimensional affine space of quadratic forms on a free ramrBodule and a suitable
commutative affine subgroupscheme of $tapisomorphic to three-dimensional affine
space. This involves the use of the notion of semi-regular quadratic form, generalities on
which we shall deal with in the next section.

4. Generalities on semi-regular quadratic forms

As indicated in the last section, one needs to bring in quadratic forms for the proof
of (3a) of Theorem 3.8. Seshadri's method of proving (3a) for the gase Speck),

k an algebraically closed field, involves firstly defining a morphism from the space of
quadratic forms on a three-dimensional vector space into-lssogy . This essentially
associates a quadratic form to its even Clifford algebra. That this morphism takes values
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in 1d-w-Sp-Azy,, depends on the fact that the even Clifford algebra of a regular quadratic
form is isomorphic to the algebra @ x 2)-matrices with entries ik. Further using this
morphism, another morphism is defined to establish (3a) and to conclude that this latter
morphism is proper and functorially injective, Seshadri computes this morphism. In this
computation the bilinear form associated to the quadratic form, and not the quadratic form
itself, is involved, and therefore some terms in the computation (crucial for concluding the
properness and functorial injectivity) involve a factor of 2, and hence vanish in char. 2.
Other fundamental problems encountered in char. 2 arise from the facts that the mapping
that associates a quadratic form to its symmetric bilinear form is no longer bijective and
that when the quadratic module is of odd rank, there do not exist regular quadratic forms.
The remedy for all this is to consider semi-regular quadratic forms, a concept of Kneser [8]
and elaborated upon by Knus in [9], which in fact works over an arbitrary base ring (and
hence in a characteristic-free way) and further reduces to the usual notion of regular form
in characteristicst 2. We therefore devote this section to recall this notion and its prop-
erties. We also use this opportunity to show how a non-degenerate form in the sense of
Dieudonrg [3] is the same as a semi-regular form.

Throughout this sectionR denotes a commutative ring. A pdiv, g) consisting of a
moduleV over R and a quadratic form on V will be referred to as a quadratic module.
Recall that a quadratic forgis by definitionamag : V — R satisfying (1) (r - v) =
r?> . q(), veV, r e Rand (2)by - VxV — Rgiven by (u,v) = q(u +
v) — q(u) — q(v) is R-bilinear. As usual, we calh, the bilinear form ‘associated’ tg.

Before proceeding further, let us recall the usual definition of regularity (also called non-
singularity). Let(V, ¢) be a quadratic module with finitely generated and projective of
constant ranke over R. For anyn-tuple {f; | 1 <i < n} of elements ofV, the element

Ay ({fi}) = detlb, (fi, f})) isanelementoR; in the case when the module is free and the
chosem-tuple is anR-basis, this element is called thescriminantof (V, ¢) with respect

to this basis. Its class modu(®*)? is independent of the choice of the basis. het(V)
denote thediscriminant-idealin R generated by the elements, ({ f;}) for all possible
n-tuples.(V, g) is said to be aegular quadratic modulendg aregular quadratic form

if A,(V)is all of R. In order to define semi-regularity on the other hand, one needs the
following fundamental result.

Lemna4.1 (Lemma3.1.2 Chap 1V, [9]). Conside the quadatic moduk (Rj, go) over
Ro = Z[&;, ¢ij] where(1 < i,j < n, i < j) with the standard basif; | 1 <i < n}
whereqo(e;) = ¢, bqo(ei,é’j) = Gij (i < j). In other wordsgo(X;xie; = Zié'ixiz +
Yi<jsijxixj. Note thatby,(e;, ¢;) = 2go(e;) = 2¢;. Then the discriminant/({e;}) :=
det(by,(e;, ¢;)) of the matrix ofb,, equals2 P,(¢;, ¢;;) for a uniquely determined poly-
nomial P, in Rop.

DEFINITION 4.2 (§3, Chap IV [9])

Let (V, ¢) be a quadratic module with the underlyi®gmodule projective of constant
odd rankn. For anyn-tuple{f; | 1 <i < n} of elements ofV, the element/, ({ f;}) =
Py(q(fi), by(fi, f;)) is an element oRR; in the case when the module is free and the
chosem-tuple is anR-basis, this element is called thalf-discriminantof (V, ¢) with
respect to this basis. Ldg(V, ¢) denote thdalf-discriminant-idealn R generated by the
elementsd, ({ f;}) for all possiblen-tuples.(V, ¢) is said to be @emi-regular quadratic
moduleandq asemi-regular quadratic fornf do(V, ¢) is all of R.



498 T E Venkata Balaji

PROPOSITION 4.3

Let(V, g) be a quadratic module with the underlyi®gmodule projective of constant odd
rank.

(1) WhenV is freg g is semi-regular if and only if there exists a bagjs} with respect
to which the half-discriminant is a unit. If this is the case then the half-discriminant
with respect to any basis is a unit.

(2) When 2is a unitinR andV is freg ¢ is semi-regular if and only if it is regular.

(3) The orthogonal direct sum of a semi-regular quadratic module and a regular
guadratic module is again a semi-regular quadratic module.

(4) For a quadratic modulgV, ¢) of odd rank regularity is a very strong condition
it implies that 2 is a unit ofR. Hence there are no regular quadratic forms over
modules of odd rank in char. 2. Howeysemi-regular quadratic forms do exist in
all ranks in all characteristics.

Statement (1) is proved in 83, Chap. IV of [9]. Statement (2) follows from the fact that
relative to any basis, the half-discriminant and the discriminant differ by the factor of the
unit 2 € R*; note in this situation also that the associated bilinear form may be used to
identify V with its dual for any fixed basis. Assertion (3) is in 83, Ch. IV of [9], and
essentially follows from the observation that in the free case, the half-discriminant of the
orthogonal sum is the product of the half-discriminant of the semi-regular summand and
the discriminant of the regular summand. The first assertion of (4) essentially boils down
to realizing that an alternating matrix in char. 2 of odd rank is of determinant zero. As for
the last assertion of (4), first I8 be free of rank 3 oveR with basis{es, e2, e3} andsS a
commutativeR-algebra. Then the quadratic fognt V ®g S — S given by

x(e1®D) +y(e2®1D) +2(e3®01) —> yz —x2

is easily checked to be semi-regular. Now using (3) and the fact that regular quadratic
forms exist for modules of even rank in all characteristics, one gets (4). The following is
Proposition 3.1.5, 83, Chap. 1V, [9], and shows that semi-regularity is well-behaved.

PROPOSITION 4.4

Let(V, ¢g) be a quadratic module of odd rank over a commutative g he following
properties are equivalent

(1) g is semi-regular.

(2) ¢ ® (R/m) is semi-regular oveR /m for every maximal ideah of R.
(3) g ® Ry, is semi-regular over,, for every maximal ideah of R.

(4) g ® S is semi-regular oves for some faithfully-flaiR-algebras.

Thus semi-regularity is preserved under extension of scalars.

We now recall the notion of non-degeneracy and show that it is the same as semi-
regularity. To begin with, given a quadratemodule(V, ¢), its radical, denotedV (¢),
is defined to be the subset Bfdefined by

{veV]b;(v,v)=0V €V}

Then we have the following elementary results.
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Lemmad.5. With the above notationgl)the radical of(V, ¢g) is a submodule df (itis the
kernel of the linear mafy — V* which sends € V to the linear formv’ — b, (v, v')
and the radical is also the leftand right) kernel of the bilinear fornd,). (2) WhenV
is a finite dimensional vector space over a fi@dthe quadratic forny is regular if and
only if its radical is zero(So in general, if; is regular andV is of odd rankit follows that
2 is necessarily a unit irR. Thus for a free module in chak.it follows that the radical is
non-zero and hence every quadratic form is necessarily non-regular.

Recall the following notion from Chap. V, (23.5), of Borel [2] (who in turn quotes
Dieudonrg [3]): for a quadratic modulg/, ¢) of odd dimension over a fiekdof char. 24 is
said to benon-degenerati#f V (¢) is one-dimensional and further for eaclke V(g)— {0},

g (v) is non-zero. Now extend this definition to the case ¢hag 2 as follows:q is non-
degenerate iff it is regular (i.e., iff (¢) = 0).

DEFINITION 4.6

Let R be any commutative ring and 1€V, ¢) be a quadratic module such that tRe
moduleV is finitely generated and projective of constant odd rank. £atin-degenerate
if for each maximal idea of R, the quadratic forng ® (R/m) is non-degenerate in the
above sense.

It can be seen that for any quadratic modife ¢) of odd rank> 3 over aperfectfield
of characteristic 2, the rank éf, cannot be zero (i.e¥ (¢) cannot be all o) under the
hypothesis thag does not vanish on non-zero elements of its radical. In particular, in the
above definition, whe® = k a perfect field of characteristic 2 and= 3, the requirement
thatV (¢) be one-dimensional is redundant.

Theorem 4.7. Let (R, qo) be the generic quadratic module of Lemmdal Let
{x1, ..., x,} beindeterminates and lég be the ideal inRg[x1, ... , x,] generated by the
expressions that are the rows of the column vector defined by

x1
Vo 1= (byylei, e)))

Xn

i.e., if we denote the’'th row by Vo ; thenlo := (Vo 1, ..., Vo). Further, for eachk,
1 <k <n,let Ip; denote the ideal generated byy; | i # k} so thatlpx C Ip. Thenin
the ring Ro[x1, . .. , x,]/lo.x (@and hence also in the ringg[x1, ... , x,]/lo) one has the
following identity

x,an<;i,;,-,-)=(Zx?;,-+ > m,-@,-) (Myi (bgy (eir €))))
i=1 l<i<j<n

where2P, = det(b,,(e;, e)) as noted just before Definitioh2 and whereM;, denotes
the (k, k)-minor of (b, (e;, e;)) with the convention that for = 1, M11(by,(e1, e1)) := 1.

Proof. Forn = 1 the formula reads:fPl(gl) = xfg“l which follows from the very
definition P1(¢1) := ¢1. Hence assume > 3. One then has, say fér= 1.
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201 12 --0 L
22 Py (&, Gij) = x5 detlbyy (e;, €))) = x? %2 2?2 g“?n -
S o e 2
Now one performs the following elementary operations on the determinant in the right
side of the above identity:

(1) push arx; into the first column of the determinant;

(2) if C; denotes the’'th column, replaceC; by C1 + X;21x;C;;
(3) push the remaining into the first row of the determinant;
(4) if R; denotes the'th row, replaceR, by R1 + X;+1x; R;.

After all this the above identity reads

2(X xfei + X xixjtij) Voz - Vou
1

i<j
205 ...
2P (6. 5i) = Vo2 R P
VO,n §2n te 2{71
Reading the identity moduld 1 and cancelling off the factor 2, one gets the required
result. Q.E.D.

Theorem 4.7 may be applied as follows to obtain a formula linking the half-discriminant
and the values of the quadratic form on its radical, valid for any free quadratic module of
finite odd rank over any commutative ring.

COROLLARY 4.8

Let R be any commutative rind’ a free R-module of odd rank andq a quadratic form
onV.Let{f1,..., fu} be anR-basis forV. Then one has for each= )", yx fi in the
radical V (¢), and for everyk with 1 < k < n, the following identity inR:

Yedy (frs - s fa) = a@)Mig(bg (fis 7).
To prove this, define the ring homomorphiste[x1, ... , x,] — R by

si e q(fi), &ij = by(fi, fj) andx; — y;.

Therefore,P,(g;, &ij) — dg({f;}) and (}; xizc,- + Zi</xixj§,~j) — ¢ (v). But since
v € V(q), thishomomorphism factors throud[x1, . . . , x,,]/Io. Now apply the previous
theorem.

COROLLARY 4.9

The quadratic forng is semi-regular in the sense 4f2if and only if it is non-degenerate
in the sense ot.6.

Proof of Corollary4.9. In view of (1) < (2) of Proposition 4.4 and Definition 4.6, it is
enough to consider the case wherns a field K. If char(K) is not 2, the proof follows
from (3), Lemma 4.5 and (2), Prop. 4.3. So assume that £Has(2.
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Semi-regularity= Non-degeneracyApply the above corollary witlR = K. By (1),
Prop. 4.3d, (f1, ..., fx) isnon-zero. Hence for any# 0 € V(q), choosing ang such
thaty, # 0, the formula of the corollary implies that bajtiv) and M (b, (fi, f;)) are
non-zero. Hence is hon-degenerate.

Non-degeneracys Semi-regularity Continuing with the above notations, one sees that
sinceV (g) is one dimensional, one may choose the bégjg in such a way that (i)
whenn > 3, b, is non-singular on the subspace generatedihy; # n} and (i) V(g)

is generated byf,,. Apply the previous corollary with this choice. Takimg= f;, in the
formula there, one gets thdj (f1, ... , f) is non-zero. Now use (1), Prop. 4.3. Q.E.D.

Thus the theory of semi-regular quadratic modules over a commutative ring developed
in [9] holds good for non-degenerate quadratic modules. For example, the word ‘semi-
regular’ may be replaced by ‘non-degenerate’ in Proposition 4.4, showing that the notion
of non-degeneracy is preserved under extension of scalars.

5. Smoothness of limiting algebras with fixed identity

In this section, we shall prove that wheéh = SpecR) is affine and the rank 4 vector
bundleW on X is free with the nowhere vanishing global sectiopart of a global basis,
then Idw-Sp-Azyy, = A% from which the assertion (3a) of Theorem 3.8 will follow

as explained earlier. This isomorphism will be natural in the sense that firstly, the nine-
dimensional affine space shall be the fiber product of a suitable commutative subgroup
schemeA ,, of Stal{w) isomorphic toA?e with the schemeby = A‘; of quadratic forms

on a free rank 3 modul& over R; secondly the isomorphism shall be given by the
morphism® : &y xg A, —> ld-w-Sp-Azy,, that associates a quadratic fognand an
automorphisny to the algebra; - A where A is the algebra structure induced from the
even Clifford algebra of after identifying its underlying module as coming frafh The
notion of semi-regularity of the previous section allows us to work over any commutative
ring R and in a characteristic-free way.

The affine scheme of quadratic formbs. Let @y be the six-dimensional affine space
over R corresponding to the rank 6 free-module S?(V") which is the degree 2 part
of the symmetric algebr&(V") of V¥ over R. Let V have R-basis{e1, e2, e3} and let
{X1, X2, X3} be the dual basis fofY = Homg(V, R). Then

(Zij =X Xj, Zy: =X2,1<i<j<3 1<k<3

is an R-basis fors?(V") so that the natural algebra homomorphism from the symmetric
algebra overR of S2(V) = (52(V"))" to the polynomial algebra

R[Y;,Y;;] := R[Y1, Y2, Y3, Y12, Y13, Y23]
given by Z/ — Y, Z’ +~ Y is an R-algebra isomorphism. Thu®dy =
SpecgR[Y;, Y;;]). This isomorphism can be used to interpde as theR-scheme of
guadratic forms oV as follows. For a commutativ®-algebra$ with 1, we define
a bijective map by associating 10.;, 1;;) € SpeqR[Y;, ¥;;]1)(S) the quadratic form
onVs :=V®rSgvenby)  xi(e; ®1 — >, A,»xiz + ij Aijxixj. We see that
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this is functorial inS as well. Consider the quadratic modul€ ®z R[Y;, Yi;], Q)
where

q:V ®r R[Y;, Yi;] — R[Y;, Y;j]

is defined by) ", xi(e; ®1) — ), Yixi2+2i<j Y;jxix;. We then see that the paiby, q)
represents the functor of quadratic formsWrso thatq is the universal quadratic form.

It is worth noting that under the usual identification of quadratic forms with symmetric
bilinear forms valid when 2 R*, the quadratic form corresponding ;, A;;) would

be identified with the tupl€2 - A;, 1;;) and this becomes a bad mapping in char. 2. It is
obvious thatby —> X = SpeqR) base-changes well.

The open subschendg; of semiregular formsFor any commutativ&®-algebraS with 1,

let @7/ (S) be the subset aby (S) consisting of semi-regular forms (Definition 4.2). Itis
non-empty by (4), Proposition 4.3. Since semi-regularity is preserved under base-change
(Proposition 4.4), one sees thfat— @7/ (S) is functorial. A direct computation shows

that the polynomialP, (¢;, ¢;;) of Lemma 7.21 fon = 3 is given by

4018283 + (12013803 — (C1853 + Lalla + C3lhy).

ThenPs(Y;, ¥;;) is a polynomial function oy . Since 1 is a coefficient aPz € R[Py],
P3is nota zero divisor. One sees from (1) of Proposition 4.3d{ats an open subfunctor
of @y and in fact thatby; is represented by the open subscheme given by

Oy = SpecRr[Y;, Yijl pyvi.vij)

whereR[Y;, Yij] py(v,.v,;) denotes localization. The universal quadratic farimduces a
semi-regular quadratic forq” on V ®g R[Y:, Yij]pyy, v, It is obvious thatby —
X = SpecR) base-changes well.

Preliminaries on Clifford algebrasForg € @y (S) let Cliff(Vs, ¢g) denote theClifford
algebraof the quadratic modulé€Vs, ¢). It is by definition a unital associativi-algebra
with a homomorphisni : Vg — CIiff(Vg, ¢) of S-modules which are universal with
respect to the propertyx) - i(x) = q(x) - Leiiffv,q) ¥ x € Vs. The Clifford algebra exists

by Theorem (1.1.2), 8 1, Chap. IV, [9]. Furth@liff(Vs, q) = Cliffo(Vs, q) ® Cliff1(Vs, q)

is a(Z/2)-gradedS-algebra, withCliffa(Vs, ¢) consisting of even degree (or zero degree)
elements andliffy(Vg, ¢) consisting of odd degree (or positive degree) elements. Thus
Cliffo(Vs, q) is anS-subalgebra, called theven Clifford algebraf (Vg, ¢). The Clifford
algebra behaves well under base-change, i.6/,i§ a commutatives-algebra, then one
has a canonical identification ¢f./2)-gradedS’-algebras

Cliff(Vs ®s 8', g ®s §') = Cliff(Vs, q9) ®s §'.

The morphisny. Let § be a commutativeR-algebra with 1, andy € @y (S). The
Poincaé-Birkhoff—Witt theorem (Theorem 1.5.1, 81, Chap. IV, [9]) assertsithdty —
Cliff(Vy, q) identifiesVs as a submodule dEliff(Vg, ¢), and with this identification fur-
ther asserts that, sindé is free of rank 3 withR-basis{e;|1 < i < 3}, Cliff(Vs, ¢g) is
free of rank 8, and thatCliffo(Vs, ¢) andCliffi(Vg, ¢) are free of rank A4S with bases
{1ciifr; (e1®D)-(2®1), (201)-(e3®1), (e3®1)-(e1®@1)} and{ey, ez, e3, (e1®1)-(e2®1)-
(e3® 1)} respectively. LeW be therR-module corresponding ¥. SinceW is also of rank
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4/ R with w part of a basis, one completes toR#basisw = wg, w1, w2, w3, and defines
the S-linear isomorphismbs : W ®g S = Cliffo(Vs, ¢) that mapswo ® 1 — g, =
lciift, w1®1l > (e1®1)-(2®1), w21l (e2®1)-(e3®1), w3RL > (e3®1)-(e1®1).
In particular takingS = R[Y;, Y;;], one gets an associativ}Y;, Y;;]-algebra structure on
W ®r R[Y;, Y;;] with unit w ® z 1 and hence a morphism

9 :dy — Id-w-Assogy.

The morphisn®. Continuing with the above notations, if one identifi@swith R* by
mapping the chosen basis onto the standard basis (column) vectors, then one sees that
for any commutativeR-algebra$ with 1, the subgroup Sta)(S) c GLw (S) may be
identified with the subgroup af L(4, S) consisting of matrices of the form

1n o1 .
<0 B ) with B € GL(83, S).

Let A,, be the subgroup-subfunctor of Sta) defined as follows: Let\ , (S) be the
subgroup of Statw)(S) consisting of matrices of the above form and further such that
B = I3 is the 3x 3-identity matrix in GL(3, S). ThenA , is represented by a closed normal
subgroupschema,, of Staliw) andA,, = Af;. To understand the relevance &f, with

9, let O, € ®y(R) denote theeroquadratic form and consider the associaftalgebra
structure

(Ao)g == 0(R)(OQp)

which is induced from the even Clifford algebra of the zero quadi@tiorm onW. It is
commutative, since all products; - w; = 0for 1 < i, j < 3. Let Stab stanw) ((Ao)g)
denote thestabilizer subgroup functasf (Ag)  in Staliw). Then a straightforward com-
putation gives the following:

Lemna5.1

(1) Stab stanw) ((Ao)g) is represented by a closed subgroupsch&ad stapy,,) ((Ao)g)
of Staliw) whose set of-valued points is given by

10
{(0 B)|BGGL(3,S)}.

(2) Staljw) is the semi-direct product of,, with Stab stag) ((Ao)g)-

DEFINITION 5.2

Let® : &y x A, —> ld-w-Assogy be theR-morphism given by the composition
Dy x Ay ox1d ld-w-Assocy x Ay,
=, Ay x Id-w-Assocw —2> 1d-w-Assocw

wherep is the action morphism induced from that of Stalp and the arrow in the middle
is the ‘swapping isomorphism’. Thus, fgre @y (S) and (1) = (é n |’23 ?) € Aw(S),
one has by definition® (g, (t)) = (¢) - 6(g).
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Theorem 5.3. The schematic image of the morphi€m &y x A,, —> ld-w-Assogy is
Id-w-Sp-Azyy and the induced morphism intd-w-Sp-Azyy, is an isomorphism which
maps the open subsche®d x A, onto the open subscherttew-Azuy .

Proof. We first recall the following crucial fact (see (1), Prop. 3.2.4, Chap. IV [9]):
The even Clifford algebra of a semi-regular quadratic form is an Azumaya algebra.
Using this fact and the definition a®, one sees that the morphiséh restricted to

Y x Ay, factors through Idw-Azuw by a morphisn®*” such that the following diagramis
commutative

Py x Ay %, Id-w-Assogy

I I

ST

DY x Ay &, Id-w-Azuy

where the vertical arrows are the canonical open immersions. The above diagram base-
changes well in view of (2) of Theorem 3.4. Notice that since the Base SpecR) is
affine,® is a morphism of affine schemes and therefore has a schematic image by Case (1)
of Proposition 3.6. The same is true of each of the two vertical arrows a@tl ginced;;

is a principal open subset dfy (by definition) and since lds-Azuy — ld-w-Assogy

is affine by (1) of Theorem 3.4. As noted earliey € R[®v] = R[Y;, ¥;;] is not a zero
divisor. HencerR[®Y/] = R[Py] p, shows thatby, — @y is schematically dominant, i.e.,

the limiting scheme ofby) is @y (cf. assertion (5), Proposition 3.7). Now from assertion

(6) of Proposition 3.7, the flatness af, over X = SpecR) implies thatdy x A, —

dy x Ay is also schematically dominant. So using the commutative diagram above, and
the transitivity of the schematic image (assertion (3), Proposition 3.7), we see that in order
to prove the theorem, it is enough to show that

(*) ©° is schematically dominant and surjective, ahnds a closed immersion.
We now claim that the above properties are equivalent to

(**) ©* is proper an® is a closed immersion.

Suppose*t ) holds. To show¥), we only need to show th&*” is surjective and schemat-
ically dominant. From**) it follows that ®Y = ®* ®z K is functorially injective
and proper for each algebraically closed fi&dwhich is anR-algebra. That both the
K-schemeg®y, x Ay) ®g K and(ld-w-Azuw) ®g K are integral and smooth of the
same dimension follows from the smoothness of relative dimension nine and geometric
irreducibility /R of &}/ x A, (which is obvious), and of lds-Azuy from statement
(4), Theorem 3.4. Sinc@®Y is differentially injective at each closed point, it has to be a
smooth morphism by Theorem 17.11.1 of EGA IV [6] and thus has to be an open map.
But by (**) it is also proper and hence a closed map. HeB&eis bijective etale, and
hence an isomorphism. This also gives tBét is surjective. Now from Cor. 11.3.11 of
EGA IV and from the flatness obj/ x A, over R, it follows that ®" is itself flat,
and hence schematically dominant since it is faithfully flat (being already surjective).
Therefore t*) = (*).

We shall establisht ) by computing®. For this we shall have to first computevhich
was used to defin®. The following outlines the method to compute the multiplication
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x4 in the algebrad(g) for g € Py (S), S a commutativeR-algebra with 1. For ease
of reading, we shall write:® for x ® 1 in the following. Letg correspond to the point
(M1, A2, 23, M2, A3, h23) € S8, i.e.,q(e}) = A; andby (ef, e9) = hij, L<i<j=<3).
Then by definitioné (¢) is the associativd-algebra structure oW with identity element
w® = wg induced from the isomorphisnirs : Wy = Cliffo(Vs, ¢). Since thew; are an
S-basis forWsg, it is enough to compute; *, wj for (1 <i, j < 3). Let#;r(¢g) denote
the coefficient of; for 0 < k < 3 in the expression far? x, w?, for each pair of indices
@i, jywith 1 < i, j < 3. Thesef;i(g) are polynomial functions of thg; and thea ;;
which may be computed explicitly as follows. For example, suppose one wants to compute
the productw; x, w7. Using the properties of the multiplication @liffo(Vs, ¢), one gets
the following:

wh kg w1 = Wgt{(e5 - €3) - (€f - e)} = Wi H{(h23(L")

—e3-e3) - (212(1°) —e5 - e])}

= W {h23h12(1°) — Aoz - €f — Aaoes - €5
+ (e3-€3) - (e3- €7)}

= WM {h23h12(1°) — 223(ha2(1%) — €f - €3) — A12(223(1°)
e ey (e e -ei)

= —A12223(w°) + A23(w7) + A12(w3) + A2(w3).

Thus6210(q) = —A12A23, 6211(9) = A23, 6212(q) = A12, andBz13(q) = Az. In a similar

fashion, the other products may be computed. The following result is needed to compute
® from 6.

Lemma5.4. Letq € Py (S) and (1) = (" 21%) € Aw(S), for a commutativer-

algebras with 1. Letx, ) denote the multiplication in the algeb@(g, (1)) = (2) - 6(q)
and as beforex, denote the multiplication ii(g). Then one has

1) W) =tw +w? for (1 <i <3);
) O tw)) =—fwe +wffor (1 <i <3);

(3) wy *g.n w; = (1) (W] *4 u);?) —tjw; — tiw;? —titjwe.

The first two formulae follow easily by direct computation. To prove the third formula,
one uses the first two formulae along with the following one:

W) #g.0 (W5) = OO W) x4 (O W)},

One may now compute the multiplication in the algelia 6(g) by making use of the
formulae listed in the above lemma since the method for computing the products of the
formw? %, w? had already been illustrated before the lemma.dgt(q, (t)) denote the
coefficient ofjw,‘j for 0 < k < 3inthe expression fap; *, ) w?, for each pair of indices

@, j)with1 < i, j < 3. Thesed;ji(g, ()) are polynomial functions of the's and the

t's. Computations give in particular the following:

O132(q, (1)) = A1 ; ©213(q, (1)) = A2;; ©231(q, (1)) = —A3;
O122(q, 1) = —11; ®133(g, (1)) = A12—1t1; O121(g, () = —t2;
O211(q, 1)) =Xz —1t2; O23(q, (1) = —13; O131(q, (1)) = A13 — 13.
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The upshot of the above computations is that, if one denoté; likie composition of the
following two morphisms

Py x Ay N ld-w-Assogy — Algyy

where the second one is the canonical closed immersion, so thatdalgebra homomor-
phism@’ié of coordinate rings corresponding @& is given by the composition

e
R[Zijx] = R[Algy]— R[Id-w-Assogy] —> R[®y x Ay]
= R[L1, Lo, L3, L12, L23, L13, T1, T2, T3]

then undei®¥ we have shown that

Z132+ L1 ; Zy13+— Lo ; Zo31+— —L3;
Zi22+—~ —T1; Z133+—~> Lio—T1; Zioi— —T2;
Zoir> Laz—To; Zozo— —T3; Z131+> L13— Ts.

Therefore we see th&fﬁl¢ is surjective, which implies tha®” is surjective, i.e.© is a

closed immersion. Further the above table shows that ®oémd ®*" are proper since

they satisfy the valuative criterion for properness. Thus the condititnsae verified.
Q.E.D. for Theorem 5.3

B: Applications to desingularization
6. Application 1: The Seshadri desingularization in positive characteristic

Notations for this section

X: a smooth, irreducible, complete curve of gegus 2 over an
algebraically closed field.

Z/{)S(S(n, d): the normal projective variety of equivalence classeserhi-
stablevector bundles oX of rankn and degred [15].

U (n,d):  the smooth open subvariety o5 (n, d) consisting ofstable
vector bundles. If: is coprime tod, semi-stability is the same
as stability. When! = 0, this subvariety is precisely the set of
smooth points ot/3%(n, 0) unlessn = 2 andg = 2 in which
case/y’ (n, 0) is smooth (see [13]).

Vx(n,0):  the category of rank and degree 0 vector bundles &n

V)S(S(n, 0): the subcategory oPx(n, 0) consisting of semi-stable vector
bundles.

V¥(n,0):  the subcategory afys (n, 0) consisting of stable vector bundles.

The problem is to desingulariié;?s(Z, 0). Seshadri’s solution in [16] is based on the
smoothness of the variety of specializationg2k 2)-matrix algebras over algebraically
closed fields of characteristies2. Since we have extended this smoothness to an arbitrary
base scheme (the smoothness ofkBp-Azy, of Theorem 3.8), we are able to extend
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Seshadri's methods to char. 2 as well. The birationality of the desingularizing morphism
over the open subscheme of stable bundles in positive characteristics is mentioned though
not explicitly proved in [16], and even in the more elaborate account [17], this birationality
is arrived at from the claim that the morphig§ (n, d) — U35 (n?,d - n) given on

points by [E] — [n - E] is an isomorphism over the image — a claim which is again
not explicitly proved. Some work is done in §6.2 to show the generic smoothness from
which the birationality is deduced (in the case of zero characteristic this would of course
follow from general considerations). The rest of the proof is more or less on the same
lines as in [16] or [17] except that we make some local simplifications — in particular we
are able to do without the notion of rigidified parabolic family and hence avoid going into
questions of descent etc. that are involved in the existence of universal objects for such
families. Section 6.5 announces the generalization of the above result over an arbitrary
base.

6.1 Preliminaries on the Seshadri Construction

For the easy reference of the reader, in this subsection we recall the main facts underlying
Seshadri’s construction in [16]. The ideas and notations introduced are essential for the
rest of the discussion.

6.1.1 Facts on parabolic bundlesThroughout this section one works with parabolic
vector bundles of a certain type, which is recalled next. The reader may consult [11] for a
general discussion.

DEFINITION 6.1

Fix a (closed) pointP € X(k) and a pair of real number&r1, «p) such that 0<
a1 < ap < 1. A parabolic structure atP with weights(a, @2) on an objectV e
Vx(4,0) is a codimension 1 subspace of the fiberVp of V at P. The pair(V, A)
is called aparabolic bundle The parabolic degreeof (V, A) (denoted parded’, A))
is the number; + 3 - a2 and theparabolic slopeof (V, A) (denoted pat(V, A)) is
parded@V, A)/4. Let W be aproper sub-bundle &f Then given a parabolic structure &n
W acquires the structure of a parabolic sub-buiiile A|W) of (V, A) whichis defined as
follows:

Casel. If Wp is not a subspace df, thenA|W = Wp N A and

pardegW, A|W) := degre€W) + aq + (rankW) — 1) - ap,
pam (W, A|W) = pardegW, A|W)/rankW).

Case2. If Wp is a subspace ok, thenA|W := (0) and

pardegW, A|W) := degre€W) + rank(W) - az,
pa (W, A|W) = pardegW, A|W)/rankW).

Given a parabolic structure ow, it is called aparabolic semi-stablé€resp.parabolic
stablg structure if the following condition is satisfied: for every proper sub-burdle
of V given the structure of a parabolic sub-bundleVbfas explained above, one has

pam (W) < pan(V) (resp. par(W) < pan(V)).
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The symbolsPVx (4, 0), PV3y5 (4, 0) andPVy (4, 0) will respectively denote the cate-
gory of parabolic, parabolic semi-stable and parabolic stable vector bundtessotefined
above with the underlying vector bundles being of rank 4 and degree 0. We have the fol-
lowing elementary result relating parabolic semi-stability with the usual semi-stability in
relation to the choice of weights.

Lemmab.2. The real numbers; may be chosen such thB35 (4, 0) = PVy (4, 0) and
such that(V, A) € PV§%(4,0) = the underlying vector bundl¥ is semi-stable.

A little writing-down shows that if one chooses® — «3 to be a positive irrational
number less than 1, then the parabolic slope of any proper sub-bunilggi¥en the
canonical parabolic sub-bundle structure explained above) can never equal the parabolic
slope ofV. If, further, one chooses; such thatr, < 1/4, then one sees that the claims
of the above lemma are satisfied. We make such a choice of weights and fix it for the
rest of the discussion. We next recall the notion of families of parabolic bundles from
83 of [16].

DEFINITION 6.3

Let T be anyk-scheme. The following data determine a family, D) in PV§(4, 0
parametrized by :

(1) Underlying familyV in Vx (4, 0). V is avector bundle of rank 4 oy := X x; T
such that for every pointe T(K), K any algebraically closed extension field of
k, if V, is defined to be the base-changelofo Xy = X x; SpecK) (viat),
thenV; € Vx, (4, 0) —the category of rank 4 degree zero vector bundleX gn

(2) Underlying quasi-parabolic familgV, D) in PVx (4, 0). Let Vp denote the base-
change ofV to the reduced closed subscheie= {P} x T — Xr (via the
closed immersion of the poinP € X (k)). Then D is a global section of the
projective bundleP(Vp) associated to the locally-free sheaf (associated/a)
Note thatD corresponds to a quotient line bundlelgf whose kernel at each point
t € T(K) (k ¢ K = K) defines a codimension 1 subspageof the fiber ofV; at
Px = {P} xx K € Xg(K).

(3) With the above notations, for alle T(K), one has thatV;, D,) € PV;EK 4,0) —
the category of parabolic stable vector bundlestgndefined in a manner similar
to Definition 6.1 above.

PROPOSITICN 6.4

(1) There exists a parabolic structutdv @ W, A) PV;E (4, 0) for eachW ¢ V§(2, 0).
(2) For any two such parabolic structures; and Ay, the objects(W & W, A1) and
(W W, Ap) areisomorphic(3) If R is areduced noetherian locatalgebra with residue
fieldk, then the analogues ¢f) and(2) above hold for families parametrized BpecR).

For proofs of (1)—-(3) see [16]. Assertion (3) uses the fact that parabolic semi-
stability/stability is an open condition on the parameter space (84 of [11]). Before
proceeding, one needs the following facts about the moduli space of parabolic semi-stable
vector bundles oiX in PVy5 (4, 0) from the paper of Mehta—Seshadri [11].
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Theorem 6.5. With the notations dof.1above one has the following

(1) on PV)S(S(4, 0) there is defined a natural equivalence of objects such that the set
of equivalence classes is the set(dbsed points of a normal projective inte-
gral scheme of finite typ@uism, 0) of dimensiondg where g is the genus
of X;

(2) the above equivalence reduces to isomorphism on the subcat®@ygr, 0) and
the set of isomorphism classes is precisely the s@tlo$ed points of a smooth
open subschenfel/; (4, 0) of PULS (4, 0);

3) PU§S(4, 0) has the universal mapping property for families of parabolic

semi-stable vector bundles aki in PV§%(4,0) parametrized by noetherian
k-schemes

(4) for each noetheriart-schemer’, let 7(7') denote the set of isomorphism classes
of families inPV}S( (4, 0) parametrized by". Thus one gets a contravariant functor

F : {k-schemes — {Set3. ThenPu§(4, 0) is a coarse moduli space for the
functor F defined above. In other wordhere exists a morphism of functors

@ : F — Morg(—, PUs (4, 0))

such thaia)the pair(®, Mory (—, Puf( (4, 0))) is universally repelling angb) for
every algebraically closed extension fidof k the mapd (K) is bijective.

6.1.2 The identification of the smooth locus of stable bundles

For eachW ¢ V§(2, 0), we now fix one parabolic structuré as in statement (1) of
Proposition 6.4 above, and denote ithyW). Then one has

PROPOSITION 6.6

(1) The associatiohW] — [(W & W, A(W))] is a well-defined injective set-theoretic
map which is the underlying map (on closed points) of a morphism of finite type of
k-schemes

&5y T UR(2.0) — PUF(4,0).

(2) LetK be an algebraically closed extension fieldkafnd letX ¢ := X ®; K. Then
the corresponding morphism &f-schemes

tyx i U3, (2,00 — PUZ, (4,0)

is simply the base—change;q‘fk. In particular, the topological map underlying the
morphismg; , is injective.

By Proposition 6.4, for a family of stable rank 2 degree 0 vector bundlésmerametrized

by T, one gets a morphisffi — 7>u§<4, 0). Hence assertion (1) is a consequence

of the fact that/; (2, 0) is a coarse moduli space. Assertion (2) uses the following fact:
PUS (4, 0) is a geometric quotient under a free action [11] and the same is tig(@f 0)

[15]. Therefore, by Prop. 0.9 of Mumfort al[12], each of these moduli spaces is the base
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space over which the geometric quotient is a principal fiber bundle with structure group
the corresponding reductive algebraic group; hence these moduli spaces are well-behaved
under base-change, vizdy (2, 0)®x K = Uy (2,0) andPU3 (4, 0)® K = PUS (4, 0).

Further if one were to work with the corresponding categories of vector bundleXgqver

then the analogue of Prop. 6.4 ovéalso holds. From these, (2) easily follows. Henceforth

we denoters , simply by

Properness of the scheme-theoretic imagezsofSince the parabolic weights have been
chosen such thaPV§5(4,0) = PV§(4,0) (see hypothesis following Lemma 6.2),
cases (1) and (2) of Theorem 6.5 imply th@lﬂ;ﬁ (4,0) is a smooth projective scheme.
Further, sincé4§(2, 0) is integral, the scheme-theoretic image:g?fis an integral closed
subscheme om; (4, 0) and hence in particular it is a projective integral scheme of finite
type. The scheme-theoretic imagegfis the candidate for desingularizirgy> (2, 0). It

will be shown that the desingularization is an isomorphism preciselwa/ez, 0), with

this isomorphism being given by the inverse§§f

The subschemk? (4, 0) of PUE (4, 0). The nextthing is to define a subschenig(4, 0)
of PZ/{)S((4, 0) (which will later turn out to be isomorphic id)S((Z, 0) via ;23) and to show
thats factors throughVs (4, 0). The definition of\§ (4, 0) will require three steps: (A)
Proving that(V, A) € PV;E (4,0) = dim (EndV)) < 4. (B) Determination of a reduced
closed subschem@i/% (4, 0) of PU; (4, 0). (C) Determination of\§ (4, 0) as an open
subscheme oQui (4, 0). Step (A) follows from Prop. 1(c) of [16].

PROPOSITICN 6.7

Let(V, A) e PV)S((4, 0). Thendimg (End(V)) < 4. If k C K is an algebraically closed
extension field, then a similar inequality holds VéV;EK (4,0) whereXgx .= X Q¢ K.

Before proceeding, one recalls tWéM;?(4, 0) is the geometric quotient under a free
action of PG L(n, k) (for a suitablen) on a certain reduced scheme of finite t)@ﬁf(.
With the notations of (4), Theorem 6 5a locally universal familyV, D) whose isomor-
phism class belongs tﬁ*(PRi), and the geometric quotient morphigm: PRf( —
PUS(4,0) is just the morphism®(PR3)([(V, D)]). Then the following concludes
Step (B).

PROPOSITION 6.8

(1) Let(V;, D) denote the base-change®f, D) to X ®; K via a pointt PR§((K)
whereK is an algebraically closed extension fieldkofThen the subset of points
of the topological space underlyin@R*}} given by

{t |dimg (End(V,)) = 4}

is closed and hence inherits the structure of a reduced closed subsghgfpef
PRS.

(2) QR§( is saturated with respect tg and g restricted to QR§( is a principal
PGL(n, k)-bundle over its(scheme-theoreficimage Qu§(4, 0) which is a
reduced closed subschemeRis (4, 0).
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The proof of (1) follows from (A) and upper-semicontinuity of fiber dimensions. As for
the proof of (2): As just recalled?uff (4, 0) is a geometric quotient under a free action
and hence by Proposition 0.9 of Mumfoed al [12], ¢ : PRf( — Pu§(4, 0)is a
principal PG L (n, k)-bundle. In particulag is a flat finite-type morphism (in fact, a smooth
morphism sinceP G L(n, k) is smooth) and is hence open. The condition defir@@(

is true at a point € QRff(K) iff it is true at all points in theP G L (n, k)-orbit of z, since
®(K) is bijective by (4b) of Theorem 6.5 above. ThQsRi is saturated with respect to
q.i.e., QRS = g 1(g(QR%)). But as noted above, is open and surjective, so

q(PRS — ORS) = PUS(4,0) — q(QRS)

is open, implying thag (O R3,) is closed inPU3 (4, 0). SinceP R, is reducedg (QR%),
given the reduced induced closed subscheme structuﬂél@fm, 0) is the scheme-
theoretic image ot1|QR§(. Denote this reduced closed subschemegj)j;? (4, 0). Now
qIOR% : QRS — QUL (4,0) is a principal PGL(n, k)-bundle since it is the base-
change of; : PR5, —> PU} (4, 0) to QU3 (4, 0). This proves (2). We are left with step
(C): the determination ok (4, 0) as an open subscheme@t/; (4, 0).

PROPOSITION 6.9

The subset of poinfgV, A)] € Pu§(4, 0) such thatEnd(V) = M (2, k) is the set of
closed points of alocally closed subschexi4, 0) and the morphisrgy, : U5 (2, 0) —>
Pu§(4, 0) of Proposition6.6factors through/\/)f 4,0).

Proof. By the standard theorem on cohomology and base-change, part (1) of Proposi-
tion 6.8 implies that the coherent sheaf

A= (pggs) (End(VIQRY x X))

on QR islocally free of rank 4. It has the natural structure of a sheaf of assoo@g\@( -
algebras with identity. IW € U3 (2, 0), then [W & W, A(W))] € PU5(4,0) (this is a
point of the set-theoretic image pj). Further, EndW @& W) = M (2, k) sinceW is stable.
So by the relevant analogue of Proposition 3.8maximal open subscheW&Ri of QR§(
restricted to whictd is a sheaf of Azumay@NR§ -algebras. By part (2) of Proposition 6.8,
the topological image dVR;V( underq|QR§( determines an open subschem’é(4, 0) of
QU5 (4,0) andg|N RS, : NRS — N3 (4,0) is a principalP G L(n, k)-bundle. By part
(2) of Proposition 6.6, it is clear that the topological map underlgiéﬁgactors through
N§(4, 0), and sincéj}S((Z, 0 andQZ/{f( (4, 0) are reduced, this morphism indeed factors
through\'§ (4, 0). Q.E.D.

Integrality of N’ (4, 0)

PROPOSITION 6.10

The morphisngs : U3 (2,00 — N3 (4, 0) of Proposition6.9is bijective onk-valued
points for each algebraically closed extension figld k. Sincebl;? (2,0) isirreducible
it therefore follows tha.t\f;?(4, 0) is an integral scheme of finite type.
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The proof of the above depends on the following crucial result of Seshadri:
Theorem 6.11 (Props 3—4, [16])

(a) LetK be any algebraically closed extensionkgaind let(V, A) € PV;? 4,0)(K)
suchthatimg (End(V)) = 4. Consider the canonical representatiortafd(V) on
the fiberVp, of V at Px € Xg(K) = (X ® K)(K), wherePk is the base-change
of P € X(k) to K. (As noted earlier(V, A) € PV§ (4,0) = V € V{5 (4,0).
Therefore this canonical representation is faithflhen we havg1)this represen-
tation can be identified with the dual of the right regular representatidarai V)
and (2) the structure group of the principal bundRx(V) of V may be identified
with Aut(Vp, ), and via the above representation®fid(V), the structure group
of this principal bundle can be reduced to the opposite group of the group of units
in End(V).

(b) When properly formulatedall the above results remain true for families
parametrized byspe&R) whereR is a complete noetherian locatalgebra with
residue fieldk.

We briefly indicate Wh){zs is surjective on geometric points. L&Y, A)] € N§(4, 0)(K)
where K is any algebraically closed extension /af By the definition ofN)§(4, 0) it
follows that EndV) = M (2, K) — the algebra of2 x 2)-matrices oveK. Applying (a)

of Theorem 6.11, we get that the representation of(Ruton Vp, is equivalent to the
diagonal representation of G2, K) in GL(4, K). Further applying (b) of Theorem 6.11,
we see that there exists a principal Ady = GL(2, K)-bundle from which the principal
bundle obtained by extension of structure group to(Xgf ) is Pr(V). This means that
J a rank 2 degree zero bundié on X such thatV = W @ W. But sinceV is semi-
stable, the same must be true Wf Further, if W is not stable, then it contains a line
sub-bundleL of degree zero, which implies th&t contains a sub-bundle isomorphic to
L & L from which one can prove thaV, A) cannot be parabolic semi-stable. Now by the
analogue of Proposition 6.4 fafx, 3 A’ such thaiW & W, A') € PV;EK(4, 0). By part
(2) of Proposition 6.6, it follows thagy ((W]) = [(W & W, A")]. Let (W & W, A") €
PV§K (4, 0) be the parabolic stable bundle induced by an isomorphis®& W @& W
from (V, A). By the analogue of (2) of Proposition 6.4 &y, (W & W, A") = (W &
W, A”). This implies that (V, A)] is the image of W] under¢y. Thus¢s is indeed
surjective.

6.2 Generic smoothness and birationality

For a moment, we revert to the notations of §3 of A: taking there the base scheme to be
Speck), andW the four-dimensional vector space correspondingteandw € W any
non-zero vector, and denoting lo-Sp-Azuy, and Idw-Azuyy in this case respectively by
Id-w-Sp-Azu,, and Idw-Azuy, from (3a) of Theorem 3.8 we get that ld-Sp-Azyy, =

A} and is exactly the reduced closed subscheme structure on the closure of the
Staliw)-orbit Id-w-Azuy of (2 x 2)-matrix algebra structures dif with multiplicative
identity w.

Lemma6.12. Onld-w-Sp-Azu,, 3 anatural sheaB] of associative algebras with identity
whose underlying module is free of radiland which is universeresp. locally universal
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for sheavest of associative)r-algebras with identity on integrdl-schemeg’ satisfying
the following properties(1) the module underlying is free(resp. locally fre¢ of rank4,
and(2)3 a pointr € T (k) such that the fibef; atr of F is isomorphic to 42 x 2)-matrix
algebra overk.

To prove the above, we may without loss of generality assumeZhast free, and
with the notations of the proof of Theorem 3.4, we see that one may gk be
(By|ld-w-Sp-Azwy,). Continuing with the above notations, let € Id-w-Azuy be a
closed point and leR, be the completion of the local ring at that point. lli;(tu be the
algebra induced by, over R,. If m, is the maximal ideal oRR,, then by the defini-
tion of Id-w-Azuy, one has thaB,fya/(maB,’g,a) can be identified with thé2 x 2)-matrix
algebra structure ovér corresponding to the poiat € Id-w-Azuy . SinceRr, is a com-
plete local ring, this implies by property (6) of Proposition 3.2 tﬁgg can be identified
with the (2 x 2)-matrix algebra structure ove®, corresponding to the natural morphism
SpecR,) —> ld-w-Azuy. So if p, denotes the dual of the right regular representa-
tion of B,Za, thenp, may be identified with the dual of the right regular representation
of M(2, R,). But for this latter representation, one observes tha&,if—> K is any
k-homomorphism into any algebraically closed extension fieldf k, then the induced
representation is equivalent to the diagonal representatiof(@f K) in M (4, K). Now
Id-w-Sp-Azu,, is a variety, so its complete local rings are reduced, and hence the above
observation implies the following result:

Lemma6.13. The above representatign is equivalent to the diagonal representation of
M (2, Ry) in M(4, Ry,).

The above lemma will be applied in the proof of the following proposition.

PROPOSITION 6.14

Let A be a complete noetherian locklalgebra with residue field. Then the canonical
map

Mor (Sped, U3 (2, 0)) —> Mor,(Spedt, N3 (4,0) : fr— oo f
is surjective, Wherezs is the morphism of Propositio.9.

Proof. Special Case: Firstassume this reducedStart withg € Mory (Spec4,/\/)§(4, 0)).
Sinceg|NR% : NRY —> N3(4,0) is a principal PGL(n, k)-bundle (see proof of
Proposition 6.9)¢ lifts to ¢’ € Mor(Sped, NR)S(). Let (V 4, Dy4) be the pull back to
X4 = X x Sped, of the restriction of the locally universal family/, D) (recalled

before Proposition 6.8) t& x N R$, via the morphisnildy x g').

Let A4 be the algebra corresponding to the pullbackg/i#o Spect of the sheaf of
Azumaya aIgebra.SllNR)S( introduced in the proof of Proposition 6.9. SiW§(4, 0)is
integral, and sincq|NR§( is a principalP G L(n, k)-bundle,NR;g( is also integral. Hence
by Lemma 6.12A|NR§( is locally isomorphic to a pullback @/ |ld-w-Azuy . Therefore,
it follows from Lemma 6.13 above that the dual of the right regular representatidn of
is equivalent to the diagonal representatiodtf2, A) in M (4, A).
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Let PnV4) denote the principal bundle &f 4. Identify the structure group of this
principal bundle with Aug(A4). By (b), Theorem 6.11, this structure group may be
reduced, via the representation4f of the previous paragraph, to the opposite group of
the group of units ind4. But as seen in the previous paragraph, this is equivalent to the
diagonal embedding of GR, A) in GL(4, A). Thus3 a rank 2 vector bundlé/ 4 on X 4
suchthatWW 4 @ W4 = Vy.

SinceV 4 is a family in V{5 (4, 0), W is a family in V§5(2, 0). It follows from the
fact that(V 4, D,) is parabolic stable that/ 4 is a family in V§ (2,0). We now use the
following facts abouu)sf (2, 0) from [15]: the integral smooth open subschem?s(z 0)
of u§5(2, 0) is the geometric quotient under a free actionPai L (m, k) (for a suitable
m) on an integral smooth open subscheﬁ’% of a certain Grothendieck Quot scheme.
There is a locally universal familyV of vector bundles orX in V;E (2, 0) parametrized
by R§ which is tautological in the sense thayif : R§ — U3 (2, 0) is the geometric
guotient morphism and i#V, is defined to be the base-changelWfto a closed point
r . Speck) —> Ry, then after identifyingX x, Speck) with X, g2(r) = [W;]. Now
L{)S((Z, 0) has the universal mapping property for families of rank 2 degree zero stable
bundles, so one gets a morphigine Mor(Sped, u,S( (2,0)). The proof of the present
proposition will follow if one shows tha@ZS o f = g. Sinceqs is a smooth morphism,

f factors throughyz, i.e.,3 ' € Mor,(Sped, R)S() suchthag,o f' = f. Letr € R§
be a closed point above the image of the closed poinyvighenW 4 & W 4 inherits the
structure of a familyW 4 & W 4, A,) in PV)S( (4, 0) parametrized by Specvia f’ from
the family W @ W|X x US, D(W)) given by the following result (whose proof involves
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an application of Nakayama'’s lemma and the fact that parabolic semi-stability is an open
condition on the parameter space).

Lemmab.15. Let W € V5 (2,0) and letr be a closed point oR3 such thatga(r) =
[W] = [W,]. LetA(W,) be given by1), Proposition6.4such thatW, @ W,, AW,)) €
PV)S( (4, 0). ThenA(W,) can be extended to give a famil)V) of parabolic structures in
PV)S( (4, 0) parametrized by a suitable open neighborhagtof r such that the underlying
family inV$5(4, 0) is W & W)|X x US.

Because of the local universality of the family, D) on PR3, and becaus&?;? (2,0)is
reduced, the compositiaj o g- factors locally througly : NR3, — N3 (4,0), i.e., one
has a morphisry” from a suitable neighborhood efnto NRf( suchthay o = ;25 0q>.

The pullbacks of the familyV, D) via ¢/ o f' andg’ are isomorphic as families in
PV§(4, 0) because of the isomorphiswi4 & W4 = V4 and (3) of Proposition 6.4. So
the morphismg;,’ o f" andg’ differ by an A-valued point of PG L(n, k) — here the fact
thatg|NRS, : NRY —> N3 (4, 0) is a principalPGL(n, k)-bundle is used. This means
thatgo¢/ o f'=qog = (Soqeof =g = (5o f = g. Thisfinishes off the
proof of the present proposition for the case wiieis reduced.

Proof of Propositior6.14for arbitrary A. Again start withg € Mor (Speci, NV, )f 4,0).

Letn € N;?(4, 0) be the image of the closed point ungeiLet A,, denote the completion

of the local ring ofN§(4, 0) atn. Theng factors through Spet;, by a morphismg,,.

Note thatA,, is reduced, so by the Special Case considered for Proposition 6.14, one gets
¢, € Mor,(Sped,,, U)S{(Z, 0)) such thatzs o ¢, is the canonical morphism from Spég
intoN§(4, 0). Now one needs to just take := ¢, o g,. Q.E.D. for Prop. 6.14

PROPOSITION 6.16

Let/\/}f(4, 0)’ be the non-empty dense open subscheme of smooth poMfs(QfO) and
let&/$ (2, 0)’ be the open subschemelgf (2, 0) given by the inverse image 4f; (4, 0)'

under the morphisngzs of Proposition6.9. Then;zs restricted toL{}Sf(Z, 0)’ is a smooth
morphism.

Proof. Sincebt;?(z, 0) is smooth, by Proposition 10.4 of Chap. Il of Hartshorne’s book
‘Algebraic Geometry’, it is enough to prove that the diﬁerentia@fat each closed point

of u;j (2, 0Y is surjective. But this follows by applying the previous proposition to the case
A = k[£]/(¢?) and remembering tha§ is topologically an injective map. Q.E.D.

Theorem 6.17. The bijective morphisigy, : U3 (2, 0) —> N3 (4, 0) is an isomorphism
over the smooth locus’} (4, 0) of N5 (4, 0).

The proof essentially follows from the generic smoothnes,gq'tjst seen and the fact
that a bijective etale morphism is an isomorphism.

6.3 Smoothness of the limiting scheme

Recall from (2), Proposition 6.8, that: QR;S( — Qu§(4, 0) is a principalPG L (n, k)-

bundle and hence so df’,NRf( : NR§( — N§(4, 0) (see the proof of Proposition 6.9).

Let NRx denote the canonical reduced induced closed subscheme structure on the clo-
sure of NRS, in QRS (or in PRY). Sinceq : NR5 —> N3}(4,0) is a principal
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PGL(n, k)-bundle and since\/)f(4, 0)is integraI,NRf( and henceVRy are also inte-

gral. LetNy (4, 0) denote the canonical reduced induced closed subscheme structure on
the closure of\V§ (4, 0) in QU5 (4, 0) (or in PUZ (4, 0)). SinceN (4, 0) is integral, so is
Nx(4,0).

Theorem 6.18. The local ring ofN Ry at each closed point is regular.

The proof will be divided into several steps.

Step 1: Lifting Criterion.Let A,, be the completion of the local ring &f Rx at a closed
point n. It is enough to show thad,, is regular. For this, it is enough to prove that the
canonical map

Mor (Sped®, Sped,,) — Mor,(Spedio, Sped,) : g— goig

is surjective for any closed immersion Smwg Speci whereAg, A are finite dimen-
sional localk-algebras with residue field

Step 2: The familyVo, Dg). Start with gg € Mor,(Spedo, Sped,) and let the
composition of go with the canonical map Spag — NRx be denotedg; €
Mor (Specio, N Ry). Recall that3 a locally universal family(V, D) parametrized by
PR§(. Let (Vg, Do) be the induced family parametrized by Sggwia the composition
of g6 with the closed immersioVRy C PRf(.

Step 3: The morphisnfy : Specdo —> SpedR,. By the definition onRi (see part (1)
of Proposition 6.8), one gets a locally free rank 4 shdadf associative algebras with
identity onQ R%, by the descent of the sheitd (V| QRS x X). Let By be theAo-algebra
corresponding to the sheaf induced by the shéa¥ Rx via g;. SinceN Ry is integral
and is the closure oNRi, by Lemma 6.12A|N Ry is locally isomorphic to the base-
change of3] by a morphism from a neighborhood of(in NRx) into Id-w-Sp-Azu,.
Hence3d a morphismfp : Speclg — Spedr,, where fp(closed point = « is a closed
point of Id-w-Sp-Azuy, andR, is the completion of the local ring of ld~Sp-Azuy, ata,
such that the algebrBo = B, ®r, Ao WhereB, is the R,-algebra induced b} .

SpecA,) PRS

io N f!
— SpegAg) —— > SpegA) ———— Spe¢Rr))

fo f

SpeaR,)



Limits of Azumaya algebras and desingularization 517

Step 4: Extension ofp to f : Specd — Spe®®,. Since ldw-Sp-Azyy = A,? (see the
beginning of §6.2)R, is a regular local ring. Thereforg lifts to an f as required. If
B := B, ®@r, A, then clearlyBo = B ®4 Ao.

Step 5: Factorization of via a closed immersiony itself may not be a closed immersion,
but it lifts to a closed immersioff’ : Specd — Spe@®),, R, ‘= Ry[[Y1, ... Yn]] for a
suitablem < dim(A). Note that sinceRr, is regular, so iR),. Let B, := B, Qg, R,,.
Note thatB, @z, A = B andB; ®g: Ao = Bo.

Step 6: The familyV,, D,). One chooses aR,-basis for the free rank 4 algebBy and
thus gets bases fa&,, B andBy respectively over,, A andAg. Therefore, the alge-
bras of endomorphisms of the underlying modulesBgr B andBo respectively over
R!, A andAg are identified with the matrix algebra$(4, R)), M (4, A) andM (4, Ao).
Consider the duals of the right regular representationsBpf B andBg. Now if
H/, H and Ho respectively denote the opposite groups to the groups of(BfjiS , B> and
Bo*, then the images of these groups are naturally identified as subgroups of
GL(4, R)), GL(4, A) and GL(4, Ag).

By part (b), Theorem 6.11, the structure group(&LAg) of the principal bundle R¥ o)
of Vg can be reduced tHy. Now sinceAg is an artinian quotient of the complete noetherian
local k-algebrar),, by Lemma 1 of §5 of [16], the principaip-bundle P¢V) extends to
a principalH,-bundle. LetV, be the vector bundle ok x Spe/, of rank 4 gotten from
this principal H,-bundle by the canonical representationHjf via the dual of the right
regular representation &,. Then clearlyV, ®g; Ao = Vo. The parabolic structure

Dy € I'(Specio, P((Vo)p,))
on Vg extends to a parabolic structure
D, € T(Spe®,, P((Va)p,))

onV, becauser) is local and because projective spaces are smooth. Pere {P} x
Specip = Specip and a similar definition holds foP,. Now at the closed point, the
corresponding member of the family,, D,) is parabolic stable, and so the base being
local, the family itself is parabolic stable.

Step 7: The morphisgl : Spe?/, — NRyx. Since(V, D) is locally universal, one gets
a morphismg” : Spe®/, — PR3 such that the family induced vig!’ from (V, D)

is isomorphic to(V,, D,). One sees as follows that the morphigfhfactors through a
morphismg’ into NRx. Now a in |d-w-Sp-Azuy, is a specialization of2 x 2)-matrix
algebras. So if Spé&’) — Spea, is the generic point theB;, g K = M (2, K) and
henceH ®r, K = GL(2, K). But this means that the base-charigé),) x of (V), to
SpecK) splits as a direct sutW) ¢ @ (W) ¢ of stable rank 2 degree zero vector bundles
on Xg. Hence End(V)g) = M (2, K) which implies by the definition oNR§( that the
composite map

Spe¢k) —> Spe®, <> PR
factors throughNRf(. But Spe¢K) — SpecR),) being the generic point, this means

that the topological image @f’ lands insideV Ry = N R$,. Now sinceR/, is reducedg”
factors through a morphisgf : Spe®®/, — NRx.
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Step 8: The lifting o to a morphisny : Specd — Sped,,. Letip denote the closed
immersion of Spedg into Spea. Theng’o f” o ig andgg both induce isomorphic families
on X x Specg from (V, D) sinceV, andD, were extended fronWo andDg. Hence
these two morphisms differ by ady-valued pointig of PGL(n, k):

Xo- (g o f'oig) = g

Now sinceP G L(n, k) is smoothg lifts to an R/, -valued point,. Let 14 be theA-valued
point of PGL(n, k) induced by), and letg := 14 - (¢’ o /). Then one has by the very
definition of an action (the action dtGL(n, k) on N Ry) that

floGa-8)=2a-( of) = goio=(a-(g o f))oio
=Jo- (¢ o f'oio) = g

The images of the closed point of Speeunderg( andg o ig are one and the same point
n € NRx(k). But sinceA is completeg factors through a morphism : Spect —
Sped,,. Now it is easy to check thatlifts gg using the following simple result:

Lemmab.19. Let B be a noetherian domajip C B a prime ideaj and f gring homo-
morphisms froan into a complete noetherian local rm@ Thenf|B =g|B=> f =3.

Thus the proof of Theorem 6.18 is established.

COROLLARY 6.20

NRy and N (4,0) are smooth, and the morphisyy : ¢5(2,0) — N$(4,0) is an
isomorphism.

Proof. NRy is an integral scheme of finite type and hence is smooth by Theorem 6.18.
Nowgq : QRS — QU3 (4,0) is a principalP GL(n, k)-bundle and hencgis a smooth
surjective morphism. Hence

g WNx(4,0) = ¢ NE(4,0) = g7 LN (4,0) = NRy = NRy.

Thisimpliesthat; : NRy — Nx (4, 0)isalso a principaP G L (n, k)-bundle. Therefore,
N Ry is smooth iff NV (4, 0) is smooth. But as we just saw,Ry is smooth. From these
and Theorem 6.17, it follows thag is an isomorphism. Q.E.D.

6.4 The Seshadri Desingularization

In the following, the isomorphisrﬂ;zs)_l : N3 (4,0) = U$ (2, 0) is extended to a desingu-
larizationmy : Ny (4,0) — u,S(S (2, 0). We first show the existence of a natural surjective
mapm(k) : Nx (4, 0)(k) — U35 (2, 0)(k). This will be done in 4 steps.

Step 1: The morphism : Nx(4,0) — Z/{)S(S(4, 0). For the locally universal family
(V,D)in PV}S( (4, 0) parametrized b)PRi, the underlying family of vector bundlésis

a family of semi-stable vector bundles, i.e., a familg&¥ (4, 0). Since/5* (4, 0) has the
universal mapping property for families of rank 4 degree zero semi-stable vector bundles,
one gets a morphism; : PRY — U3°(4,0). Since this morphism i®GL(n, k)-
invariant and sinc@®y (4, 0) is a geometric quotient d? R, underP G L(n, k), 7} goes
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down to a morphisnx; : PUy (4,00 — U35 (4, 0) which is given on closed points
by [(V, D)] — [V]. Let 71 denote the composition of; with the canonical closed
immersionN (4, 0) C PU3 (4, 0).

Since Nx (4, 0) is projective (becaus@u§(4, 0) is projective),r is proper, hence
closed. FurtheNx (4, 0) is reduced, sar; is surjective onto its scheme-theoretic image
which is the same as its topological image (a closed set) given the canonical reduced
induced closed subscheme structureM%m, 0) is an open dense subset® (4, 0),

(N5 (4,0)) is a dense subset ity (Nx (4, 0)).

Step 2: The morphismy : U35(2,0) —> U35 (4,0). The association
U (2,0)(k) —> US(4,0)(k) : [W] — [W @ W]

is the underlying map on closed points of a morphigm 435(2,00 — U5 (4,0).

The topological map underlying this morphism is injective because of the Jordédet

theorem for the category of semi-stable vector bundles of degree zefdsee [15]).
Sincel/§5(2, 0) is projective g1 is proper, hence closed. Furthiég (2, 0) is reduced,

S0g1 is surjective ontoits scheme-theoreticimage which is the same asits topological image

(aclosed set) given the canonical reduced induced closed subscheme strudMir(éZ,AB

is an open dense subset@f® (2, 0), g1 (U3 (2, 0)) is a dense subset ;i (U3 (2, 0)).

Step 3: The map> : Nx (4, 0) — U35 (2,0). By the definition of the isomorphisigy
(Prop. 6.6), one sees that

Moty = g11Uy(2,0).

Thereforegl(u)s( (2,0) = nl(/\/)f(4, 0)). Therefore by Steps 1 and 2 above

g1(UP(2,00) = g1(US(2,0)) = T (N5 (4,0) = 11 (Nx (4, 0)).

Now sincegs is injective as noted in Step 2 above, there is a well-defined set-theoretic map
72(k) = (g1(k)) " om1(k) where for a morphisnf, f (k) is used to denote the underlying
map on closed points.

Note thatr,(k) is surjective by construction. This implies in particular thatWf] e
uﬁs(z, 0) then there is a representatiVe of [W & W] such that3 a parabolic stable
structureA on'V.

Step 4: The isomorphism; : N§(4,0) — U5 (2,0). Sincerny o & = g11U5(2,0),
g1 is injective and;zs is an isomorphism, one has by the very definitionrefk) that its
restriction toy (4, 0)(k) is the inverse ot 5 (k). Therefore (k) | N3 (4, 0)(k) is the

underlying map on closed points of the isomorphisgﬁ = (;f)_l. Thus we get the
following

PROPOSITION 6.21
There exists a surjective set-theoretic map
m2(k) : Nx (4, 0)(k) — U (2,0)(k)

such thatits restriction trN)f (4, 0)(k) is the underlying map on closed points of the inverse
(denoted byrs) of the isomorphisng; of Corollary 6.20
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Theorem 6.22. The isomorphismzs of Propositior6.21extends to a surjective morphism
72t Nx(4,0) — U5 (2, 0) whose underlying map on closed pointsrigk). Further
w2 is a desingularization oﬂ}S{S(Z, 0) and is an isomorphism over the smooth locus below.

Proof. Assume that a surjective morphism exists as in the first statment of the theorem.
By Corollary 6.20 N (4, 0) is smooth. Further it is already projective, since it is a closed
subscheme of the projective scheﬁi&;ﬁ (4, 0). Thereforer; is a proper morphism. Since
its restriction toA/} (4, 0) is the isomorphisnxs, it is indeed a desingularization. The
fact aboutr, being an isomorphism over the smooth points below is a consequence of the
‘connectedness-version’ of Zariski’s Main Theorem. So we only have to prove the first
statement of the theorem.

We note that it is enough to show thaj extends to a morphisan, whose underlying
map on closed points ig (k); for then sinceVy (4, 0) is projective T will be proper, and
sincer2(k) is surjective andl;? (2, 0) is a variety, this will imply thatr; is surjective.

One continues to use the notations introduced in the discussion preceding Proposi-
tion 6.21. To begin with, consider the set-theoretic grapok):

Ty = {(n,m) € Nx(4,0) x U*(2,0) | m2(k)(n) = m}.
Then one sees clearly that
(Idary 4,00 % 21 Tyt = Crpiy-

ThusT 4, is the set of closed points of the reduced closed subscheme

-1
Fnz = (Ide(4,0) X gl) (Fﬂl)

of Nx(4,0) x Ug%(2,0). Let p1 and p2 from Nx (4, 0) x U5 (2, 0) into Nx (4, 0) and
U5 (2, 0) respectively denote the canonical projections. SH¢e(2, 0) is projective, the
morphismpy is proper. Hence its restriction to the closed subschEmes also proper.
Further, this morphism is bijective on closed points and is birational sip@e |J\/,§ 4,0

is the underlying map of the isomorphisry = (¢5)~L. But by Corollary 6.20\x (4, 0)

is smooth, in particular normal, and hence by Zariski's Main Theorem, the morphism

Pl 1 Try — Nx(4,0)
is an isomorphism, showing that the morphism

w2 1= p20 (1) H i Nx (4,00 — U (2,0)
extendsrs, as required. Q.E.D.
6.5 On the Seshadri desingularization over a general base

For this part, letR be a normal integral domain which is a universally Japanese (Nagata)
ring. For details on such rings see 87.2. Bébe a complete smooth curve owRr i.e.,

one is given a proper, smooth, finite-type morphi&m— SpegR) such that for every
geometric point Spe&) — SpegR), the K-schemeYy := X' xspeer) Spe¢k) is an
integral, separated scheme of dimension one.
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By a semi-stabldresp.stable vector bundle onX” of rankn and degreel is meant a
locally-free sheaf of) y-modules’ on X’ such that for every geometric point Sp&0 —
SpecR), V ®r K is a semi-stable (resp. stable) locally-free sheaftgnof rank»n and
degreed. Using Seshadri's Geometric Invariant Theory over general base [18], one can
construct a moduli spadéis(n, d) for semi-stable vector bundles oti of rankn and
degreed. Thisuis (n, d) turns out to be a propdt-scheme. Again by using [18], one can
construct a proper moduli scheme ovefor parabolic semi-stable vector bundles&n
of fixed rank and degree and fixed types of parabolic structures given at a finite number
of R-valued points oft” over R, generalizing the construction of Mehta—Seshadri [11].
Using the smoothness of kd-Sp-Azu,, over Spe¢R) (Theorem 3.8), and the techniques
of Seshadri [18], one can construct a profescheme\y (4, 0) which is smooth over
SpecR), along with a birational, surjective, propRrmorphism

MMy : Nx (4,00 — U3 (2,0)

i.e., a desingularization @1;5(2, 0) over SpecR). Further, one can show that, when the
moduli spacéj)sf(z, 0) has geometrically reduced fibers overthe above desingular-
ization specializes well. The proofs of all these assertions shall appear in a forthcoming
paper [21].

7. Application 2: Existence of the Nori desingularization over a general base

Introduction. This section uses Seshadri’'s Geometric Invariant Theory over a general base
[18] and a theorem of Donkin [4] to extend the construction @fschemeV 7y of Nori
(Appendix, [16]) to a normal domaiR which is a universally Japanese (Nagata) ring.
The existence and smoothness of the scheme of limits of Azumaya algebra structures on a
fixed moduleW free of rank 4 oveR (Theorem 3.8) is used to show that the construction
V2, r) is a desingularization of the Artin moduli spagg gy of R{X1, ... , X,}-modules

of rank 2 overR for g > 2. It is also shown that this desingularization specializes well

to the analogous desingularization over any algebraically closed field which is alkso an
algebra, provided the Artin moduli space has geometrically reduced fibers. This happens for
example whemk = Z by the work of Donkin [4]. In particular, one gets desingularizations
over fields of characteristic 2 (for algebraically closed fields of efiathe existence of

such a desingularization follows from [16]).

Nori’s method is based on that of Seshadri's which was used for desingularizing
uﬁs (2,0). The latter was shown in the previous section to extend to characteristic 2
and in fact in a characteristic-free manner. No#'schemeV 2 7y comes along with a
canonical morphisnV 2 zy — Z(2,7z, which is a desingularization provided one shows
the existence of a canonicélsmoothZ-scheme structure on the space of those limits of
Azumaya algebra structures on a fixed feenodule of rank 4, for which multiplicative
identities exist. This follows as a special case of the more general result proved in A for a
vector bundle of rank 4 over any base scheme.

In 87.1, preliminaries on Artin moduli spaces, Nagata rings and on Seshadri's Geometric
Invariant Theory over such rings are recalled. In §7.2, the construction of NorZoiger
extended and the candidate for the desingularization is defined. In §7.3, the birationality of
this candidate with the smooth locus of the relevant Artin moduli scheme is shown. Finally
in 8§7.4, the desingularization is established and its specialization properties are studied.
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7.1 Artin moduli schemes, Nagata rings and Seshadri's GIT over general base

To begin with, one extends the definition of the Artin moduli spagez, (cf. [1]).
DEFINITION 7.1

Let n, g be integers> 2. Let R be a noetherian commutative ring with 1. M, z)®
be theg-fold product of theRr-affine R-schemeM, g of (n x n)-matrices and consider
the action of the general linear groupsche@ig,, gy on M, z)® given by ‘simultaneous
conjugation’. LetB,, ) be the ring of invariants; thefi, r) := Spe¢B, r)).

Recal 7.2 (Factsabou Nagatarings). Thestandad refereneisChap 12 of Matsumurés
book [10]. An integral domaim is said to satisfy condition N-1 if its integral closure
Ak in its quotient fieldK is a finite A-module. It is said to satisfy condition N-2 if for
every finite extension field. /K, the integral closurei; of A in L is a finite A-module.
The properties N-1 and N-2 are preserved under localization and=Ns2 N-1 whereas
noetherianness with N-I= N-2 only in char. 0; there exists an example of Akizuki
of a noetherian domain of positive char. which is not N-1. A commutative Bnig
called aNagataring (pseudo-geometriéng in Nagata’s own terminology andiversally
Japaneseing in Grothendieck’s) if it is noetherian amgl/p is N-2 for each prime of

B. Every localization ofB and every finitely generated (commutativ&algebra are then
also Nagata, and complete noetherian local rings are Nagata as well. Dedekinds domains
of char. 0 such a% are Nagata.

The next theorem which gives the basic facts abfyitz) is a direct application of
Seshadri's Geometric Invariant Theory over a general base (see Theorem 3, [18]).

Theorem 7.3. The canonical morphisiM, z)* — Z(, r) is Submersive and surjective.

In fact, for every algebraically closed fiel& which is also ankR-algebra the induced map

on K -valued points is just the set-theoretic quotient map by the ‘orbit closure intersection
equivalence’ onM, g)® ®r K)(K). Further this morphism is a uniform categorical
quotient(which means it base-changes well under flat base extensioseover if R is

a universally Japanes@Nagatg ring, thenZ, gy is a scheme of finite type over

Remak 7.4

(1) The categorical quotient property of the above theorem implies thatisf an S-
algebra, then one has a unique morphisg sy such that the following diagram
commutes:

Mu.g)® —— M@,5°%) ®s R

l J(base—chg fron®)

%(n,R,S)

Zu,rpy ——> Zus Qs R

If further R’ is anR-algebra, then one gets the following commutative diagram

Mu.ry® —— Mur®) ® R ———

l l(base-chg fronR)
%(n,R',R) an,R,$)ORR’
Zory ——> (Zur)®r R ————
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Mu.ry® —— (Mu.5)%) ®s R) ®r R’ = (M(y.5)%) ®s R’

l l(base-chg fron®)

%n,R',R)

Ziwry —— (Zn,s) @s R) ®r R' = Z(n,5) s R’
and the unigueness of the morphieg, z/ s) implies the equality

o r.5) = @R, 5) Qr R) 0 d(n. g’ R)-

(2) From Theorem 7.3, it follows that the topological map underlyingg, sy of (1) above
is bijective — in fact even bijective oh-valued points for each algebraically closed
field L which is also arR-algebra.

(3) The uniformity of the categorical quotient of the above theorem implies that When
is a flatS-algebra, then the base-change of the categorical quotientSogeslso a
categorical quotient oveR, and so the morphism, z s) of (1) above must be an
isomorphism.

Theorem 7.5 ([4], 83). Let K be an algelraically closdl field. Then the uniform cate-
gorical quotientM, z,® — Z,.z) of Theoren¥.3 specializes well at geometric points
that is the morphism, x 7z of (1) of Remarks .4is an isomorphism.

Note: From now on, the value of the integer> 2 is fixed.

Remark7.6. For any commutativ®-algebraS with 1 letAg := S{X1, ..., X} be the
non-commuting polynomial algebra ov&lin g indeterminates. Consider ax-module
M which is free of rank: overS. If an S-basis{es, ... , ¢,} is chosen foM, so that one
has an identificatio = §9", then thed s-module structure oM defines am g-module
structure ors”, which is equivalent to prescribinggatuple of(n x n)-matrices with entries
in S, i.e., anS-valued point oM, g)¢. If another identificatiods = S" is chosen, thenthe
corresponding new-valued point oM, )¢ isinthe GL(n, S) = GL,,g)(S)-orbit of the
previous one, where the action of GL,. S) on M (n, $)¢ = M, g% (S) is by simultaneous
conjugation. Therefore upto this actial,(n, S)8 parametrizes pair&éM, {e1, ... , e,})
whereM is anAg-module withS-basis{es, ... , e, }. Hence the moduli for such modules
is given by the categorical quotient, g, as defined above.

Before proceeding, one needs to know about what happens to the geometric points of
M, r)® corresponding to simple modules in the light of the above remark. To this end,
one has the following elementary lemma:

Lemnma 7.7

(1) Letx be a point of the topological spad®, z)*| underlyingM, g)¢ with the
property that ifK is an algebraic closure of the residue fialdr) of M, ) atx,
then theg-tuple of matrices inM (n, K) to whichx corresponds makek” into a
simple(K ® g Ag)-module. Then this property sfis independent of the choice of
K. In particular the subset(M, g *)*| C M. r)®| consisting of such pointsis
well-defined.

(2) Inthe above definition, the phrase Kf is an algebraic closure of’ may be replaced
by ‘if K is some algebraically closed extension field of’ or byKifis any alge-
braically closed extension field of’ or further by & is any extension field of’.
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(3) The property required aof in property(1) of Lemmar.7 is also equivalent to the
following one ‘for every extension fiel& of «(x), the canonical magK ®z
AR) — M, K) = Endg (K") is surjective.

The proofs of properties (2) and (3) of Lemma 7.7 require Burnside’s theorem.
DEFINITION 7.8

For eachr-algebra$S (which is commutative with 1), letM, z)*)*(S) C (M@, r)%)(S)
consist of those elements df(n, )8 for which the canonical map d¢f-algebrasds —>
M (n, S) is surjective.

The above definition gives a subfunctor of (the functor of pointvgf) ) in view of
the right-exactness of tensor product. In fact one has the following elementary result as an
application of Nakayama'’s lemma.

Lemmar.9. LetS be a noetherian commutative ring withandy : S{Xq, ..., X,} —

M (n, ) anS-algebrahomomorphism. L&ty C |SpecsS)| be the subset of the topological
space underlyingpecsS) consisting of prime ideals such thaty ®g « (p) is surjective.

Then the subséts is open and thus acquires the canonical structure of an open subscheme.
The subfunctoM, g)¢)* of the above definition is opene, it is represented by an
open subscheme bf, z)®. This open subscheme will also be denoted\y, )%)*. The
subset(M,, r)®)*| of (1) of the previous lemma is indeed the topological space underlying
this open subscheme and therefore the canonical open imme&Mipmn)$)* < M, r)®
base-changes well.

Theorem 7.10 ([1]). When K is an algelraically closel field, the action of PGL (, k)

on (M, x)®)* is scheme-theoretically freso thatZ, k)* is a geometric quotient under

a free action. This geometric quotieRt, k)* is the smooth open subschemeZgf i,

and its set ofL.-valued points corresponds to the set of isomorphism classes of simple
Ap = L{X31,..., Xg}-modules of dimension over L, for each algebraically closed
extension field. of K. Further, the set ofL-valued points o, k) can be identified
canonically with the set of equivalence classesAgfmodules of dimension over L
under the equivalenc® ~ M’ iff gr(M) = gr(M’) wheregr(M) denotes the associated
graded moduled/_} (M;11/M;) with Mo C My C --- C M, = M a Jordan—Holder
series forM.

The above results combined with Seshadri’s GIT over general base imply the following
theorem.

Theorem 7.11. The open subscherd®, )®)* of Lemmér.9is PGL, g)-invariant and

if one denotes its quotient By, g)* := (M, r)*)*/PGL, ¢, then the canonical quotient
morphismM, z)%)* — Zu,r)’ is also a quotient of the type mentioned in Theoredn
Further the open immersiofM, )%)* < M, r)® descends to give an open immersion
Z,R) = Zu,R)-

Remak 7.12

(1) WhenR is normal and integral, sindel(, * (resp.(M,, z)*)*) is also normal
and integral, it follows from geometric invariant theory tZat z) (resp.Zg, r)")
is normal and integral.
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(2) Assertions analogous to those in (1), Remark 7.4 are valigifog,* . In particular,
the diagrams we got from (1) of Remark 7.4 by repladifig. g%, Zn. r), ¢(n.R.5)
etc by(Mu. ), Zn.®)°, O‘fn,R,S) respectively are also commutative and whien
is a flatS-algebragy, 1 ¢, is an isomorphism. One also has

!
“fn,R/,S) = (O‘fn,R,S) ®r R) o a(sn,R’,R)'

Further the topological map underlyin?"R,S is bijective —in fact even bijective
on L-valued points for each algebraically closed field/hich is also arR-algebra.
Finally, the categorical quotient property o, g)° implies that the following dia-
gram is cartesian, showing tha}, ; ¢, is an affine morphism.

s %.R.5) s
Zpur) — Zwns)' ®s R
open immersioﬁ l(open imm: base-chg frois))
%n,R,S)

Z,gp) — Z@n,s) Qs R

(3) By Seshadri's GIT over general base, it can be seen that the canonical quotient
morphismM, z)%) —> Z.z)’ specializes well—infact, one has more, as we will
see in Theorem 7.37. Note that the geometric quolignky’ is = Z(,.z)’ ®z K
via O‘fn,K,Z

(4) Thus the singularities (if any) of the normal variély, g lie outside the open set
Zu k)’ . In fact, even when chék') = 0, there are singularities, so thag, z) is
not smooth ovefZ. To see this, tak&k = C andM := U35 (n, 0), the normal
projective variety of equivalence classes of semi-stable vector bundles of a fixed
rankn > 2 and degree zero on a smooth projective cufvaver K of fixed genus
g > 2 (with g > n whenn = 2). Letmg € M be the point corresponding to the
trivial vector bundle of rank. Thenmg is a singular point oM (see the beginning
of 86). An application of Luna’s Etale Slice Theorem shows that the completion
of the local ring ofM atmg is isomorphic to the completion of the local ring of
Zu. k) at the point corresponding to tigetuple of identity matrices. The aim of
the present section is to show the existence of the Nori desingularizatifyp gf
whenR is a normal Nagata domain and that it specializes well whergyey, is
geometrically reduced, and hence in particular wRega Z.

7.2 Extension of Nori’s Construction

Nori in the Appendix to [16] constructs a schekith, 7, which is a moduli for ‘mono-

genic Az-modules’, and his candidate for desingularizing z) is caught as a closed
subscheme dflilb, 7). The following shows that the analogtiéby,, ) of Hilb(, z, may

also be constructed. The role of monogenic modules here is analogous to that of parabolic
vector bundles in the previous section.

DEFINITION 7.13

Let R be a noetherian commutative ring with 1 and as before let the non-commuting poly-
nomial algebra over a ring in g indeterminates be denoted By := S{Xq1, ..., X,}.
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For any commutativeR-algebrasS with 1, let Hilb, g)(S) denote the set of isomor-
phism classes of pairéM, m) where (1) M is an Ag-module, which is locally free
of rankn as anS-module, and (2)n € M generates as Ag-module. Equivalently
Hilb,, r)(R) is the set of left ideald C Ag suchthatAg/I is locally free of rank: as an

S-module.

Nori's method of showing the representability of the funétdb, 7, also works to give
the representability dflilb(,, zy. This may be shown by the construction of a quotient of
the following functor.

DEFINITION 7.14

For each commutative-algebraS, letU, r)(S) denotethe setof tripl€d/, {eq, ... , e,},
m) where (1)M is anAg-module, (2){es, ... , e,} is a basis folM as anS-module, and
(3) M is an m-monogenicAs-module, i.e.;m € M generated/ asAg-module.

Remak 7.15

(1) Using areasoning similar to the one in Remark 7.6, one sees that for any commutative
R-algebras, the set of pointed free modules, i.e., trip(@$, {e1, ... , e,}, m) where
M is anAg-module which is free of rank as anS-module with basiges, ... , e}
andm € M, may be canonically identified with the set 8fvalued points of the
productT(, g) := M@ r)® xr A whereA’ is affinen-space overR. Moreover
two such triples are isomorphic (as pointed modules) iff the correspoisdiadued
points are in the same orbit of Gk, S). Here the action on the first factor @f, )
is the one described in Definition 7.1 while the action on the second factor is the
canonical one.

(2) Note thatU, g)(S) may also be canonically identified (functorially &) with the
set of pairg/, {e1, ... ,e,}) wherel C Ag is a left ideal such thats/I is free of
rankn as anS-module with basiges, ... , e,}.

(3) For each commutativR-algebraS, one has a canonical identification 0f,, z)(S)
with aGL,, g (S)-invariant subset of , g) (S). Moreover, this identification is func-
torial in S. Thus one gets a subfunctoy, ry — T, r). It can be checked that this
is an open subfunctor, and hencefod, ry shall also denote the op&dl, g)-
invariant subscheme df,, zy which represents it.

When the bas® = Z, the relationships between the open subsch&pe, mentioned
above, the functoHilb, 7z, of Nori and the Artin moduli spacg, z, are given in the
following result:

Theorem 7.16. (Nori, Proposition 1, [16]).For the action olGL, 7y onU, z), described
above U, z) — U,,2/GL,z) is a locally-trivial principal GL, z)-bundle. Further
Uw.z)/GL .z representdilb, 7 aqd thefirst proj.eqiorlu(n,z) — Tu.z) = M@u.2)® %
A7 — M, 7)® goes down to a projective morphigtilb, 7y — Z(,.z).

Remark7.17. Itis immediate from the above and the definitiofdb, g, thatHilb, g)
is representable over any baReand that the constructiod, gy —> Hilb(, r) base-
changes well. In particuldd(, gy —> Hilby, r) is a universal categorical quotient.
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Remark7.18. Now it will be shown that there is a projective morphisiitb, gy —
Z,ry (generalizing the case & = Z in Theorem 7.16) such that the following diagram
commutes

Unry —> Maur?®

l l

Hilb(n’R) E— Z(n,R)

where the top horizontal arrow is th8L,, g)-equivariant morphism given by the
restriction, to theGL,, g)-invariant open subscheme, g, of the canonical first pro-
jectionT(,. gy = (M@, r)® x AR) — M, r)® Which is alsoGL, g)-equivariant. Since
Uw,ry — Hilb, g) is a categorical quotient (7.17), it is clear tBa unique morphism
Hilb,, ry — Z, r) such that the above diagram commutes, so only its projectivity has to
be shown. For this, observe that the above diagram can be expanded to give the following
commutative diagram

Unry —— Mupr® —— Mu2°%) @z R

l l l(basechg fromZ)

. %, R,2)
Hilbg,ry —— Zury —— Zuz) ®z R

wherew, g z) exists by case (1), Remark 7.4, and is the unique morphism that makes the

right square commute. Again by the categorial quotient property,0ky —> Hilb(, r).

it follows that the composition of the lower horizontal arrows must be the same as the base-

change fronZ of the morphisnilb, 7y — Z(,, z) of Theorem 7.16 (where Remark 7.17

has been used to identify the base-changg td U, 7y — Hilb(, z) with U, ry —

Hilb(,, r)). But this last morphism is projective, ang, r 7, is separated. So the first lower

horizontal arrow is projective as claimed.

DEFINITION 7.19

With the notations of Definition 7.13, IeHiIb;n’R)(S) C Hilb(,, 7y (S) denote the subset
corresponding to two-sided ideals

Remak 7.20

(1) For anideall € Hl|b(n »)(5), note thatAs/1 is not only a monogeni¢-module
locally-free of ranka, but also ars-algebra which is associative and has an identity
for multiplication.

(2) Hilb, ) is a closed subfunctor dfiilo, ). So by Nori's theoremHilbj, z, is
represented by a closed subschem&@fg)/GL r). In the following, H|Ib(,, R)
(respectivelyHilb/ (.r)) Will denote both the functor as well as its representing
scheme.

DEFINITION 7.21

LetP, ) denote the restriction of the locally-trivial princip@lL ,, ry-bundleU, gy —
Uw,r)/GLx, ry = Hilbg,, g) to the closed subscherhhélb’(an) C Hilb,, gy defined above.
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Remark7.22. P, r) is a closed subscheme 0f, ) Further, by part 2 of Remark 7.15,
it is easy to see th&,, z)(S) can be identified (functorially in th&-algebraS) with the
set of pairg(/, {e1, ... ,e,}) Wherel C Agis a two-sided ideal such thats/I is free
of rankn as anS-module with basigeq, ... , e,}.

Recall from 82, theX-scheme of associative algebra structures on a fiegkctor
bundleW of rank 4 denoted by ldv-Assogy. We takeX = SpecR) andW to cor-
respond to the fre&k-module W := R®" of rankn = m? with the standard basis
and in this case we denote Alg Id-Assogy, Azuw, Sp-Azy, respectively by
Algy, ld-Assogy, Azuy, Sp-Azuy, . The smoothness of th-scheme which will even-
tually desingulariz& 2, gy will be deduced from the smoothness of Sp-fz(Theorem
3.8). As afirst step, the following relates Id-Asgoto P, ).

DEFINITION 7.23

LetS be acommutativ®-algebra. Letl, {es, ... , e,}) € P, r)(S) beasin Remark 7.22.
The associatives-algebra with identityAs/I defines an associativialgebra structure
with identity onW ®z S via the S-module isomorphisniAs/I) = W ®g S defined by
mapping theS-basis{es, ... , e,} onto the standard-basis onW @ S = R®" @z § =
S®"_In this way one gets a mapping

8n.RY(S) i P r)(S) — Id-Assogy (S).

Remak 7.24

(1) Itis clear from the above definition that, &) (S) is functorial inS, i.e., one has a
morphism ofR-schemes

gn.R) - Pm.ry — ld-Assoay.

(2) Recall thatP, gy is a locally-closedsL ,, gy-invariant subscheme of the scheme
T, r) defined in part 1 of Remark 7.15 above. Further also recall from §2 that
Id-Assogy is aGL,, gy = GLw-invariant subscheme of Ajg. Now with respect
to these actions dBL(,, ry, the morphisng,, r) above is equivariant.

Norishows inLemma 1, Appendix, [16], that the morphiggz, is a smooth morphism.
SinceP, r) base-changes well (by construction) and Id-Agsbase-changes well (§2),
and further the definition of ,, gy shows it also base-changes well, one gets the following
proposition.

PROPOSITION 7.25

g, r) IS @ smooth morphism.

Note: From now on W will denote the free modul&®* of rank 4 over R given the
standard basis.

DEFINITION 7.26

Define the schemds z), Hi2,r), V2 r). andV‘é’z’R) as per the following commutative
diagram:
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closed

Azuy N Sp-Azuy, ——— Id-Assogy

T fou

open closed
Her —— Ler —— Pap

| l l

. open closed .
2ry — Var —— Hilbypg

The top row of the above diagram is naturallyzé 4, gy = GLw-equivariant sequence
by 83.L(2 r) andH ) are respectively the base-changes of SpyAamd Azuy . Since
g4 R) 1S GL, ry-equivariant as remarked above, it follows that the middle row of the
above diagram is alsGL 4, ry-equivariant. An application of Theorem 3.9 shows that
the GlyR-equivariant closed subschemg gy descends to give a closed subscheme
V2.r). Let sz,R) denote the canonical open subscheme structure on the topologi-
cal image ofH gy in V(2,g) — this image is open sincep gy — V(o) is also

a locally-trivial principal GL4, g)-bundle and hence is a flat morphism of finite type
of noetherian schemes which is open. The canonical morpgnk, — V(&)
factors througthZ’R). The schemeV (o z) is Nori’'s candidate for a birational model
for Z(Z,Z)-

Before proceeding, we need the following result connected with Theorem 3.9.

Theorem 7.27.In addition to the hypotheses of Theor@&®, further assume thag,
t: Q< B,and f : B — T base-change well. Theh: Z — T also base-changes
well.

Proof. Let § = SpegR), R’ a commutativeR-algebra with 1, andd’ := SpecR’).
Then becaus&g: is the scheme-theoretic image @k = Qg xs S’ underfg/ o1y =
(fo) xgS'inTg: = Ts xs ', FanS’-morphism¢ : Zg: —> Z xg S’ such that

¢o fi = fgxs S’ Thus¢ isa surjective closed immersion. Note thiat andZ x5 S’

are both smooths’. It follows that if S’ were reduced, then would have to be an
isomorphism. Thus the morphisms induced oyt the geometric points of’ are all
isomorphisms. Hencgis flat and hence faithfully flat (since it is surjective). But thgen
being a closed immersion implies that it must be an isomorphism. Q.E.D.

Theorem 7.28. The schem¥ ,, z) of Definition7.26is smootli R and also base-changes
well.

Proof. Remembering that ragkW) = 4, since Sp-Azy, is smoothi R (Theorem 3.8)
and since 2 gy —> Sp-Azuy, is a smooth morphism being the base-changg.of (cf.
Proposition 7.25), it follows thalt ) is also smoothR. The smoothneg® of L g)
andV o,y are equivalent by Theorem 3.9.

From the description oP4 ) in Remark 7.22, and the definition @f;, r) (cf.
Remark 7.24), it is immediate that the portion consisting of the top two rows of the com-
mutative diagram of Definition 7.26 base-changes well. That the whole diagram including
the bottom row also base-changes well is now a consequence of Definition 7.26 and
Theorem 7.27. Q.E.D.
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7.3 Birationality over the locus of simple modules

R continues to be a normal Nagata domain, and as before= S{Xy, ..., X,} for any
ring S. The aim is to establish an isomorphisf . : Vi gy — Z@ r)* which will
capture the ‘birational part’ of the desingularizing morphigmg) to be constructed later.

Lemmar.29. Let K be an algebraically closed field which is also @&zalgebra. Let
I C Ak be atwo-sided ideal such that there exisf§-algebraisomorphismp; : Ag /1 =
M, (K), whereM, (K) is the algebra ofn x n)-matrices overk. Such an isomorphism
defines am x-module structuré/,, on thek -vector space&” (given the standard basis
so thatEndx (K") = M,,(K)). Then one has

(1) My, is simple and its isomorphism class does not depeng;0As a consequence
one writes simply/; for My, .

(2) If M; = My (as Ag-moduley, thenl = 1.

(3) Given a simpleAd x-module structure/ on K", 3 I such thatM = M;.

The proofs of (1) and (2) are elementary. The proof of (3) uses Burnside’s theorem.

Lemmar.30. The constructionV(, z, base-changes well.

Proof. This was already seen implicitly in the proof of Theorem 7.28. Another way of
seeing this is from the description of the functor of pointv@fm: for each commutative
R-algebra$ with 1, sz)R)(S) may be identified functorially ir§ (cf. (1) of Remark 7.20
and Definition 7.26) with the set of two-sided idedls Ag such that the quotiem /1

is locally-free of rank 4 as afi-module and is also an Azumayaalgebra. Q.E.D.

By the above lemma, if VEZ,R) (L) whereL is an algebraically closed field which is
also anR-algebra, them; /I is a four-dimensional Azumaya-algebra. But by part (2)
of Proposition 3.2, this algebra is isomorphicM@ (L). Therefore it defines 4, -module
structure or.2 and following the notations of Lemma 7.29 above, the isomorphism class
of this simple module is denoted;]. Next letK be an algebraically closed subfield of
L which is also ank-algebra. Observe thaM;] € Z2 k)’ (L) by Artin’s description of
Zw.x)* (Theorem 7.10). Note also that by Lemma 7.30,

Vip (L) i = (Vi gy ®r L)L) = (Vi gy ®& K) ®k L)(L)
= (V.5 ®k L)L) =1 Vip 4y (L).

Now parts 2 and 3 of Lemma 7.29 clearly imply the following lemma.
Lemmay7.31. With the above notations, the association
Yo (L) Vi k(L) — Ze k) (L), T+ [M/]
is a well-defined bijective map.
DEFINITION 7.32

Continuing with the above notations, let

Yo.r) (L) Vg ry(L) —> Z2,r)* (L) = (Z2,r)’ ®r L)(L)
= (Zer' Qr K)(L)
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denote the compositionfz’K’R)(L) o y(SZ’K)(L) Whereagsz,R)(L) L Zax) (L) —
(Z2,»)’ ®r K)(L) is the bijective map of (2), of Remark 7.12. Note that by Lemma 7.31,
Y(2.r) (L) s bijective.

Before showing that the above maps are maps underlying morphisms, one needs the
following definition.

DEFINITION 7.33

The diagonal embeddingl(, gy < M,z g, commutes with the conjugation actions of
PGL (g andPGL 2 g, (for the diagonal embedding &GL , g in PGL 2 ). There-
fore by Theorem 7.3 there is an induced morphiSm gy : Zu.r) —> Z(u2.)-

Remak 7.34

(1) LetK c L be an extension of algebraically closed fields. Dwualued points, it is
easy to see that the morphism, k) sends the equivalence class ofig-module
M to the equivalence class of thig, -moduleM & --- @ M (n summands), with
the equivalence described in Theorem 7.10. The uniqueness of the summands upto
an ordering in the associated graded module for a JorddlderSeries implies that
A, k(L) is injective.

(2) If Sis a commutativeR-algebra with 1, then one has the following diagram

Q(n,S,R)
Zinsy —> Znr)OrRS

A(n,S)l lA(n,R)®RS

Z()’l2 ) —_— Z(n2 R) ®R S
Y2 5 R)

which commutes because of the categorical quotient propeiy, gf.

(3) TakingS = K an algebraically closed field in (2) above, one sees from part 1 of
Remark 7.34 above and (2) of 7.4 thagg, r) is topologically injective—even injective
on L-valued points for each algebraically closed figldvhich is anR-algebra.

(4) It can be seen that(, 7y andA, k) are closed immersions.

By Theorem 7.16 there is a projective morphistitb 4 zy — Z(4.z). Recall from
Definition 7.26 thatV 2 z) is a closed subscheme Hilbi, 7, C Hilb4z). Let 2z :
V(2.zy — Z(4,z) be the induced morphism, which is clearly projective.

Theorem 7.35. (Nori, Appendix, [16])

(1) There exists a projective morphispp, z) : V2.z) —> Z2,z) whose restriction
to the open subschenW, ;) factors through the open subscheiig z)* by an
|somorph|smyzz) for which the map orkK-valued points is precisely the map
y(z 7)(K) of Definition7.32,for each algebraically closed field .

(2) LetK be an algebraically closed field. There exists a projective morphistg, :
V2, k) — Z@ k) Wwhose restriction to the open subscheviig, factors through
the open subscheng; )* by an |somorph|snjy2 X for which the map ori-
valued points is precisely the maé K @L) of Lemma7 31,for each algebraically
closed extension field of K.
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Theorem 7.36. The morphismg2.z) : V2,z) — Z@,z) andye.x) : Ve, x) — Z2.k)
are desingularizationsand in fact the base-change 9f z) to K may be canonically
identified withy 2, k), i.e., the desingularizatioty,,z, has a good specialization property.

Proof. The morphismy,,,z, is projective (Theorem 7.35) and is birational as asserted
above. The smoothness ovemnf V, 7, follows from the cas&k = Z of Theorem 7.28.
Similar arguments hold whéf is replaced bykK. The good specialization property is a
consequence of the fact thab z) ®z K = o k.z) © Y k), where the identification
V2.7) ®z K = V(2 k) has as usual been made in view of Theorem 7.28, and the fact that
o(2,k.z) IS an isomorphism (Donkin’s result, Theorem 7.5). Q.E.D.

Now the discussion proceeds to construct the isomorpl;r'fg’rp) whenR is a normal
Nagata domain (7.2).

Theorem 7.37. Let R be a normal Nagata domain. Then the morphidvhz g))* —
Zi.py’ (Theorem?7.11)base-changes well to extensioRSof R which is also a normal
Nagata domain. In other words, the canonical morphaﬁgnR/ of part2 of Remarkr.12
is an isomorphism such that the following diagram commutes

M@z, ry®) —— M r)®)’ ®r R’

l l

Zory' —> Zo.py' ®r R
(2 R'.R)

Proof. Recall from part 2 of Remark 7.12 thagz R.R |s bijective (in fact it is bijective
on L-valued pomts for every algebraically closed fIGElthICh is also anr’-algebra).
FurtherZ, )’ is of finite type overR’ by Theorem 7.3, and so it follows t R.R) is
a morphism of finite type. Therefore in the sense of EGA | [5], §6.11.3, it is a quasi-finite
morphism. Note also that it is an affine morphism (cf. part 2, Remark 7.12) and hence it
is separated.

Next, note the following properties &2 z)* ®z R’, which, as seen above, is of finite
type overR’. SinceR’ is an integral domain, it follows (by GIT) tha, * is integral,
and so it is immediate th&;, z)* @& R’ is irreducible. Now by Theorems 7.28 and 7.35,
Z2,7)" is smoothZ and hence its base-changg z,* ®z R’ is also smootjiR’. Therefore
Zi2.7)° ®z R’ is integral. Further, sinc®’ is normal, it follows thaZ 2 z)* ®z R’ is also
normal.

Finally, let Q(R") denote the quotient field @¥’. By part 2 of Remark 7.12, one has the
following commutative diagram

M@z ow)®) —— Mer)®)’' ®r Q(R) —— (M2.r)®)*

l l |

s Y@o®)R) s / s
Zo oy ———— Zor) Qr QR) —— Zpry

l l |

Spe¢Q(R) —— Spe¢Q(R")) —— SpegRr)
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wherea? ).R") is an isomorphism. Also by part 2, Remark 7.12 one has that

(2.0R

, ) ,
(@2 gr.z) ®r Q(R)) © € o1y R = X2, 0(R).2)"

Therefore,o:z2 R'.7) is an isomorphism by Zariski’'s Main Theorem. The same is true of
O‘fz,R,zy But again by the uniqueness of the morphisfy,R,’R) (part 2, Remark 7.12),
one has that

K ! R R
((2.r.7) ®R R) 0 (2 pr 1)) = X2 1 7

where the canonical identificatidZ 2 z)* ®z R) g R’ = Z2.z)° ®z R’ has been made.
From this it follows thatxf2 R'.R) is indeed an isomorphism. Q.E.D.
DEFINITION 7.38

By base-changing the isomorphigr} ;) of Theorem 7.35 tak and using Lemma 7.30,
one gets an isomorphisprziZ 7)®z R V(o gy = Z2,7)° ®2z R. Letthe composition of this
isomorphism W|th the inverse of the |somorph|sr(‘§ R.Z) of Theorem 7.37 be denoted by

V(z,R) . V(Z,R) — Zen'.

7.4 Construction and specialization of the desingularization

Theorem 7.39. Let R be a normal Nagata domain. Then there exists a unique projective
morphismyo gy : Vi2,ry —> Z2,r) Whose restriction to the open subsche\ﬁg R)
factors through the isomorphis R constructed earlier — in other wordg 2 ) is a
desingularization. If it is further assumed that the geometric fibe& k) are reduced,

then this desingularization specializes well — in particular, this is indeed the case when
R =17.

The proof of the above theorem is divided into several steps.

Step 1: Defining the underlying set-theoretic m&y. Theorem 7.35 and the good base-
change property o 2, gy of Theorem 7.28, one gets a morphism

Y2z ®z R Ve r — Z27) ®z R.

Let |y2z) ®z R| : Ve r)| — 1Zz) ®z R| be the underlying map of topological
spaces. Note that this map is surjective. Nextdgi r z)| : 1Z2,r)| — |Z2.z) ®z R|
denote the bijective map of topological spaces underlying the morphispiz) (« 2, r.z)

is bijective onL-valued points for each algebraically closed fiéldvhich is aZ-algebra
—see (1) and (2) of Remark 7.4). It follows that the map of sets

lve.r) = leerznl olyez ®z Rl Ve.r| — 1Ze.nr)l

is surjective. Further note that this map restricted to the open supsgf < V(2 &) is
a morphism, i.e.ly2,g)| restricted tgV, g, | factors throughZz &,*| by a set-theoretic
map denoteqjy(x2 R which is none other than the map underlying the isomorph/iér}g)
of Definition 7.38.
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Step 2: Showin¥ 2, r) is integral, normal and separated of finite type over SinceR is
reduced and normal, ani, ) is smoothR (Theorem 7.28)Y 2 ) is certainly reduced,
normal and separated. To see that it is irreducible, recall the diagram of Definition 7.26.
Sinceg s, r) is a smooth morphism (Proposition 7.25) and hence open, angl izan open
dense subscheme of Sp-Agby the definition of Sp-Azy ), it follows thatH, ) is an
open dense subschemelg$ r). Further as noted in Definition 7.26¢ zy — V(2R
is open and surjective and herhtg R) is open and dense M g). But sz R = =Z0p°
viathe |somorph|sn;y(2 R) (Def|n|t|on 7.38), and sincgy, g is irreducible, it follows that
V(2,r) is also |rredUC|bIe By Remark 7.18, one has a projective morphisioy, gy —
Z4,r), and so the composite morphidfp, gy — Hilb gy — Z(4,r) is also projective
since the first one is a closed immersion. This put together with the facZ thaf is of
finite type overR (from Theorem 7.3 sinc® is a Nagata ring) implies that g) is also
of finite type overr.

Step 3: Construction of the reduced gragtet the set-theoretic graph d¢f 2, r)| be
denoted by

LClyorl C Ve r | X 122 Rl

That this set is closed follows from the fact that it is the topological space underlying
the inverse-image df(,, ,,, &) — the graph of the morphismz z) ®z R induced by the
base-change g, 7, of Theorem 7.35 —under the morphi$rdv(2.m X a2, r,z))- Letthe
canonical reduced induced closed subscheme structurggn, be denoted

Cyor < Var) XrRZ@2.R)

in spite of the fact that the morphispy, ) has yet to be shown to exist. Let the base-
change of this closed subscheme by the canonical open immM@gp XRrZ2.Rr)' —
V(2.r) Xr Z2,r) Qive the closed subscheme

F;(XZ.R) — VEZ,R) XR Z(Z,R)S.
Since this subscheme is also an open subschenig, of , it follows that it is also
reduced. One also has another reduced closed subsdh‘%mmece V‘Ez,m XRZ2.R)'

correspondingto the graph ofthe (iso)morph';q‘%) .Infactone hasthe equality of closed

subschemei‘y(s2 o = F; which follows from the easy check that their underlying
? (2,R)

topological spaces are the same, since both are reducegy Le¥ (2 gy Xr Z2,r) —
V(2,r) denote the canonical first projection. It is now straightforward that

(p1|r)/(2,R)) : FV(Z,R) — Varp

when further restricted to the open subscherrp(g = F’ factors through the open
- R ( .R)

subschem&/y, r, by an isomorphism (ont¥; z,). Hence(p1|T, ) is birational. It

is easy to check that this map is also set-theoretically bijective. Strisea Nagata ring,
Z2 R is of finite type overR due to Theorem 7.3. Therefore it follows that the morphism
(p1ITy5 ) is @lso a morphism of finite type and hence also quasi-finite in the sense of
EGA |, 86.11.3. That this morphismis also affine (and hence separated) follows from the
fact thatZ 2 g) is an affineR-scheme. From these observations it follows thaf ., is a
reduced separated scheme of finite-type @er
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Step 4: Irreducibility of the graphPick a pointy : Spe¢k) — I, ., Wherek is an
algebraically closed field which is also &algebra. By projecting ontd,, ) andZ g,
one gets pointa € V(Z,R)(K) = V(Z,K)(K) andm € Z(Z,R)(K) = (Z(Z,R) ®r K)(K)
such that(y,z) ®z K)(n) = (x@2,r,z) ®r K)(m) because of the definition ¢f
One has the following commutative diagram:

V2, k) Vor ®r K —— V(7 ®zK

V(Z.K)l l ly(Z,Z)@’ZK

®(2,K.R) a@2,R,7)ORK
Zogx)y —— ZopQrK —/——— Zpo7)®z K

Y(2,R) |

where the outermost arrows commute by Theorem 7.36 and the central vertical downward
arrow has been defined so that the diagram commutes. By parts 1 and 2 of Remark 7.4,
the composition of the lower horizontal arrows must be the bijective morphism 7,

(in fact, this last morphism is an isomorphism, which implies thaix ) is a surjective
closed immersion). So the second of the lower horizontal arrows of the above commutative
diagram is bijective. Therefore one has tt@b, x r) o ¥2,x))(K)(n) = m, i.e.,(n, m) is

a K-point of the grapT" g of (2, k r) © v2.x))- 'k is an integral closed subscheme of

(V.r) ®r K) ®k (Zi2,r) ®r K) = (V2,r) Or Z2,r)) ®r K
since itis isomorphict¥; ). By part2 of Remark 7.12, there is also another commutative
diagram

. %ok R ' o p 7y ®rK )
Zok) —— Zer' QrK ——— Zo7’ @z K

openl openl lopen

a2,r,2)ORK

A(2,K,R)
Zogky —— Zer OrK Zo,7) @7z K

where the top row consists of isomorphisms given by Theorem 7.37, and the composition
of the upper horizontal arrows is the same as the isomorpdnjilp’z). This put together

with the definition ofy(SZR) (Definition 7.38) implies thato o k r) © y(z,K))|Vf2’K) is

the same as the isomorphisy&m ®r K followed by the canonical open immersion
Zor)' ®r K — Zr) ®r K. Hence the grapiry of V(SZ,R) ®r K is an open, and
therefore dense, subset of the grdph of (a2 k. r) © v2,k)).- Hence ifUy, is an R-

open neighborhood of the point representedyhythen its base-change % contains

the K-point (n, m) and therefore must intersect, i.e., it contains & -point of I, 5

(since the base-change of the graph of a morphism may be canonically |dent|f|ed with
the graph of the base-change of that morphism). Since every pojiit,of, | is a limit

point of |T",, 5 | one hagly, | C |1“],(2 | (closure in|V(2,r) xXr Z2,r)]). But on the
other hand" s. Ty IS anopen subscheme ang, ., is closed which implies that
|F 5 | C (and hence 3 [T, , |- Now FV& © is irreducible since it is isomorphic to
V(2,R) and hencé, ,, is also irreducible.

Step 5: The desingularization and its specializatiolisiow follows from Zariski’'s Main
Theorem thatp1|Ty, ) : T —> V(2,p) is an isomorphism. Thus one gets a mor-
phism

Y(2,R)

YR = (P2ITy0 ) 0 (P1Tye )tV k) — Zew)
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for which the underlying map i§/2 &)| and whose graph is indedd,, .,. Here p> :
V. r) Xr Z2,R) —> Z2,r) denotes the canonical second projection. Note that by con-
struction,y(z &) V{5 ) factors througtz 2 &)® by the isomorphisny, g, .

Projectivity of the morphismrz gy. Now a2z z) © v2.r) andy2,z) ®z R are two mor-
phisms from the reduced scheMg ) into the separated scherdg 7z, ®z R that agree
on the open dense subsche\ﬁgR). Therefore they are equal. But thep 7, is projec-
tive, and so the same is true @b, r), Sinceu o,z z) is separated.

Specialization properties ¢{2, g). Observe that the central downward arrow of the first of
the two commutative diagrams of Step 4 when restrictédgge) ®r K factors through the
isomorphismyg;, ) ®& K. Hence this morphism is precisely the samg@s) ®r K. As
noted in Step 4x 2k, r) is already a surjective closed immersion. So under the additional
hypothesis that the geometric fibers/gf g, overR are reduced 2, z) ®r K is reduced,
and soc (2, k, gy becomes an isomorphism. This implies thgi r 7) ®r K is also an
isomorphism. End of Proof of Theorem 7.39.

The last part of Step 5 of the above proof shows that Theorem 7.5 generalizes as follows:

Theorem 7.40. Let R be a normal Nagata domain and suppose that the geometric fibers
of Z,, ry are reduced. Then these geometric fibers are in fact normd. i$ an alge-
braically closed field which is also aR algebra then the uniform categorical quotient
Mau. gy —> Z(u,r) Of Theoreni7.3 specializes welli.e., its base-change t& (over R)

may be functorially identified with the Mumford good quotieht k) — Z( k).
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