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Abstract. It is shown that the schematic image of the scheme of Azumaya algebra
structures on a vector bundle of rank 4 over any base scheme is separated, of finite type,
smooth of relative dimension 13 and geometrically irreducible over that base and that this
construction base-changes well. This fully generalizes Seshadri’s theorem in [16] that
the variety of specializations of(2× 2)-matrix algebras is smooth in characteristic6= 2.
As an application, a construction of Seshadri in [16] is shown in a characteristic-free way
to desingularize the moduli space of rank 2 even degree semi-stable vector bundles on a
complete curve. As another application, a construction of Nori overZ (Appendix, [16])
is extended to the case of a normal domain which is a universally Japanese (Nagata) ring
and is shown to desingularize the Artin moduli space [1] of invariants of several matrices
in rank 2. This desingularization is shown to have a good specialization property if the
Artin moduli space has geometrically reduced fibers – for example this happens overZ.
Essential use is made of Kneser’s concept [8] of ‘semi-regular quadratic module’. For
any free quadratic module of odd rank, a formula linking the half-discriminant and the
values of the quadratic form on its radical is derived.

Keywords. Azumaya algebra; Clifford algebra; desingularization, moduli space; semi-
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1. Introduction and overview

The present work consists of two parts: Part A shows the smoothness of the schematic
closure of Azumaya algebra structures on a fixed vector bundle of rank 4, while Part B
applies the results of A to obtain desingularizations of certain moduli spaces. Further
applications to quadratic modules are addressed in [20].

The problems addressed below arose from a study of Seshadri’s paper [16] in which
the base fieldk is assumed to be an algebraically closed field of characteristic different
from two. In the following it is shown that the results of [16] extend over an arbitrary base
scheme, and in fact, the methods used are characteristic-free.

The central result of [16] can be described as follows: LetX be a smooth, irreducible,
complete curve of genusg ≥ 2 overk. Let USSX (n, 0) be the normal projective variety of
equivalence classes of semi-stable vector bundles onX of rankn and degree zero [15]. Let
USX(n, 0) be the smooth open subvariety ofUSSX (n, 0) consisting of isomorphism classes
of stable vector bundles. This subvariety is precisely the set of smooth points ofUSSX (n, 0)
unlessn = 2 andg = 2 in which caseUSSX (n, 0) is smooth [13]. Two models describing the
desingularization ofUSSX (2, 0) are known. Narasimhan and Ramanan in [14] describe one
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model which works in characteristic zero. Seshadri in [16] defines (for any characteristic)
a varietyNX(4, 0) whose closed points are certain stable parabolic vector bundles (in the
sense of Mehta–Seshadri [11]) of rank 4 and degree zero onX. He also constructs a map
π2 : NX(4, 0) −→ USSX (2, 0). This is seen to be a desingularization in characteristic zero.
Section 6 in B of the present work shows that the morphismπ2 may be constructed in
positive characteristic as well, and further that it is a desingularization.

In the construction of the above desingularization, one of the crucial steps is to prove that
the variety of specializations of(2×2)-matrix algebras on a four-dimensional vector space
with a fixed (non-zero) vector for multiplicative identity is smooth over an algebraically
closed fieldk of characteristic 2, extending Seshadri’s result ([16], §2, Theorem 1) for
char(k) 6= 2. This is proved more generally, i.e., by showing over any base scheme that
the schematic image, of the scheme of Azumaya algebra structures on a vector bundle of
rank 4 with multiplicative identity a fixed nowhere vanishing global section, is separated,
of finite type, smooth and geometrically irreducible over the base, and that it behaves well
under base-change. In fact it is shown to be locally isomorphic over the base to relative
nine-dimensional affine space (Theorem 5.3). As a further generalization, the schematic
image of the scheme of Azumaya algebra structures with multiplicative identities varying is
also shown to be separated, of finite type, geometrically irreducible and smooth of relative
dimension 13 over the base (Theorem 3.8).

Artin in [1] defines aZ-scheme which is a coarse moduli space for the various module
structures over the non-commuting polynomial ring (in a fixed number of indeterminates)
on a fixed free finite rank module. This moduli space can be constructed over any com-
mutative noetherian base ring using Seshadri’s Geometric Invariant Theory over a general
base [18] which further ensures that it has good properties (eg. being of finite type over the
base) when the base ring is a universally Japanese (Nagata) ring. Nori (Appendix, [16])
constructs a candidate which would desingularize the Artin moduli space in rank 2 over
the integers, and the smoothness of this candidate is a consequence of Theorem 3.8. In
fact, in §7, it is shown that a desingularization of the Artin moduli space in rank 2 can
be constructed over a normal domain which is a universally Japanese (Nagata) ring. This
desingularization is further shown to have a good specialization property provided the
Artin moduli space has geometrically reduced fibers, which for example is the case over
the integers by the result of Donkin [4].

Seshadri’s proof of Theorem 1 in [16] uses the existence of non-singular quadratic forms
on a three-dimensional vector space. But in char. 2, such forms do not exist. This can
be remedied by consideringsemi-regularquadratic forms, which nevertheless do exist.
Generalities on semi-regularity are recalled in §4. The notion of a semi-regular quadratic
form was introduced by Kneser [8]. It is defined for a quadratic module of odd rank over
any commutative ring, allowing the results of this paper to be formulated over an arbitrary
base. Semi-regularity is studied in detail in [9], where it is shown to be the correct analogue
of non-singular quadratic form in characteristic two. Therefore, the methods of proof below
are characteristic-free.

The author came across another notion callednon-degeneracy, defined by Dieudonńe
in [3], which is used by Borel in [2] to study orthogonal groups over fields of character-
istic two. While the definition of semi-regularity uses the notion ofhalf-discriminant, the
definition of non-degeneracy involves the values of the quadratic form on the radical of
its associated symmetric bilinear form. Non-degeneracy is recalled and generalized in §4,
where further a formula linking the half-discriminant and the values of the quadratic form
on its radical (valid for any free quadratic module of finite odd rank over any commutative
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ring) is derived. This is used to show that the notion of non-degeneracy can be generalized,
to the case of quadratic modules that are finitely generated and projective of constant odd
rank over any commutative ring, and moreover that this generalized notion coincides with
the notion of semi-regularity.

A: Smoothness of limits of rank 4 Azumaya algebras

2. Algebra structures on a vector bundle

We fix a base schemeX and a geometric vector bundleW overX of constant rank≥
2 which by definition is associated to a quasi-coherentOX-moduleW locally free of
constant rank≥ 2. The purpose of this section is to define algebra structures and study
the relationship of associative unital algebra structures with those that have a fixed unit
element.

DEFINITION 2.1

Given anyX-schemeT , by aT -algebra structure onWT := W ×X T (also referred to
asT -algebra bundle), we mean a morphismWT ×T WT −→ WT of vector bundles on
T arising from a morphism of the associated locally-free sheaves. So this is equivalent to
giving a morphism ofOT -modulesWT ⊗T WT −→ WT , i.e., anOT -algebra structure
on the associated locally free sheafWT . Given such aT -algebra structure andT ′ −→ T

anX-morphism, it is clear that one gets by pullback (i.e., by base-change) a canonicalT ′-
algebra structure onWT ′ . Thus one has a contravariant ‘functor of algebra structures on
W ’ from {X-schemes} to {Sets} denotedAlgW whose set ofT -valued points is the set of
T -algebra structures onWT , viz., HomOT

(WT ⊗ WT ,WT ) .

By Proposition 9.6.1, Chap. I of EGA I [5], it follows that the functorAlgW is represented
by theX-scheme

AlgW := Spec
(
SymX

[(WX
∨ ⊗X WX

∨ ⊗X WX

)∨])
.

Hence AlgW is affine (hence separated), of finite type overX and in fact smooth of relative
dimension rankX(W)3. If X′ −→ X is an extension of base, then the construction AlgW
base-changes well, i.e., one may canonically identify AlgW ×X X

′ with AlgW ′ where
W ′ = W ×X X

′ (cf. Proposition 9.4.11, Chap. I, EGA I [5]).
We next turn to algebra structures onW with identity. We call a global sections ∈

0(T ,F) of a quasi-coherent sheafF (locally free of positive rank overT ) nowhere van-
ishing if at each point of the baseT , the image of its germ in the fiber over the residue field
is non-zero. It can be seen that a section is nowhere vanishing if and only if every one of
its pullbacks is non-zero and that the pullback of a nowhere vanishing section is again a
nowhere vanishing section.

DEFINITION 2.2

For anyX-schemeT , let Id-AssocW(T ) denote the subset of AlgW(T ) consisting of
associative algebra structures with multiplicative identity. Thus we obtain a contravariant
subfunctorId-AssocW of AlgW .

We remark that a multiplicative identity for an associative algebra structure must be a
nowhere vanishing section as implied by the following lemma and the implication (2)⇒
(4) of the lemma following it.
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Lemma2.3. LetB be a ring(commutative, with 1) andA an associativeB-algebra with
multiplicative identityeA ∈ A. Suppose thatA is finitely generated and projective as a
B-module. ThenB · eA is aB-direct summand ofA.

Lemma2.4. LetB be a ring(commutative, with 1),W a finite freeB-module, andw ∈ W.
Then the following conditions are equivalent:

(1) theB-linear mapε(w) : B −→ W given byb 7−→ b ·w is a section to aB-linear
mapp : W −→ B;

(2) the mapε(w) defined above is injective and the short exact sequence

0 −→ B
ε(w)−→ W −→ W/B −→ 0

is split exact;
(3) the mapε(w) defined above is injective andW/B is projective;
(4) for everyB-algebraS (commutative, with 1S 6= 0 in S) w ⊗ 1S 6= 0 ∈ W ⊗B

S;
(5) if {wj |1 ≤ j ≤ n} is aB-basis forW , and ifw = ∑n

j=1 bj · wj then{bj | 1 ≤
j ≤ n} generatesB.

The proofs of the above results are elementary and hence omitted. The general linear
groupscheme associated toW, viz., GLW naturally acts on AlgW on the left, so that for
eachX-schemeT , AlgW(T )mod GLW(T ) is the set of isomorphism classes ofT -algebra
structures onW ×X T . It is also clear thatId-AssocW is a GLW -stable subfunctor of
AlgW . It is in fact also representable.

PROPOSITION 2.5

Id-AssocW is represented by anX-schemeId-AssocW which is separated and of finite
type overX so that the natural inclusion of functors induces a functorially injectiveGLW -
equivariant morphismId-AssocW −→ AlgW .Further the constructionId-AssocW −→ X

behaves well under base-change.

The functorId-AssocW behaves well under a base-changeX′ −→ X because the
property of being an associative algebra with identity is preserved under base-change and
because AlgW itself behaves well under base-change as already noted. Therefore, it only
remains to prove the representability ofId-AssocW by a scheme Id-AssocW of finite
type overX. We shall achieve this by studying the case of algebras with a fixed identity.
Notice that the separatedness of Id-AssocW overXwould follow once Id-AssocW is shown
to exist, for then the valuative criterion for separatedness is true for Id-AssocW overX
since it is true for AlgW overX and Id-AssocW −→ AlgW is a functorially injective
morphism.

DEFINITION 2.6

Let w ∈ 0(X,W) be a nowhere vanishing section. For anyX-schemeT , let
Id-w-AssocW(T ) denote the subset of AlgW(T ) consisting of associative algebra struc-
tures with multiplicative identity the nowhere vanishing sectionwT overT induced from
w. Thus we obtain a contravariant subfunctorId-w-AssocW of AlgW .
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Let Stab(w)(T ) ⊂ GLW(T ) denote the stabilizer subgroup ofwT , so that one gets a
subfunctor in subgroups Stab(w) ⊂ GLW . It is in fact represented by a closed subgroup
scheme (also denoted by) Stab(w) and further behaves well under base-change relative
toX, i.e., Stab(w) ×X T can be canonically identified with Stab(wT ) for anyX-scheme
T . These follow from para 9.6.6 of Chap. I, EGA I [5]. It is clear that the natural action
of GLW on AlgW induces one of Stab(w) on Id-w-AssocW . It is easy to check that the
functorId-w-AssocW is a sheaf in the big Zariski site overX and further that this functor
is represented by a natural closed subscheme of AlgW in the case whenX is affine; hence
by Zariski glueing – Proposition 4.5.4, Corollary 4.5.5, Chap. 0 and 2.4.3, Chap. I of EGA I
[5] – it follows thatId-w-AssocW is represented by a closed subscheme Id-w-AssocW ↪→
AlgW which is Stab(w)-invariant. Stab(w)acts on the fiber product GLW ×X Id-w-AssocW
by the (right) action given on valued points by(g,A) ·h := (gh, h−1 ·A) and with respect
to this action the natural morphismµw : GLW ×X Id-w-AssocW −→ Id-AssocW (coming
from the action of GLW ) is invariant. LetU(T ) ⊂ W(T ) be the subset corresponding
to nowhere vanishing global sections ofWT . Thus we get a subfunctorU ⊂ W. It is
represented by the complement (also denoted by)U of the zero section ofW which is
of finite type overX: it is easy to check that the functorU is a sheaf in the big Zariski
site overX; hence by Zariski glueing the proof of representability can be reduced to the
case whenX is affine andW trivial, in which case, using the implications (4)⇐⇒
(5) of Lemma 2.4 it is seen thatU is the union of the complements of the finitely many
hyperplanes. Notice that the orbit morphism corresponding tow, viz.,Ow : GLW −→ W
factors throughU. There is a natural morphismφ : Id-AssocW −→ U (mapping an
algebra to its identity element) such that one has a commutative diagram of morphisms of
functors:

GLW ×X Id-w-AssocW
p1−−−−→ GLW

µw

y yOw .

Id-AssocW
φ−−−−→ U

The above diagram is in fact a fiber product square because given anX-schemeT , it is
easy to see that the natural map

(GLW ×X Id-w-AssocW)(T )

−→ (GLW ×U Id-AssocW)(T ) : (g,A) 7−→ (g, g · A)

is bijective and functorial inT .
Thus the study ofId-AssocW reduces to the study ofOw. The next result says thatOw

is a Zariski-locally-trivial principal Stab(w)-bundle. ThusOw has local sections which are
closed immersions; from whichµw therefore has local sections which are representable by
closed immersions. It will then follow thatId-AssocW is representable by Zariski glueing
since it is easily seen to be a sheaf on the big Zariski site overX and it is covered by open
subfunctors that are represented by closed subschemes of open subschemes of GLW ×X

Id-w-AssocW . Further, sinceOw is a faithfully-flat quasi-compact morphism, the proper-
ties ofp1 in the above cartesian square such as affineness and finite-typeness will descend
toφ by Proposition 2.7.1 of EGA IV [6]. SoU being of finite type overX would imply that
Id-AssocW is also of finite type overX. The proof of Proposition 2.5 is thus reduced to the
following.
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PROPOSITION 2.7

TheStab(w)-invariant morphismOw : GLW −→ U is a Zariski-locally-trivial principal
Stab(w)-bundle.

We sketch a proof. It is enough to prove the above result for the case whenX = Spec(R)
is affine and further whenw becomes a part of a global basis. LetW be the freeR-module
of rankm corresponding toW. Let {Xi | 0 ≤ i ≤ m − 1} be theR-basis ofW∨ dual to
a chosenR-basis{wi | 0 ≤ i ≤ m − 1} of W with w = w0, so that one gets a canonical
identification with affine space overR of dimensionm

W := Spec(SymR(W
∨)) ∼= Spec(R[X0, . . . , Xm−1]) = AmR.

For eachi, 0 ≤ i ≤ m− 1, letUi denote the open subscheme ofW corresponding (under
the above identification) toAmR − V (Xi) whereV (Xi) is the closed subscheme defined
by the vanishing ofXi. From Lemma 2.4 one sees thatU = ∪m−1

i=0 Ui . Let S be anR-
algebra. Then(Ow)−1(U0)(S) (= the set ofS-valued points of the open subscheme which
is the inverse image of the open subschemeU0 byOw) can be identified with the subset
of GL(m, S) consisting of matrices(sij ), 0 ≤ i, j ≤ m − 1 such thats00 is a unit inS.
Given such a matrix(sij ), it is clear that the matrix equation

s00 0 0 · · · 0
s10 1 0 · · · 0
s20 0 1 · · · 0
...

...
. . .

...
...

sm−1,0 0 0 · · · 1

×


1 x01 · · · x0,m−1
0 y11 · · · y1,m−1
0 y21 · · · y2,m−1
...

...
. . .

...

0 ym−1,1 · · · ym−1,m−1

 = (
sij
)

can be solved in GL(m, S) and in fact the solution lies in Stab(w)(S). We leave it to the
reader to verify that this implies thatOw restricted toU0 is isomorphic to the trivial Stab(w)-
bundle and a similar argument gives a Stab(w)-bundle trivialization ofOw : GLW −→ U
overUi for eachi with 1 ≤ i ≤ m− 1. The above proposition along with the discussion
preceeding it gives the following result.

COROLLARY 2.8

The morphismµw : GLW ×X Id-w-AssocW −→ Id-AssocW is a Zariski-locally-trivial
principal Stab(w)-bundle.

3. Sheaves in Azumaya algebras and their limits

From now on we assume that the rank ofW overX is a square. We intend to study sub-
functors of AlgW which are Azumaya and their specializations. Firstly, we therefore recall
the definition of being Azumaya and collect the necessary facts regarding such algebras.

DEFINITION 3.1

An algebra structureA ∈ Id-AssocW(T ) is said to beAzumayaif the naturalOT -algebra
homomorphism

A ⊗ Aop −→ EndOT -mod(A) given on sections bya ⊗ bop 7→(x 7→ (axb))

is an isomorphism, whereAop denotes the algebra opposite toA.
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We thus obtain subfunctorsId-w-AzuW ↪→ Id-w-AssocW andAzuW ↪→ Id-AssocW cor-
responding to Azumaya algebras. That they are indeed subfunctors follows from property
(1) of the next result, which also lists other standard properties of Azumaya algebras that
will be used in the sequel.

PROPOSITION 3.2

LetS andS′ be noetherian commutative rings with 1 andS′ anS-algebra. Further letA
be an associativeS-algebra with identity.

(1) If A is an AzumayaS-algebra, thenA⊗S S
′ is an AzumayaS′-algebra.

(2) If S is an algebraically closed field, thenA is Azumaya overS iff it is isomorphic to
the algebraM(n, S) of (n×n)-matrices overS for somen, i.e., over algebraically
closed fields the only Azumaya algebras are the matrix algebras.

(3) A is an AzumayaS-algebra iffAp is an AzumayaSp-algebra for every prime ideal
p of S andA is finitely generated as anS-module.

(4) If A is finitely generated and locally-free, and ifA⊗S S
′ is an AzumayaS′-algebra,

and further ifS′ is faithfully-flat overS, thenA is an AzumayaS-algebra.
(5) If A is locally free of finite positive rank as anS-module, thenA is an AzumayaS-

algebra iffA⊗S K is an AzumayaK-algebra for every algebraically closed field
K which is anS-algebra.

(6) LetS be a complete local ring with maximal idealm. If A is an AzumayaS-algebra
such thatA/mA ∼= M(n, S/m) thenA ∼= M(n, S).

(7) LetP be a finitely generated projectiveS-module. Then theS-algebraEndS(P ) is
Azumaya.

Properties (1), (3) and (4) are easy. As for the non-trivial part of (2), ifA is Azumaya over
S, then by [7], Chap. 9, Theorem 9.7,A is isomorphic to an algebra of square matrices of
ordern (for somen) with entries in a finite-dimensional central division algebraD over
S. But sinceS is an algebraically closed field,D = S. Property (5) above can be deduced
from (3) and (4) and an application of Nakayama’s lemma. Property (6) is Lemma 5.1.16 in
Chap. III of [9]. The proof of (7) uses (4), (5) and (2). The following results shall be used in
showing the representability of the subfunctors of Azumaya algebras by open subschemes.

PROPOSITION 3.3

(1) LetT be anX-scheme andA ∈ Id-AssocW(T ). Then the subset

U(T ,A) := {t ∈ T | At is an AzumayaOT ,t -algebra}
is an open (possibly empty) subset. WhenU(T ,A) is non-empty, denote by the
same symbol the canonical open subscheme structure. Then iff : T ′ −→ T

is an X-morphism such that the topological image intersectsU(T ,A), then
U(T ′, f ∗(A)) ∼= U(T ,A)×T T

′ as open subschemes ofT ′. FurtherU(T ,A) ↪→
T is an affine morphism.

(2) U(T ,A) is the maximal open subset restricted to whichA is Azumaya.
(3) Further let f : T ′ −→ T be a morphism ofX-schemes such thatf ∗(A) ∈

AzuW(T
′), i.e., the induced algebra is Azumaya. Thenf factors through the open

subschemeU(T ,A) defined above.
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The proof thatU(T ,A) is open follows from an application of Nakayama’s lemma. The
proof of (2) follows from (3) of Proposition 3.2. The proof of (3) uses assertions (1)–(5)
of Proposition 3.2. From these the second assertion of (1) follows. Hence for the third
assertion of (1), one may as well assume thatT = Spec(B) is affine and thatA is free;
in which caseU(T ,A) is by definition the open subset where a homomorphism of free
B-modules of the same finite rank is an isomorphism and is hence a principal open subset.

Theorem 3.4

(1) AzuW (respectively Id-w-AzuW ) is represented by aGLW -stable (resp.
Stab(w)-stable) open subschemeAzuW ↪→ Id-AssocW (resp. Id-w-AzuW ↪→
Id-w-AssocW ) and the canonical open immersion is an affine morphism.

(2) AzuW (resp.Id-w-AzuW ) is separated(resp. affine) and of finite type overX, and
the constructionAzuW −→ X (resp.Id-w-AzuW −→ X) base-changes well.

(3) The restriction ofµw : GLW ×X Id-w-AssocW −→ Id-AssocW to the open sub-
schemeGLW ×X Id-w-AzuW factors by a morphismµ′

w, into AzuW , which is a
Zariski-locally-trivial principalStab(w)-bundle.

(4) Further, AzuW (resp.Id-w-AzuW ) is smooth of relative dimensionm4 − m2 + 1
(resp. of relative dimension(m2−1)2) and geometrically irreducible overX, where
m2 := rankX(W).

Proof. First of all notice that property (7) of Proposition 3.2 shows that the setsAzuW(T )
(resp.Id-w-AzuW(T )) are non-empty for anyX-schemeT to which the pull-back ofW
becomes trivial (resp. and further the pull-back ofw becomes part of a global basis). Since
AlgW is represented by AlgW , let B be the universal algebra structure onW ⊗X AlgW
corresponding to the identity morphism of AlgW . A little bit of writing down shows that
the canonical algebra structure onB corresponds to the diagonal morphism

1AlgW/X
: AlgW ↪→AlgW ×X AlgW .

Then the representability ofId-AssocW by Id-AssocW (Proposition 2.5) shows that the
pull-backB′ of B to Id-AssocW (resp.Bw of B to Id-w-AssocW ) is the universal associative
algebra structure with identity (resp. with identityw⊗X Id-w-AssocW ). With the notations
of Proposition 3.3, it is routine using the assertions of that proposition to verify that
AzuW := U(Id-AssocW ,B′) (resp. Id-w-AzuW := U(Id-w-AssocW ,Bw)) represents
AzuW (resp.Id-w-AzuW ) and the rest of the assertions of the theorem in the first statement.
Note therefore that the pull-back ofB′ (resp. ofBw) to AzuW (resp. to Id-w-AzuW ) is the
universal Azumaya algebra structure (resp. also with identityw). The functorsAzuW and
Id-w-AzuW base-change well since the property of being Azumaya is preserved under
base-change (property (1) of Proposition 3.2) and since AlgW and Id-w-AssocW base-
change well; further AlgW is affine and of finite type overX, Id-AssocW is separated
and of finite type overX by Proposition 2.5 and Id-w-AssocW ↪→ AlgW is a closed
immersion. From these facts the assertions in the second statement of the theorem follow.
As for the third statement, it is easy to check functorially that the restriction ofµw :
GLW ×X Id-w-AssocW −→ Id-AssocW to the open subscheme GLW ×X Id-w-AzuW
factors by a morphismµ′

w, into AzuW , which is in fact the base-change ofµw to AzuW .

Hence by Corollary 2.8 which says thatµw is a Zariski-locally-trivial principal Stab(w)-
bundle, one may conclude the same ofµ′

w : GLW ×X Id-w-AzuW −→ AzuW .Given this
and the easy fact that Stab(w) is smooth, surjective, affine and geometrically irreducible
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of relative dimensionm4 − m2 overX, it is clear that in order to prove the assertions in
the last statement of the theorem, it is enough to prove only those concerning Id-w-AzuW .

Since Id-w-AzuW base-changes well, going to geometric points ofX, in view of property
(2) of Proposition 3.2 the use of the theorem of Skolem–Noether shows that Id-w-AzuW is
geometrically irreducible and has geometric fibers of the claimed dimension. When the base
X is integral, by considering the orbit morphism Stab(w) −→ Id-w-AzuW corresponding
to the universal Azumaya algebra structure inId-w-AzuW(Id-w-AzuW)and noting that this
morphism is surjective and that Stab(w) is integral, one gets that in this case Id-w-AzuW
is irreducible. Now using properties (6) and (2) of Proposition 3.2, since Id-w-AzuW is
of finite type overX, it is easy to check that Id-w-AzuW −→ X is geometrically regular
by verifying the formal smoothness criterion at any closed point of any geometric fiber.
It follows that the fibers of this morphism are integral smooth varieties of the claimed
dimension. Finally only the flatness of Id-w-AzuW overX remains to be checked. Since
X can be covered by affine opens restricted to each of whichW becomes trivial andw part
of a global basis, and Id-w-AzuW base-changes well, we may assumeX = Spec(Z).Now
we observe that the structure morphism of Id-w-AzuW is equidimensional (13.2.2 EGA
IV, Err. IV.34, [6] – the smoothness, irreducibility and equidimensionality of the fibers is
used here); using this and applying Chevalley’s criterion (ii) of Corollary 14.4.4 of EGA
IV [6] shows that the structure morphism is universally open. Feeding this into Theorem
15.2.2 of EGA IV [6] shows that the structure morphism is actually flat. Q.E.D.

We are interested in studying the specializations of Azumaya algebra structures. In the
topological sense these are points of the closure of the space underlying AzuW (resp.
Id-w-AzuW ) in Id-AssocW (resp. in Id-w-AssocW ). To give a scheme-theoretic interpre-
tation for these spaces of limits, one naturally turns to the notion of schematic image. This
notion and its properties are recalled next, after which comes the theorem that the limiting
schemes of Azumaya algebras are smooth and base-change well in the case whenW is of
rank 4 overX.

DEFINITION 3.5  (Definitions 6.10.1–2, Chap. I, EGA I [5])

Letf : X −→ Y be a morphism of schemes. If there exists the smallest closed subscheme
Y ′ ↪→ Y such that the inverse image schemef−1(Y ′) := Y ′ ×Y (f X) is equal toX, one
callsY ′ theschematic imageof f (or of X in Y underf ). If X were a subscheme ofY
andf the canonical immersion, and iff has a schematic imageY ′, thenY ′ is called the

schematic limitor thelimiting schemeof the subschemeX
f
↪→ Y .

PROPOSITION 3.6  (Proposition 6.10.5, Chap. I, EGA I)

The schematic imageY ′ of X by a morphismf : X −→ Y exists in the following two
cases: (1) f∗(OX) is a quasi-coherentOY -module, which is for example the case whenf
is quasi-compact and quasi-separated; (2)X is reduced.

PROPOSITION 3.7

In each of the following statements whenever a schematic image is mentioned, we assume
that one of the two hypotheses of the above proposition is true so that the schematic image
does exist.

(1) Let Y ′ be the schematic image ofX under a morphismf : X −→ Y and letf

factor asX
g−→ Y ′ j

↪→ Y . ThenY ′ is topologically the closure off (X) in Y , the
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morphismg is schematically dominant(i.e.,g# : OY ′ −→ g∗(OX) is injective) and
the schematic image ofX in Y ′ (underg) is Y ′ itself. IfX is reduced(respectively
integral) then the same is true ofY ′.

(2) The schematic image of a closed subscheme under its canonical closed immersion
is itself.

(3) (Transitivity of schematic image). Let there be given morphismsX
f−→ Y

g−→ Z,
such that the schematic imageY ′ of X underf exists, and further such that ifg′
is the restriction ofg to Y ′, the schematic imageZ′ of Y ′ by g′ exists. Then the
schematic image ofX underg ◦ f exists and equalsZ′.

(4) Letf : X −→ Y be a morphism which factors through a closed subschemeY1 of
Y by a morphismf1 : X −→ Y1. Then the scheme-theoretic imageY ′ of X in Y
is the same as the scheme-theoretic imageY ′

1 ofX in Y1 considered canonically as
closed subscheme ofY .

(5) If f : X −→ Y has a schematic imageY ′ thenf is schematically dominant iff
Y ′ = Y.

(6) The formation of schematic image commutes with flat base-change: i.e., if f :
X −→ Y is a morphism ofS-schemes which has a schematic imageY ′ then for a flat
morphismS′ −→ S, one has that the inducedS′-morphismf ×S S

′ : X×S S
′ −→

Y×S S
′ has a schematic image and it may be canonically identified withY ′×S S

′. In
particular this means that the formation of schematic image is local over the base.

Assertions (1) and (3) are respectively Propositions 6.10.5 and 6.10.3 in EGA I. The
defining property of schematic image gives (2), while (4) can be deduced from the first
three. As for (5), from (1) it follows thatY ′ = Y impliesf = g is schematically dominant.
For the other way around, one uses the following characterization of a schematically
dominant morphism in Proposition 5.4.1 of EGA I: iff : X −→ Y is a morphism of
schemes, thenf is schematically dominant iff for every open subschemeU of Y and every

closed subschemeY1 of U such that there exists a factorizationf−1(U)
g1−→ Y1

j1
↪→ U , of

the restrictionf−1(U) −→ U of f (wherej1 is the canonical closed immersion), one has
Y1 = U – givenf is schematically dominant, one just has to takeU = Y , Y1 = Y ′ and
g1 = g. Assertion (6) follows from statement (ii) (a) of Theorem 11.10.5 of EGA IV [6].

Theorem 3.8

(1) The open immersionAzuW ↪→ Id-AssocW (resp.Id-w-AzuW ↪→ Id-w-AssocW )
has a schematic image denotedSp-AzuW (resp. Id-w-Sp-AzuW ) which is sep-
arated (resp. affine) and of finite type overX and is naturally aGLW -stable
(resp.Stab(w)-stable) closed subscheme ofId-AssocW (resp. ofId-w-AssocW ), the
action extending the natural one on the open subschemeAzuW (resp.Id-w-AzuW ).

(2a) Sp-AzuW is the schematic image ofGLW ×X Id-w-Sp-AzuW under the composition
of the canonical closed immersion intoGLW ×X Id-w-AssocW followed byµw.

(2b) The induced morphismµ′′
w : GLW ×X Id-w-Sp-AzuW −→ Sp-AzuW is in fact

the base-change ofµw and is hence a Zariski-locally-trivial principalStab(w)-
bundle.

(3a) When the rank ofW over X is 4, Id-w-Sp-AzuW is locally (over X) isomor-
phic to relative nine-dimensional affine space; in fact over every open affine sub-
schemeU of X whereW becomes trivial andw becomes part of a global basis,
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Id-w-Sp-AzuW |U ∼= A9
U . ThusId-w-Sp-AzuW is smooth of relative dimension9

and geometrically irreducible overX.
(3b) WhenrankX(W) = 4, the constructionId-w-Sp-AzuW −→ X base-changes

well.

(4a) WhenrankX(W) = 4, Sp-AzuW is smooth/X of relative dimension13 and geo-
metrically irreducible/X.

(4b) WhenrankX(W) = 4, the constructionSp-AzuW −→ X base-changes well.

We remark that due to the fact that the formation of the schematic image is local on the
base (property (6) of Proposition 3.7), it is enough to prove property (3a) for the case when
X is affine,W is trivial overX andw becomes part of a global basis. This will require the
use of semi-regular quadratic forms which are recalled in the next section and will be the
goal of §5. Notice that (3b) (resp. (4b)) is a consequence of the smoothness and geometric
irreducibility asserted in (3a) (resp. (4a)), the defining property of schematic image and
the fact that the corresponding scheme of Azumaya algebras base-changes well (statement
(2) of Theorem 3.4). Further note that given the fact that Stab(w) is affine, geometrically
irreducible and smooth of relative dimension 12 overX in the caseW is of rank 4, (4a)
follows from (3a) and (2b). So, for now we shall only prove (1), (2a) and (2b), and only
(3a) will need to be proved for the affine case as noted above. Since an affine morphism is
quasi-compact and separated, the existence of the schematic images in (1) of the theorem
follow from (1) of Theorem 3.4 and case (1) of Proposition 3.6. The rest of the properties
like separatedness/affineness/finite-typeness now follow from (2) of Theorem 3.4, while
the assertions on the extension of the natural action on the open subscheme (by the relevant
groupscheme) to an action on the limiting scheme may be verified using the defining
property of the schematic image involved. In effect one may show that an automorphism
of a schemeT which leaves an open subschemeU stable will also leave stable the limiting
scheme ofU in T (of course here one assumes that the canonical open immersionU ↪→ T

is a quasi-compact open immersion, which ensures the existence of the limiting scheme).
The assertion of (2a) follows by using the properties (1)–(5) of the schematic image given
in Proposition 3.7. As for (2b), one immediately sees that there is a natural morphism of
X-schemes

GLW ×X Id-w-Sp-AzuW
−→ Sp-AzuW ×Id-AssocW (µw(GLW ×X Id-w-AssocW))

which is seen to be a closed immersion and which needs to be shown to be an isomorphism.
Hence it is enough to show that this morphism is functorially surjective. We shall deduce
it from the following more general result, which simply put, says that for a locally-trivial
principalG-bundle,G-stable closed subschemes of the top space descend, and the natural
candidate, viz., the schematic image under the restriction of the bundle projection, fits the
bill.

Theorem 3.9. LetS be a base scheme,G anS-group scheme which is flat of finite type and
separated overS, andf : B −→ T anS-morphism which is also a Zariski-locally-trivial

principalG-bundle(with theG-action onB on the right). LetQ
ι
↪→ B be aG-stable closed

subscheme. Then the schematic imageZ
ι′
↪→ T ofQ under the compositionf ◦ i is the

descent ofQ underf , i.e., there exists a natural isomorphismβ : Q
∼=−→ (Zι′)×T

(
f B
)
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such thatι = pB ◦ β. ThusQ is naturally identified with the locally-trivial principalG-
bundle given by the pull back off to Z. Moreover, whenG is smooth overS, it follows
thatQ is smooth overS iff Z is smooth overS.

Proof. Note thatf ◦ i is quasi-compact and separated and so the schematic imageZ

of Q exists by case (1) of Proposition 3.6. Also note that under the given assumptions
onG, f is universally submersive and so theG-stability ofQ and theG-invariance of
f imply thatQ is topologically the full inverse image of the closed set below which
by property (1) of Proposition 3.7 is seen to be the underlying topological space of the
schematic imageZ. There is an obvious natural closed immersionβ : Q ↪→ (Zι′)×T (f B)

which we need to show is functorially surjective. Since this morphism is functorially
injective, and since the formation of schematic image is local over the base (property (6)
of Proposition 3.7), it can be seen that one may reduce to the case of a trivial principal
G-bundle, i.e.,B := T ×S G. Let s : T −→ B be the section tof induced by the
identity section ofG over S. DefineZ1 to be the scheme-theoretic intersection of the
closed subschemesQ andT in B, i.e.,Z1 := (Qι) ×B (sT ). Let s′ : Z1 ↪→ Q be the
base-change ofs. Defineα : Z1 ×S G −→ Q to be the compositionµQ ◦ (s′ × idG)

whereµQ : Q×S G −→ Q is the canonical right action ofG onQ induced from that on
B = T ×S G. Now using the language of valued points one checks thatα is functorially
bijective, hence an isomorphism. SinceZ1 ×S G ∼= Z1 ×T B canonically, a little bit of
routine writing-down shows thatf ◦ i factors throughZ1. Due to the defining property
of the schematic imageZ, this induces a closed immersionι′1 : Z ↪→ Z1 which in turn
induces a closed immersionι′′1 : (Zι′) ×T (f B) ↪→ Z1 ×T B. Now using the facts that
Z1 ×T B −→ Z1 is functorially surjective (being a trivial bundle) and thatZ1 ×T B ∼= Q

via α, one checks thatι′1 is functorially surjective and therefore an isomorphism. Soι′′1 is
also an isomorphism and from this one gets thatβ is functorially surjective and hence an
isomorphism as wanted. Q.E.D. for Theorem 3.9

Now if in the above result, one takesB := GLW ×X Id-w-AssocW , T := Id-AssocW ,
f := µw, Q := GLW ×X Id-w-Sp-AzuW (and whenceZ = Sp-AzuW ), G := Stab(w)
and bears in mind thatµw is a locally-trivial principal Stab(w)-bundle (Corollary 2.8),
one immediately gets thatµ′′

w is indeed the base-change ofµw as wanted. We remind the
reader now that we only need to prove assertion (3a) of Theorem 3.8 for the case when
X = Spec(R) is an affine scheme,W corresponds to a trivialR-moduleW of rank 4, and
w becomes part of a global basis forW. We shall show in this case that Id-w-Sp-AzuW
is isomorphic to the nine-dimensional affine space given by the fiber-product of the six-
dimensional affine space of quadratic forms on a free rank 3R-module and a suitable
commutative affine subgroupscheme of Stab(w) isomorphic to three-dimensional affine
space. This involves the use of the notion of semi-regular quadratic form, generalities on
which we shall deal with in the next section.

4. Generalities on semi-regular quadratic forms

As indicated in the last section, one needs to bring in quadratic forms for the proof
of (3a) of Theorem 3.8. Seshadri’s method of proving (3a) for the caseX = Spec(k),
k an algebraically closed field, involves firstly defining a morphism from the space of
quadratic forms on a three-dimensional vector space into Id-w-AssocW . This essentially
associates a quadratic form to its even Clifford algebra. That this morphism takes values
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in Id-w-Sp-AzuW depends on the fact that the even Clifford algebra of a regular quadratic
form is isomorphic to the algebra of(2 × 2)-matrices with entries ink. Further using this
morphism, another morphism is defined to establish (3a) and to conclude that this latter
morphism is proper and functorially injective, Seshadri computes this morphism. In this
computation the bilinear form associated to the quadratic form, and not the quadratic form
itself, is involved, and therefore some terms in the computation (crucial for concluding the
properness and functorial injectivity) involve a factor of 2, and hence vanish in char. 2.
Other fundamental problems encountered in char. 2 arise from the facts that the mapping
that associates a quadratic form to its symmetric bilinear form is no longer bijective and
that when the quadratic module is of odd rank, there do not exist regular quadratic forms.
The remedy for all this is to consider semi-regular quadratic forms, a concept of Kneser [8]
and elaborated upon by Knus in [9], which in fact works over an arbitrary base ring (and
hence in a characteristic-free way) and further reduces to the usual notion of regular form
in characteristics6= 2. We therefore devote this section to recall this notion and its prop-
erties. We also use this opportunity to show how a non-degenerate form in the sense of
Dieudonńe [3] is the same as a semi-regular form.

Throughout this section,R denotes a commutative ring. A pair(V , q) consisting of a
moduleV overR and a quadratic formq onV will be referred to as a quadratic module.
Recall that a quadratic formq is by definition a mapq : V −→ R satisfying (1)q(r ·v) =
r2 · q(v), v ∈ V, r ∈ R and (2)bq : V × V −→ R given by (u, v) 7→ q(u +
v) − q(u) − q(v) is R-bilinear. As usual, we callbq the bilinear form ‘associated’ toq.
Before proceeding further, let us recall the usual definition of regularity (also called non-
singularity). Let(V , q) be a quadratic module withV finitely generated and projective of
constant rankn overR. For anyn-tuple {fi | 1 ≤ i ≤ n} of elements ofV , the element
1q({fi}) := det(bq(fi, fj )) is an element ofR; in the case when the module is free and the
chosenn-tuple is anR-basis, this element is called thediscriminantof (V , q) with respect
to this basis. Its class modulo(R∗)2 is independent of the choice of the basis. Let1q(V )

denote thediscriminant-idealin R generated by the elements1q({fi}) for all possible
n-tuples.(V , q) is said to be aregular quadratic moduleandq a regular quadratic form
if 1q(V ) is all of R. In order to define semi-regularity on the other hand, one needs the
following fundamental result.

Lemma 4.1   (Lemma 3.1.2, Chap. IV, [9]). Consider the quadratic module (Rn0, q0) over
R0 := Z[ζi, ζij ] where(1 ≤ i, j ≤ n, i < j) with the standard basis{ei | 1 ≤ i ≤ n}
whereq0(ei) := ζi, bq0(ei, ej ) := ζij (i < j). In other words,q0(6ixiei = 6iζix

2
i +

6i<j ζij xixj . Note thatbq0(ei, ei) = 2q0(ei) = 2ζi . Then the discriminantd({ei}) :=
det(bq0(ei, ej )) of the matrix ofbq0 equals2Pn(ζi, ζij ) for a uniquely determined poly-
nomialPn in R0.

DEFINITION 4.2   (§3, Chap. IV [9])

Let (V , q) be a quadratic module with the underlyingR-module projective of constant
odd rankn. For anyn-tuple {fi | 1 ≤ i ≤ n} of elements ofV , the elementdq({fi}) :=
Pn(q(fi), bq(fi, fj )) is an element ofR; in the case when the module is free and the
chosenn-tuple is anR-basis, this element is called thehalf-discriminantof (V , q) with
respect to this basis. Letd0(V , q) denote thehalf-discriminant-idealinR generated by the
elementsdq({fi}) for all possiblen-tuples.(V , q) is said to be asemi-regular quadratic
moduleandq asemi-regular quadratic formif d0(V , q) is all ofR.
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PROPOSITION 4.3

Let(V , q) be a quadratic module with the underlyingR-module projective of constant odd
rank.

(1) WhenV is free, q is semi-regular if and only if there exists a basis{fi} with respect
to which the half-discriminant is a unit. If this is the case then the half-discriminant
with respect to any basis is a unit.

(2) When 2 is a unit inR andV is free, q is semi-regular if and only if it is regular.
(3) The orthogonal direct sum of a semi-regular quadratic module and a regular

quadratic module is again a semi-regular quadratic module.
(4) For a quadratic module(V , q) of odd rank, regularity is a very strong condition:

it implies that 2 is a unit ofR. Hence there are no regular quadratic forms over
modules of odd rank in char. 2. However, semi-regular quadratic forms do exist in
all ranks in all characteristics.

Statement (1) is proved in §3, Chap. IV of [9]. Statement (2) follows from the fact that
relative to any basis, the half-discriminant and the discriminant differ by the factor of the
unit 2 ∈ R∗; note in this situation also that the associated bilinear form may be used to
identify V with its dual for any fixed basis. Assertion (3) is in §3, Ch. IV of [9], and
essentially follows from the observation that in the free case, the half-discriminant of the
orthogonal sum is the product of the half-discriminant of the semi-regular summand and
the discriminant of the regular summand. The first assertion of (4) essentially boils down
to realizing that an alternating matrix in char. 2 of odd rank is of determinant zero. As for
the last assertion of (4), first letV be free of rank 3 overR with basis{e1, e2, e3} andS a
commutativeR-algebra. Then the quadratic formq : V ⊗R S −→ S given by

x(e1 ⊗ 1)+ y(e2 ⊗ 1)+ z(e3 ⊗ 1) 7−→ yz− x2

is easily checked to be semi-regular. Now using (3) and the fact that regular quadratic
forms exist for modules of even rank in all characteristics, one gets (4). The following is
Proposition 3.1.5, §3, Chap. IV, [9], and shows that semi-regularity is well-behaved.

PROPOSITION 4.4

Let (V , q) be a quadratic module of odd rank over a commutative ringR. The following
properties are equivalent:

(1) q is semi-regular.
(2) q ⊗ (R/m) is semi-regular overR/m for every maximal idealm ofR.
(3) q ⊗ Rm is semi-regular overRm for every maximal idealm ofR.
(4) q ⊗ S is semi-regular overS for some faithfully-flatR-algebraS.

Thus semi-regularity is preserved under extension of scalars.

We now recall the notion of non-degeneracy and show that it is the same as semi-
regularity. To begin with, given a quadraticR-module(V , q), its radical, denotedV (q),
is defined to be the subset ofV defined by

{v ∈ V | bq(v, v′) = 0 ∀v′ ∈ V }.
Then we have the following elementary results.
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Lemma4.5. With the above notations, (1)the radical of(V , q) is a submodule ofV (it is the
kernel of the linear mapV −→ V ∗ which sendsv ∈ V to the linear formv′ 7→ bq(v, v

′)
and the radical is also the left-(and right-) kernel of the bilinear formbq ). (2) WhenV
is a finite dimensional vector space over a fieldR, the quadratic formq is regular if and
only if its radical is zero.(So in general, ifq is regular andV is of odd rank, it follows that
2 is necessarily a unit inR. Thus for a free module in char.2 it follows that the radical is
non-zero and hence every quadratic form is necessarily non-regular.)

Recall the following notion from Chap. V, (23.5), of Borel [2] (who in turn quotes
Dieudonńe [3]): for a quadratic module(V , q)of odd dimension over a fieldk of char. 2,q is
said to benon-degenerateiff V (q) is one-dimensional and further for eachv ∈ V (q)−{0},
q(v) is non-zero. Now extend this definition to the case char(k) 6= 2 as follows:q is non-
degenerate iff it is regular (i.e., iffV (q) = 0).

DEFINITION 4.6

Let R be any commutative ring and let(V , q) be a quadratic module such that theR-
moduleV is finitely generated and projective of constant odd rank. Callq non-degenerate
if for each maximal idealm of R, the quadratic formq ⊗ (R/m) is non-degenerate in the
above sense.

It can be seen that for any quadratic module(V , q) of odd rank≥ 3 over aperfectfield
of characteristic 2, the rank ofbq cannot be zero (i.e.,V (q) cannot be all ofV ) under the
hypothesis thatq does not vanish on non-zero elements of its radical. In particular, in the
above definition, whenR = k a perfect field of characteristic 2 andn = 3, the requirement
thatV (q) be one-dimensional is redundant.

Theorem 4.7. Let (Rn0, q0) be the generic quadratic module of Lemma4.1. Let
{x1, . . . , xn} be indeterminates and letI0 be the ideal inR0[x1, . . . , xn] generated by the
expressions that are the rows of the column vector defined by

V0 := (bq0(ei, ej ))

x1
...

xn


i.e., if we denote thei’th row by V0,i thenI0 := (V0,1, . . . , V0,n). Further, for eachk,
1 ≤ k ≤ n, let I0,k denote the ideal generated by{V0,i | i 6= k} so thatI0,k ⊂ I0. Then in
the ringR0[x1, . . . , xn]/I0,k (and hence also in the ringR0[x1, . . . , xn]/I0) one has the
following identity:

x2
kPn(ζi, ζij ) =

(
n∑
i=1

x2
i ζi +

∑
1≤i<j≤n

xixj ζij

)
(Mkk(bq0(ei, ej )))

where2Pn = det(bq0(ei, ej )) as noted just before Definition4.2and whereMkk denotes
the(k, k)-minor of(bq(ei, ej )) with the convention that forn = 1,M11(bq0(e1, e1)) := 1.

Proof. For n = 1 the formula readsx2
1P1(ζ1) = x2

1ζ1 which follows from the very
definitionP1(ζ1) := ζ1. Hence assumen ≥ 3. One then has, say fork = 1:
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2x2
1Pn(ζi, ζij ) = x2

1 det(bq0(ei, ej )) = x2
1

∣∣∣∣∣∣∣∣∣
2ζ1 ζ12 · · · ζ1n
ζ12 2ζ2 · · · ζ2n
...

...
. . .

...

ζ1n ζ2n · · · 2ζn

∣∣∣∣∣∣∣∣∣ .
Now one performs the following elementary operations on the determinant in the right
side of the above identity:

(1) push anx1 into the first column of the determinant;
(2) if Ci denotes thei’th column, replaceC1 byC1 +6i 6=1xiCi;
(3) push the remainingx1 into the first row of the determinant;
(4) if Ri denotes thei’th row, replaceR1 byR1 +6i 6=1xiRi.

After all this the above identity reads

2x2
1Pn(ζi, ζij ) =

∣∣∣∣∣∣∣∣∣∣

2
(∑
i

x2
i ζi + ∑

i<j

xixj ζij
)
V0,2 · · · V0,n

V0,2 2ζ2 · · · ζ2n
...

...
. . .

...

V0,n ζ2n · · · 2ζn

∣∣∣∣∣∣∣∣∣∣
.

Reading the identity moduloI0,1 and cancelling off the factor 2, one gets the required
result. Q.E.D.

Theorem 4.7 may be applied as follows to obtain a formula linking the half-discriminant
and the values of the quadratic form on its radical, valid for any free quadratic module of
finite odd rank over any commutative ring.

COROLLARY 4.8

LetR be any commutative ring, V a freeR-module of odd rankn andq a quadratic form
onV . Let {f1, . . . , fn} be anR-basis forV. Then one has for eachv = ∑

k ykfk in the
radical V (q), and for everyk with 1 ≤ k ≤ n, the following identity inR:

y2
k dq (f1, . . . , fn) = q(v)Mkk(bq(fi, fj )).

To prove this, define the ring homomorphismR0[x1, . . . , xn] −→ R by

ζi 7→ q(fi), ζij 7→ bq(fi, fj ) andxi 7→ yi.

Therefore,Pn(ζi, ζij ) 7→ dq({fj }) and (
∑
i x

2
i ζi + ∑

i<j xixj ζij ) 7→ q(v). But since
v ∈ V (q), this homomorphism factors throughR0[x1, . . . , xn]/I0.Now apply the previous
theorem.

COROLLARY 4.9

The quadratic formq is semi-regular in the sense of4.2 if and only if it is non-degenerate
in the sense of4.6.

Proof of Corollary4.9. In view of (1) ⇔ (2) of Proposition 4.4 and Definition 4.6, it is
enough to consider the case whenR is a fieldK. If char(K) is not 2, the proof follows
from (3), Lemma 4.5 and (2), Prop. 4.3. So assume that char(K) is 2.
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Semi-regularity⇒ Non-degeneracy: Apply the above corollary withR = K. By (1),
Prop. 4.3,dq (f1, . . . , fn) is non-zero. Hence for anyv 6= 0 ∈ V (q), choosing anyk such
thatyk 6= 0, the formula of the corollary implies that bothq(v) andMkk(bq(fi, fj )) are
non-zero. Henceq is non-degenerate.

Non-degeneracy⇒ Semi-regularity: Continuing with the above notations, one sees that
sinceV (q) is one dimensional, one may choose the basis{fj } in such a way that (i)
whenn ≥ 3, bq is non-singular on the subspace generated by{fj |j 6= n} and (ii)V (q)
is generated byfn. Apply the previous corollary with this choice. Takingv = fn in the
formula there, one gets thatdq (f1, . . . , fn) is non-zero. Now use (1), Prop. 4.3. Q.E.D.

Thus the theory of semi-regular quadratic modules over a commutative ring developed
in [9] holds good for non-degenerate quadratic modules. For example, the word ‘semi-
regular’ may be replaced by ‘non-degenerate’ in Proposition 4.4, showing that the notion
of non-degeneracy is preserved under extension of scalars.

5. Smoothness of limiting algebras with fixed identity

In this section, we shall prove that whenX = Spec(R) is affine and the rank 4 vector
bundleW onX is free with the nowhere vanishing global sectionw part of a global basis,
then Id-w-Sp-AzuW ∼= A9

R from which the assertion (3a) of Theorem 3.8 will follow
as explained earlier. This isomorphism will be natural in the sense that firstly, the nine-
dimensional affine space shall be the fiber product of a suitable commutative subgroup
scheme3w of Stab(w) isomorphic toA3

R with the scheme8V ∼= A6
R of quadratic forms

on a free rank 3 moduleV over R; secondly the isomorphism shall be given by the
morphism2 : 8V ×R 3w −→ Id-w-Sp-AzuW that associates a quadratic formq and an
automorphismg to the algebrag · A whereA is the algebra structure induced from the
even Clifford algebra ofq after identifying its underlying module as coming fromW. The
notion of semi-regularity of the previous section allows us to work over any commutative
ringR and in a characteristic-free way.

The affine scheme of quadratic forms8V . Let 8V be the six-dimensional affine space
overR corresponding to the rank 6 freeR-moduleS2(V ∨) which is the degree 2 part
of the symmetric algebraS(V ∨) of V ∨ overR. Let V haveR-basis{e1, e2, e3} and let
{X1, X2, X3} be the dual basis forV ∨ = HomR(V,R). Then

{Zij := Xi.Xj , Zk := X2
k , 1 ≤ i < j ≤ 3, 1 ≤ k ≤ 3}

is anR-basis forS2(V ∨) so that the natural algebra homomorphism from the symmetric
algebra overR of S2(V ) = (S2(V ∨))∨ to the polynomial algebra

R[Yi, Yij ] := R[Y1, Y2, Y3, Y12, Y13, Y23]

given by Z∨
k 7→ Yk, Z∨

ij 7→ Yij is an R-algebra isomorphism. Thus8V ∼=
Spec(R[Yi, Yij ]). This isomorphism can be used to interpret8V as theR-scheme of
quadratic forms onV as follows. For a commutativeR-algebraS with 1, we define
a bijective map by associating to(λi, λij ) ∈ Spec(R[Yi, Yij ])(S) the quadratic form
on VS := V ⊗R S given by

∑
i xi(ei ⊗ 1) 7→ ∑

i λix
2
i + ∑

i<j λij xixj . We see that
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this is functorial inS as well. Consider the quadratic module(V ⊗R R[Yi, Yij ], q)
where

q : V ⊗R R[Yi, Yij ] −→ R[Yi, Yij ]

is defined by
∑
i xi(ei⊗1) 7→ ∑

i Yix
2
i +∑i<j Yij xixj .We then see that the pair(8V , q)

represents the functor of quadratic forms onV so thatq is the universal quadratic form.
It is worth noting that under the usual identification of quadratic forms with symmetric
bilinear forms valid when 2∈ R∗, the quadratic form corresponding to(λi, λij ) would
be identified with the tuple(2 · λi, λij ) and this becomes a bad mapping in char. 2. It is
obvious that8V −→ X = Spec(R) base-changes well.

The open subscheme8srV of semiregular forms.For any commutativeR-algebraS with 1,
let8srV (S) be the subset of8V (S) consisting of semi-regular forms (Definition 4.2). It is
non-empty by (4), Proposition 4.3. Since semi-regularity is preserved under base-change
(Proposition 4.4), one sees thatS 7→ 8srV (S) is functorial. A direct computation shows
that the polynomialPn(ζi, ζij ) of Lemma 7.21 forn = 3 is given by

4ζ1ζ2ζ3 + ζ12ζ13ζ23 − (ζ1ζ
2
23 + ζ2ζ

2
13 + ζ3ζ

2
12).

ThenP3(Yi, Yij ) is a polynomial function on8V . Since 1 is a coefficient ofP3 ∈ R[8V ],
P3 is not a zero divisor. One sees from (1) of Proposition 4.3 that8srV is an open subfunctor
of 8V and in fact that8srV is represented by the open subscheme given by

8srV := Spec(R[Yi, Yij ]P3(Yi ,Yij ))

whereR[Yi, Yij ]P3(Yi ,Yij ) denotes localization. The universal quadratic formq induces a
semi-regular quadratic formqsr onV ⊗R R[Yi, Yij ]P3(Yi ,Yij ). It is obvious that8srV −→
X = Spec(R) base-changes well.

Preliminaries on Clifford algebras.For q ∈ 8V (S) let Cliff(VS, q) denote theClifford
algebraof the quadratic module(VS, q). It is by definition a unital associativeS-algebra
with a homomorphismi : VS −→ Cliff(VS, q) of S-modules which are universal with
respect to the propertyi(x) · i(x) = q(x) · 1Cliff(V ,q) ∀ x ∈ VS. The Clifford algebra exists
by Theorem (1.1.2), § 1, Chap. IV, [9]. FurtherCliff(VS, q) = Cliff0(VS, q)⊕Cliff1(VS, q)
is a(Z/2)-gradedS-algebra, withCliff0(VS, q) consisting of even degree (or zero degree)
elements andCliff1(VS, q) consisting of odd degree (or positive degree) elements. Thus
Cliff0(VS, q) is anS-subalgebra, called theeven Clifford algebraof (VS, q). The Clifford
algebra behaves well under base-change, i.e., ifS′ is a commutativeS-algebra, then one
has a canonical identification of(Z/2)-gradedS′-algebras

Cliff(VS ⊗S S
′, q ⊗S S

′) = Cliff(VS, q)⊗S S
′.

The morphismθ. Let S be a commutativeR-algebra with 1, andq ∈ 8V (S). The
Poincaŕe–Birkhoff–Witt theorem (Theorem 1.5.1, §1, Chap. IV, [9]) asserts thati : VS −→
Cliff(VS, q) identifiesVS as a submodule ofCliff(VS, q), and with this identification fur-
ther asserts that, sinceV is free of rank 3 withR-basis{ei |1 ≤ i ≤ 3}, Cliff(VS, q) is
free of rank 8/S, and thatCliff0(VS, q) andCliff1(VS, q) are free of rank 4/S with bases
{1Cliff; (e1⊗1)·(e2⊗1), (e2⊗1)·(e3⊗1), (e3⊗1)·(e1⊗1)}and{e1, e2, e3, (e1⊗1)·(e2⊗1)·
(e3⊗1)} respectively. LetW be theR-module corresponding toW.SinceW is also of rank
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4/R with w part of a basis, one completes to anR-basisw = w0, w1, w2, w3, and defines
theS-linear isomorphism9S : W ⊗R S ∼= Cliff0(VS, q) that mapsw0 ⊗ 1 7→ 1Cliff0 =
1Cliff, w1⊗1 7→ (e1⊗1)·(e2⊗1), w2⊗1 7→ (e2⊗1)·(e3⊗1), w3⊗1 7→ (e3⊗1)·(e1⊗1).
In particular takingS = R[Yi, Yij ], one gets an associativeR[Yi, Yij ]-algebra structure on
W ⊗R R[Yi, Yij ] with unit w ⊗R 1 and hence a morphism

θ : 8V −→ Id-w-AssocW .

The morphism2. Continuing with the above notations, if one identifiesW with R4 by
mapping the chosen basis onto the standard basis (column) vectors, then one sees that
for any commutativeR-algebraS with 1, the subgroup Stab(w)(S) ⊂ GLW(S) may be
identified with the subgroup ofGL(4, S) consisting of matrices of the form(

1 t1 t2 t3
0 B

)
with B ∈ GL(3, S).

Let 3w be the subgroup-subfunctor of Stab(w) defined as follows: Let3w(S) be the
subgroup of Stab(w)(S) consisting of matrices of the above form and further such that
B = I3 is the 3×3-identity matrix in GL(3, S). Then3w is represented by a closed normal
subgroupscheme3w of Stab(w) and3w ∼= A3

R. To understand the relevance of3w with
θ , let 0R ∈ 8V (R) denote thezeroquadratic form and consider the associativeR-algebra
structure

(A0)R := θ(R)(0R)

which is induced from the even Clifford algebra of the zero quadraticR-form onW. It is
commutative, since all productswi · wj = 0 for 1 ≤ i, j ≤ 3. Let Stab Stab(w) ((A0)R)

denote thestabilizer subgroup functorof (A0)R in Stab(w). Then a straightforward com-
putation gives the following:

Lemma 5.1

(1) Stab Stab(w) ((A0)R) is represented by a closed subgroupschemeStab Stab(w) ((A0)R)

of Stab(w) whose set ofS-valued points is given by{(
1 0
0 B

)
| B ∈ GL(3, S)

}
.

(2) Stab(w) is the semi-direct product of3w with Stab Stab(w) ((A0)R).

DEFINITION 5.2

Let2 : 8V ×3w −→ Id-w-AssocW be theR-morphism given by the composition

8V ×3w
θ×Id−→ Id-w-AssocW ×3w

∼=−→ 3w × Id-w-AssocW
µ−→ Id-w-AssocW

whereµ is the action morphism induced from that of Stab(w) and the arrow in the middle
is the ‘swapping isomorphism’. Thus, forq ∈ 8V (S) and(t) := ( 1 t1 t2 t3

0 I 3

) ∈ 3w(S),
one has by definition:2(q, (t)) = (t) · θ(q).
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Theorem 5.3. The schematic image of the morphism2 : 8V ×3w −→ Id-w-AssocW is
Id-w-Sp-AzuW and the induced morphism intoId-w-Sp-AzuW is an isomorphism which
maps the open subscheme8srV ×3w onto the open subschemeId-w-AzuW .

Proof. We first recall the following crucial fact (see (1), Prop. 3.2.4, Chap. IV [9]):
The even Clifford algebra of a semi-regular quadratic form is an Azumaya algebra.
Using this fact and the definition of2, one sees that the morphism2 restricted to
8srV ×3w factors through Id-w-AzuW by a morphism2sr such that the following diagram is
commutative

8V ×3w
2−−−−→ Id-w-AssocWx x

8srV ×3w
2sr−−−−→ Id-w-AzuW

where the vertical arrows are the canonical open immersions. The above diagram base-
changes well in view of (2) of Theorem 3.4. Notice that since the baseX = Spec(R) is
affine,2 is a morphism of affine schemes and therefore has a schematic image by Case (1)
of Proposition 3.6. The same is true of each of the two vertical arrows and of2sr since8srV
is a principal open subset of8V (by definition) and since Id-w-AzuW ↪→ Id-w-AssocW
is affine by (1) of Theorem 3.4. As noted earlierP3 ∈ R[8V ] = R[Yi, Yij ] is not a zero
divisor. HenceR[8srV ] = R[8V ]P3 shows that8srV ↪→ 8V is schematically dominant, i.e.,
the limiting scheme of8srV is8V (cf. assertion (5), Proposition 3.7). Now from assertion
(6) of Proposition 3.7, the flatness of3w overX = Spec(R) implies that8srV × 3w ↪→
8V ×3w is also schematically dominant. So using the commutative diagram above, and
the transitivity of the schematic image (assertion (3), Proposition 3.7), we see that in order
to prove the theorem, it is enough to show that

(* ) 2sr is schematically dominant and surjective, and2 is a closed immersion.

We now claim that the above properties are equivalent to

(** ) 2sr is proper and2 is a closed immersion.

Suppose (** ) holds. To show (* ), we only need to show that2sr is surjective and schemat-
ically dominant. From (** ) it follows that2srK := 2sr ⊗R K is functorially injective
and proper for each algebraically closed fieldK which is anR-algebra. That both the
K-schemes(8srV × 3w) ⊗R K and(Id-w-AzuW) ⊗R K are integral and smooth of the
same dimension follows from the smoothness of relative dimension nine and geometric
irreducibility /R of 8srV × 3w (which is obvious), and of Id-w-AzuW from statement
(4), Theorem 3.4. Since2srK is differentially injective at each closed point, it has to be a
smooth morphism by Theorem 17.11.1 of EGA IV [6] and thus has to be an open map.
But by (** ) it is also proper and hence a closed map. Hence2srK is bijective etale, and
hence an isomorphism. This also gives that2sr is surjective. Now from Cor. 11.3.11 of
EGA IV and from the flatness of8srV × 3w over R, it follows that2sr is itself flat,
and hence schematically dominant since it is faithfully flat (being already surjective).
Therefore (** ) H⇒ (* ).

We shall establish (** ) by computing2. For this we shall have to first computeθ which
was used to define2. The following outlines the method to compute the multiplication
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∗q in the algebraθ(q) for q ∈ 8V (S), S a commutativeR-algebra with 1. For ease
of reading, we shall writex◦ for x ⊗ 1 in the following. Letq correspond to the point
(λ1, λ2, λ3, λ12, λ13, λ23) ∈ S6, i.e.,q(e◦i ) = λi andbq(e◦i , e

◦
j ) = λij , (1 ≤ i < j ≤ 3).

Then by definition,θ(q) is the associativeS-algebra structure onWS with identity element
w◦ = w◦

0 induced from the isomorphism9S : WS
∼= Cliff0(VS, q). Since thew◦

i are an
S-basis forWS , it is enough to computew◦

i ∗q w◦
j for (1 ≤ i, j ≤ 3). Let θijk(q) denote

the coefficient ofw◦
k for 0 ≤ k ≤ 3 in the expression forw◦

i ∗q w◦
j , for each pair of indices

(i, j) with 1 ≤ i, j ≤ 3. Theseθijk(q) are polynomial functions of theλi and theλjk
which may be computed explicitly as follows. For example, suppose one wants to compute
the productw◦

2 ∗q w◦
1. Using the properties of the multiplication inCliff0(VS, q), one gets

the following:

w◦
2 ∗q w◦

1 : = 9−1
S {(e◦2 · e◦3) · (e◦1 · e◦2)} = 9−1

S {(λ23(1
◦)

− e◦3 · e◦2) · (λ12(1
◦)− e◦2 · e◦1)}

= 9−1
S {λ23λ12(1

◦)− λ23e
◦
2 · e◦1 − λ12e

◦
3 · e◦2

+ (e◦3 · e◦2) · (e◦2 · e◦1)}
= 9−1

S {λ23λ12(1
◦)− λ23(λ12(1

◦)− e◦1 · e◦2)− λ12(λ23(1
◦)

− e◦2 · e◦3)+ e◦3 · (e◦2 · e◦2) · e◦1}
= −λ12λ23(w

◦)+ λ23(w
◦
1)+ λ12(w

◦
2)+ λ2(w

◦
3).

Thusθ210(q) = −λ12λ23, θ211(q) = λ23, θ212(q) = λ12, andθ213(q) = λ2. In a similar
fashion, the other products may be computed. The following result is needed to compute
2 from θ .

Lemma5.4. Let q ∈ 8V (S) and (t) := ( 1 t1 t2 t3
0 I 3

) ∈ 3w(S), for a commutativeR-
algebraS with 1. Let∗(q,t) denote the multiplication in the algebra2(q, (t)) = (t) · θ(q)
and as before, ∗q denote the multiplication inθ(q). Then one has

(1) (t)(w◦
i ) = tiw

◦ + w◦
i for (1 ≤ i ≤ 3);

(2) (t)−1(w◦
i ) = −tiw◦ + w◦

i for (1 ≤ i ≤ 3);
(3) w◦

i ∗(q,t) w◦
j = (t)(w◦

i ∗q w◦
j )− tjw

◦
i − tiw

◦
j − ti tjw

◦.

The first two formulae follow easily by direct computation. To prove the third formula,
one uses the first two formulae along with the following one:

(w◦
i ) ∗(q,t) (w◦

j ) = (t){((t)−1(w◦
i )) ∗q ((t)−1(w◦

j ))}.
One may now compute the multiplication in the algebra(t) · θ(q) by making use of the
formulae listed in the above lemma since the method for computing the products of the
formw◦

i ∗q w◦
j had already been illustrated before the lemma. Let2ijk(q, (t)) denote the

coefficient ofw◦
k for 0 ≤ k ≤ 3 in the expression forw◦

i ∗(q,t) w◦
j , for each pair of indices

(i, j) with 1 ≤ i, j ≤ 3. These2ijk(q, (t)) are polynomial functions of theλ’s and the
t ’s. Computations give in particular the following:

2132(q, (t)) = λ1 ; 2213(q, (t)) = λ2 ; 2231(q, (t)) = −λ3 ;
2122(q, (t)) = −t1 ; 2133(q, (t)) = λ12 − t1 ; 2121(q, (t)) = −t2 ;
2211(q, (t)) = λ23 − t2 ; 2232(q, (t)) = −t3 ; 2131(q, (t)) = λ13 − t3.
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The upshot of the above computations is that, if one denotes by21 the composition of the
following two morphisms

8V ×3w
2−→ Id-w-AssocW ↪→ AlgW

where the second one is the canonical closed immersion, so that theR-algebra homomor-
phism2#

1 of coordinate rings corresponding to21 is given by the composition

R[Zijk] ∼= R[AlgW ]�R[Id-w-AssocW ]
2#

−→ R[8V ×3w]
∼= R[L1, L2, L3, L12, L23, L13, T1, T2, T3]

then under2#
1 we have shown that

Z132 7→ L1 ; Z213 7→ L2 ; Z231 7→ −L3 ;
Z122 7→ −T1 ; Z133 7→ L12 − T1 ; Z121 7→ −T2 ;
Z211 7→ L23 − T2 ; Z232 7→ −T3 ; Z131 7→ L13 − T3.

Therefore we see that2#
1 is surjective, which implies that2# is surjective, i.e.,2 is a

closed immersion. Further the above table shows that both2 and2sr are proper since
they satisfy the valuative criterion for properness. Thus the conditions (** ) are verified.

Q.E.D. for Theorem 5.3

B: Applications to desingularization

6. Application 1: The Seshadri desingularization in positive characteristic

Notations for this section

X: a smooth, irreducible, complete curve of genusg ≥ 2 over an
algebraically closed fieldk.

USSX (n, d): the normal projective variety of equivalence classes ofsemi-
stablevector bundles onX of rankn and degreed [15].

USX(n, d): the smooth open subvariety ofUSSX (n, d) consisting ofstable
vector bundles. Ifn is coprime tod, semi-stability is the same
as stability. Whend = 0, this subvariety is precisely the set of
smooth points ofUSSX (n, 0) unlessn = 2 andg = 2 in which
caseUSSX (n, 0) is smooth (see [13]).

VX(n, 0): the category of rankn and degree 0 vector bundles onX.

VSSX (n, 0): the subcategory ofVX(n, 0) consisting of semi-stable vector
bundles.

VSX(n, 0): the subcategory ofVSSX (n, 0) consisting of stable vector bundles.

The problem is to desingularizeUSSX (2, 0). Seshadri’s solution in [16] is based on the
smoothness of the variety of specializations of(2× 2)-matrix algebras over algebraically
closed fields of characteristics6=2.Since we have extended this smoothness to an arbitrary
base scheme (the smoothness of Id-w-Sp-AzuW of Theorem 3.8), we are able to extend
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Seshadri’s methods to char. 2 as well. The birationality of the desingularizing morphism
over the open subscheme of stable bundles in positive characteristics is mentioned though
not explicitly proved in [16], and even in the more elaborate account [17], this birationality
is arrived at from the claim that the morphismUSX(n, d) −→ USSX (n2, d · n) given on
points by [E] 7−→ [n · E] is an isomorphism over the image – a claim which is again
not explicitly proved. Some work is done in §6.2 to show the generic smoothness from
which the birationality is deduced (in the case of zero characteristic this would of course
follow from general considerations). The rest of the proof is more or less on the same
lines as in [16] or [17] except that we make some local simplifications – in particular we
are able to do without the notion of rigidified parabolic family and hence avoid going into
questions of descent etc. that are involved in the existence of universal objects for such
families. Section 6.5 announces the generalization of the above result over an arbitrary
base.

6.1 Preliminaries on the Seshadri Construction

For the easy reference of the reader, in this subsection we recall the main facts underlying
Seshadri’s construction in [16]. The ideas and notations introduced are essential for the
rest of the discussion.

6.1.1 Facts on parabolic bundles.Throughout this section one works with parabolic
vector bundles of a certain type, which is recalled next. The reader may consult [11] for a
general discussion.

DEFINITION 6.1

Fix a (closed) pointP ∈ X(k) and a pair of real numbers(α1, α2) such that 0<
α1 < α2 < 1. A parabolic structure atP with weights(α1, α2) on an objectV ∈
VX(4, 0) is a codimension 1 subspace1 of the fiberVP of V at P . The pair(V ,1)
is called aparabolic bundle. The parabolic degreeof (V ,1) (denoted pardeg(V ,1))
is the numberα1 + 3 · α2 and theparabolic slopeof (V ,1) (denoted parµ(V,1)) is
pardeg(V ,1)/4.LetW be a proper sub-bundle ofV.Then given a parabolic structure onV ,
W acquires the structure of a parabolic sub-bundle(W,1|W) of (V ,1)which is defined as
follows:

Case1. If WP is not a subspace of1, then1|W := WP ∩1 and

pardeg(W,1|W) := degree(W)+ α1 + (rank(W)− 1) · α2,

parµ(W,1|W) := pardeg(W,1|W)/rank(W).

Case2. If WP is a subspace of1, then1|W := (0) and

pardeg(W,1|W) := degree(W)+ rank(W) · α2,

parµ(W,1|W) := pardeg(W,1|W)/rank(W).

Given a parabolic structure onV , it is called aparabolic semi-stable(resp.parabolic
stable) structure if the following condition is satisfied: for every proper sub-bundleW

of V given the structure of a parabolic sub-bundle ofV as explained above, one has
parµ(W) ≤ parµ(V ) (resp. parµ(W) < parµ(V )).
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The symbolsPVX(4, 0), PVSSX (4, 0) andPVSX(4, 0) will respectively denote the cate-
gory of parabolic, parabolic semi-stable and parabolic stable vector bundles onX as defined
above with the underlying vector bundles being of rank 4 and degree 0. We have the fol-
lowing elementary result relating parabolic semi-stability with the usual semi-stability in
relation to the choice of weights.

Lemma6.2. The real numbersαi may be chosen such thatPVSSX (4, 0) = PVSX(4, 0) and
such that(V ,1) ∈ PVSSX (4, 0) H⇒ the underlying vector bundleV is semi-stable.

A little writing-down shows that if one choosesα2 − α1 to be a positive irrational
number less than 1, then the parabolic slope of any proper sub-bundle ofV (given the
canonical parabolic sub-bundle structure explained above) can never equal the parabolic
slope ofV. If, further, one choosesα2 such thatα2 < 1/4, then one sees that the claims
of the above lemma are satisfied. We make such a choice of weights and fix it for the
rest of the discussion. We next recall the notion of families of parabolic bundles from
§3 of [16].

DEFINITION 6.3

Let T be anyk-scheme. The following data determine a family(V ,D) in PVSX(4, 0)
parametrized byT :

(1) Underlying familyV in VX(4, 0). V is a vector bundle of rank 4 onXT := X×k T

such that for every pointt ∈ T (K), K any algebraically closed extension field of
k, if Vt is defined to be the base-change ofV to XK := X ×k Spec(K) (via t),
thenVt ∈ VXK (4, 0) – the category of rank 4 degree zero vector bundles onXK.

(2) Underlying quasi-parabolic family(V ,D) in PVX(4, 0). LetVP denote the base-
change ofV to the reduced closed subschemeT ∼= {P } × T ↪→ XT (via the
closed immersion of the pointP ∈ X(k)). ThenD is a global section of the
projective bundleP(VP ) associated to the locally-free sheaf (associated to)VP .

Note thatD corresponds to a quotient line bundle ofVP whose kernel at each point
t ∈ T (K) (k ⊂ K = K) defines a codimension 1 subspaceDt of the fiber ofVt at
PK := {P } ×k K ∈ XK(K).

(3) With the above notations, for allt ∈ T (K), one has that(Vt ,Dt ) ∈ PVSXK (4, 0) –
the category of parabolic stable vector bundles onXK defined in a manner similar
to Definition 6.1 above.

PROPOSITION 6.4

(1) There exists a parabolic structure(W ⊕W,1) ∈ PVSX(4, 0) for eachW ∈ VSX(2, 0).
(2) For any two such parabolic structures11 and12, the objects(W ⊕ W,11) and
(W⊕W,12) are isomorphic.(3) If R is a reduced noetherian localk-algebra with residue
fieldk, then the analogues of(1) and(2) above hold for families parametrized bySpec(R).

For proofs of (1)–(3) see [16]. Assertion (3) uses the fact that parabolic semi-
stability/stability is an open condition on the parameter space (§4 of [11]). Before
proceeding, one needs the following facts about the moduli space of parabolic semi-stable
vector bundles onX in PVSSX (4, 0) from the paper of Mehta–Seshadri [11].
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Theorem 6.5. With the notations of6.1above one has the following:

(1) on PVSSX (4, 0) there is defined a natural equivalence of objects such that the set
of equivalence classes is the set of(closed) points of a normal projective inte-
gral scheme of finite typePUSSX (4, 0) of dimension4g where g is the genus
ofX;

(2) the above equivalence reduces to isomorphism on the subcategoryPVSX(4, 0) and
the set of isomorphism classes is precisely the set of(closed) points of a smooth
open subschemePUSX(4, 0) of PUSSX (4, 0);

(3) PUSSX (4, 0) has the universal mapping property for families of parabolic
semi-stable vector bundles onX in PVSSX (4, 0) parametrized by noetherian
k-schemes;

(4) for each noetheriank-schemeT , let F(T ) denote the set of isomorphism classes
of families inPVSX(4, 0) parametrized byT . Thus one gets a contravariant functor
F : {k-schemes} −→ {Sets}. ThenPUSX(4, 0) is a coarse moduli space for the
functorF defined above. In other words, there exists a morphism of functors

8 : F −→ Mork(−,PUSX(4, 0))

such that(a) the pair(8,Mork(−,PUSX(4, 0))) is universally repelling and(b) for
every algebraically closed extension fieldK of k the map8(K) is bijective.

6.1.2 The identification of the smooth locus of stable bundles

For eachW ∈ VSX(2, 0), we now fix one parabolic structure1 as in statement (1) of
Proposition 6.4 above, and denote it by1(W). Then one has

PROPOSITION 6.6

(1) The association[W ] 7→ [(W ⊕W,1(W))] is a well-defined injective set-theoretic
map which is the underlying map (on closed points) of a morphism of finite type of
k-schemes

ζ S2,k : USX(2, 0) −→ PUSX(4, 0).

(2) LetK be an algebraically closed extension field ofk and letXK := X⊗k K. Then
the corresponding morphism ofK-schemes

ζ S2,K : USXK (2, 0) −→ PUSXK (4, 0)

is simply the base-change ofζ S2,k. In particular, the topological map underlying the

morphismζ S2,k is injective.

By Proposition 6.4, for a family of stable rank 2 degree 0 vector bundles onX parametrized
by T , one gets a morphismT −→ PUSX(4, 0). Hence assertion (1) is a consequence
of the fact thatUSX(2, 0) is a coarse moduli space. Assertion (2) uses the following fact:
PUSX(4, 0) is a geometric quotient under a free action [11] and the same is true ofUSX(2, 0)
[15]. Therefore, by Prop. 0.9 of Mumfordet al[12], each of these moduli spaces is the base
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space over which the geometric quotient is a principal fiber bundle with structure group
the corresponding reductive algebraic group; hence these moduli spaces are well-behaved
under base-change, viz.,USX(2, 0)⊗kK = USXK (2, 0)andPUSX(4, 0)⊗kK = PUSXK (4, 0).
Further if one were to work with the corresponding categories of vector bundles overXK ,
then the analogue of Prop. 6.4 overK also holds. From these, (2) easily follows. Henceforth
we denoteζ S2,k simply byζ S2 .

Properness of the scheme-theoretic image ofζ S2 . Since the parabolic weights have been
chosen such thatPVSSX (4, 0) = PVSX(4, 0) (see hypothesis following Lemma 6.2),
cases (1) and (2) of Theorem 6.5 imply thatPUSX(4, 0) is a smooth projective scheme.
Further, sinceUSX(2, 0) is integral, the scheme-theoretic image ofζ S2 is an integral closed
subscheme ofPUSX(4, 0) and hence in particular it is a projective integral scheme of finite
type. The scheme-theoretic image ofζ S2 is the candidate for desingularizingUSSX (2, 0). It
will be shown that the desingularization is an isomorphism precisely overUSX(2, 0), with
this isomorphism being given by the inverse ofζ S2 .

The subschemeN S
X(4, 0) ofPUSX(4, 0). The next thing is to define a subschemeN S

X(4, 0)
of PUSX(4, 0) (which will later turn out to be isomorphic toUSX(2, 0) via ζ S2 ) and to show
thatζ S2 factors throughN S

X(4, 0). The definition ofN S
X(4, 0) will require three steps: (A)

Proving that(V ,1) ∈ PVSX(4, 0) ⇒ dim (End(V )) ≤ 4. (B) Determination of a reduced
closed subschemeQ USX(4, 0) of PUSX(4, 0). (C) Determination ofN S

X(4, 0) as an open
subscheme ofQ USX(4, 0). Step (A) follows from Prop. 1(c) of [16].

PROPOSITION 6.7

Let(V ,1) ∈ PVSX(4, 0). Thendimk(End(V )) ≤ 4. If k ⊂ K is an algebraically closed
extension field, then a similar inequality holds forPVSXK (4, 0) whereXK := X ⊗k K.

Before proceeding, one recalls thatPUSX(4, 0) is the geometric quotient under a free
action ofPGL(n, k) (for a suitablen) on a certain reduced scheme of finite typePRSX.
With the notations of (4), Theorem 6.5,∃ a locally universal family(V,D) whose isomor-
phism class belongs toF(PRSX), and the geometric quotient morphismq : PRSX −→
PUSX(4, 0) is just the morphism8(PRSX)([(V,D)]). Then the following concludes
Step (B).

PROPOSITION 6.8

(1) Let(Vt ,Dt ) denote the base-change of(V,D) toX⊗k K via a pointt ∈ PRSX(K)
whereK is an algebraically closed extension field ofk. Then the subset of points
of the topological space underlyingPRSX given by

{t |dimK(End(Vt )) = 4}

is closed and hence inherits the structure of a reduced closed subschemeQRSX of
PRSX.

(2) QRSX is saturated with respect toq and q restricted toQRSX is a principal
PGL(n, k)-bundle over its(scheme-theoretic) image Q USX(4, 0) which is a
reduced closed subscheme ofPUSX(4, 0).
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The proof of (1) follows from (A) and upper-semicontinuity of fiber dimensions. As for
the proof of (2): As just recalled,PUSX(4, 0) is a geometric quotient under a free action
and hence by Proposition 0.9 of Mumfordet al [12], q : PRSX −→ PUSX(4, 0) is a
principalPGL(n, k)-bundle. In particularq is a flat finite-type morphism (in fact, a smooth
morphism sincePGL(n, k) is smooth) and is hence open. The condition definingQRSX
is true at a pointt ∈ QRSX(K) iff it is true at all points in thePGL(n, k)-orbit of t , since
8(K) is bijective by (4b) of Theorem 6.5 above. ThusQRSX is saturated with respect to
q, i.e.,QRSX = q−1(q(QRSX)). But as noted above,q is open and surjective, so

q(PRSX −QRSX) = PUSX(4, 0)− q(QRSX)

is open, implying thatq(QRSX) is closed inPUSX(4, 0). SincePRSX is reduced,q(QRSX),
given the reduced induced closed subscheme structure ofPUSX(4, 0) is the scheme-
theoretic image ofq|QRSX. Denote this reduced closed subscheme byQ USX(4, 0). Now
q|QRSX : QRSX −→ Q USX(4, 0) is a principalPGL(n, k)-bundle since it is the base-
change ofq : PRSX −→ PUSX(4, 0) to Q USX(4, 0). This proves (2). We are left with step
(C): the determination ofN S

X(4, 0) as an open subscheme ofQ USX(4, 0).

PROPOSITION 6.9

The subset of points[(V ,1)] ∈ PUSX(4, 0) such thatEnd(V ) ∼= M(2, k) is the set of
closed points of a locally closed subschemeN S

X(4, 0) and the morphismζ S2 : USX(2, 0) −→
PUSX(4, 0) of Proposition6.6 factors throughN S

X(4, 0).

Proof. By the standard theorem on cohomology and base-change, part (1) of Proposi-
tion 6.8 implies that the coherent sheaf

A := (pQRSX
)∗(End(V|QRSX ×X))

onQRSX is locally free of rank 4. It has the natural structure of a sheaf of associativeOQRSX
-

algebras with identity. IfW ∈ USX(2, 0), then [(W ⊕W,1(W))] ∈ PUSX(4, 0) (this is a
point of the set-theoretic image ofζ S2 ). Further, End(W⊕W) ∼= M(2, k) sinceW is stable.
So by the relevant analogue of Proposition 3.3,∃ a maximal open subschemeNRSX ofQRSX
restricted to whichA is a sheaf of AzumayaONRSX

-algebras. By part (2) of Proposition 6.8,

the topological image ofNRSX underq|QRSX determines an open subschemeN S
X(4, 0) of

Q USX(4, 0) andq|NRSX : NRSX −→ N S
X(4, 0) is a principalPGL(n, k)-bundle. By part

(2) of Proposition 6.6, it is clear that the topological map underlyingζ S2 factors through
N S
X(4, 0), and sinceUSX(2, 0) andQ USX(4, 0) are reduced, this morphism indeed factors

throughN S
X(4, 0). Q.E.D.

Integrality ofN S
X(4, 0)

PROPOSITION 6.10

The morphismζ S2 : USX(2, 0) −→ N S
X(4, 0) of Proposition6.9 is bijective onK-valued

points for each algebraically closed extension fieldK ⊃ k. SinceUSX(2, 0) is irreducible,
it therefore follows thatN S

X(4, 0) is an integral scheme of finite type.
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The proof of the above depends on the following crucial result of Seshadri:

Theorem 6.11   (Props. 3–4, [16])

(a) LetK be any algebraically closed extension ofk, and let(V ,1) ∈ PVSX(4, 0)(K)
such thatdimK(End(V )) = 4.Consider the canonical representation ofEnd(V )on
the fiberVPK ofV atPK ∈ XK(K) = (X⊗k K)(K), wherePK is the base-change
of P ∈ X(k) to K. (As noted earlier, (V ,1) ∈ PVSXK (4, 0) ⇒ V ∈ VSSXK (4, 0).
Therefore this canonical representation is faithful.) Then we have: (1) this represen-
tation can be identified with the dual of the right regular representation ofEnd(V )
and (2) the structure group of the principal bundlePr(V ) of V may be identified
with Aut(VPK ), and via the above representation ofEnd(V ), the structure group
of this principal bundle can be reduced to the opposite group of the group of units
in End(V ).

(b) When properly formulated, all the above results remain true for families
parametrized bySpec(R) whereR is a complete noetherian localk-algebra with
residue fieldk.

We briefly indicate whyζ S2 is surjective on geometric points. Let [(V ,1)] ∈ N S
X(4, 0)(K)

whereK is any algebraically closed extension ofk. By the definition ofN S
X(4, 0) it

follows that End(V ) ∼= M(2,K) – the algebra of(2 × 2)-matrices overK. Applying (a)
of Theorem 6.11, we get that the representation of Aut(V ) on VPK is equivalent to the
diagonal representation of GL(2,K) in GL(4,K). Further applying (b) of Theorem 6.11,
we see that there exists a principal Aut(V ) ∼= GL(2,K)-bundle from which the principal
bundle obtained by extension of structure group to Aut(VPK ) is Pr(V ). This means that
∃ a rank 2 degree zero bundleW onXK such thatV ∼= W ⊕ W. But sinceV is semi-
stable, the same must be true ofW . Further, ifW is not stable, then it contains a line
sub-bundleL of degree zero, which implies thatV contains a sub-bundle isomorphic to
L⊕L from which one can prove that(V ,1) cannot be parabolic semi-stable. Now by the
analogue of Proposition 6.4 forXK , ∃ 1′ such that(W ⊕W,1′) ∈ PVSXK (4, 0). By part

(2) of Proposition 6.6, it follows thatζ S2 ([W ]) = [(W ⊕ W,1′)]. Let (W ⊕ W,1′′) ∈
PVSXK (4, 0) be the parabolic stable bundle induced by an isomorphismV ∼= W ⊕ W

from (V ,1). By the analogue of (2) of Proposition 6.4 forXK , (W ⊕W,1′) ∼= (W ⊕
W,1′′). This implies that [(V ,1)] is the image of [W ] under ζ S2 . Thus ζ S2 is indeed
surjective.

6.2 Generic smoothness and birationality

For a moment, we revert to the notations of §3 of A: taking there the base scheme to be
Spec(k), andW the four-dimensional vector space corresponding toW andw ∈ W any
non-zero vector, and denoting Id-w-Sp-AzuW and Id-w-AzuW in this case respectively by
Id-w-Sp-AzuW and Id-w-AzuW , from (3a) of Theorem 3.8 we get that Id-w-Sp-AzuW ∼=
A9
k and is exactly the reduced closed subscheme structure on the closure of the

Stab(w)-orbit Id-w-AzuW of (2 × 2)-matrix algebra structures onW with multiplicative
identityw.

Lemma6.12. OnId-w-Sp-AzuW ∃ a natural sheafB′′
k of associative algebras with identity

whose underlying module is free of rank4 and which is universal(resp. locally universal)
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for sheavesF of associativeOT -algebras with identity on integralk-schemesT satisfying
the following properties: (1) the module underlyingF is free(resp. locally free) of rank4,
and(2)∃ a pointt ∈ T (k) such that the fiberFt at t ofF is isomorphic to a(2×2)-matrix
algebra overk.

To prove the above, we may without loss of generality assume thatF is free, and
with the notations of the proof of Theorem 3.4, we see that one may takeB′′

k to be
(Bw|Id-w-Sp-AzuW). Continuing with the above notations, leta ∈ Id-w-AzuW be a
closed point and letRa be the completion of the local ring at that point. LetB′′

k,a be the
algebra induced byB′′

k overRa. If ma is the maximal ideal ofRa , then by the defini-
tion of Id-w-AzuW , one has thatB′′

k,a/(maB′′
k,a) can be identified with the(2 × 2)-matrix

algebra structure overk corresponding to the pointa ∈ Id-w-AzuW . SinceRa is a com-
plete local ring, this implies by property (6) of Proposition 3.2 thatB′′

k,a can be identified
with the(2 × 2)-matrix algebra structure overRa corresponding to the natural morphism
Spec(Ra) −→ Id-w-AzuW . So if ρa denotes the dual of the right regular representa-
tion of B′′

k,a , thenρa may be identified with the dual of the right regular representation
of M(2, Ra). But for this latter representation, one observes that ifRa −→ K is any
k-homomorphism into any algebraically closed extension fieldK of k, then the induced
representation is equivalent to the diagonal representation ofM(2,K) in M(4,K). Now
Id-w-Sp-AzuW is a variety, so its complete local rings are reduced, and hence the above
observation implies the following result:

Lemma6.13. The above representationρa is equivalent to the diagonal representation of
M(2, Ra) in M(4, Ra).

The above lemma will be applied in the proof of the following proposition.

PROPOSITION 6.14

LetA be a complete noetherian localk-algebra with residue fieldk. Then the canonical
map

Mork(SpecA,USX(2, 0)) −→ Mork(SpecA,N S
X(4, 0)) : f 7−→ ζ S2 ◦ f

is surjective, whereζ S2 is the morphism of Proposition6.9.

Proof. Special Case: First assume thatA is reduced.Start withg ∈ Mork(SpecA,N S
X(4, 0)).

Sinceq|NRSX : NRSX −→ N S
X(4, 0) is a principalPGL(n, k)-bundle (see proof of

Proposition 6.9),g lifts to g′ ∈ Mork(SpecA,NRSX). Let (VA,DA) be the pull back to
XA := X × SpecA, of the restriction of the locally universal family(V,D) (recalled
before Proposition 6.8) toX ×NRSX, via the morphism(IdX × g′).

Let AA be the algebra corresponding to the pullback viag′ to SpecA of the sheaf of
Azumaya algebrasA|NRSX introduced in the proof of Proposition 6.9. SinceN S

X(4, 0) is
integral, and sinceq|NRSX is a principalPGL(n, k)-bundle,NRSX is also integral. Hence
by Lemma 6.12,A|NRSX is locally isomorphic to a pullback ofB′′

k |Id-w-AzuW . Therefore,
it follows from Lemma 6.13 above that the dual of the right regular representation ofAA

is equivalent to the diagonal representation ofM(2, A) in M(4, A).
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(W ⊕ W,D(W))

RSX

ζ ′′
r

NRSX

(V,D)

q2

USX(2, 0) N S
X(4, 0)

q

f g

f ′ g′

Spec(A)

ζ S2

Let Pr(VA) denote the principal bundle ofVA. Identify the structure group of this
principal bundle with AutA(AA). By (b), Theorem 6.11, this structure group may be
reduced, via the representation ofAA of the previous paragraph, to the opposite group of
the group of units inAA. But as seen in the previous paragraph, this is equivalent to the
diagonal embedding of GL(2, A) in GL(4, A). Thus∃ a rank 2 vector bundleWA onXA
such thatWA ⊕ WA

∼= VA.
SinceVA is a family in VSSX (4, 0), WA is a family in VSSX (2, 0). It follows from the

fact that(VA,DA) is parabolic stable thatWA is a family inVSX(2, 0). We now use the
following facts aboutUSX(2, 0) from [15]: the integral smooth open subschemeUSX(2, 0)
of USSX (2, 0) is the geometric quotient under a free action ofPGL(m, k) (for a suitable
m) on an integral smooth open subschemeRSX of a certain Grothendieck Quot scheme.
There is a locally universal familyW of vector bundles onX in VSX(2, 0) parametrized
by RSX which is tautological in the sense that ifq2 : RSX −→ USX(2, 0) is the geometric
quotient morphism and ifWr is defined to be the base-change ofW to a closed point
r : Spec(k) −→ RSX, then after identifyingX ×k Spec(k) with X, q2(r) = [Wr ]. Now
USX(2, 0) has the universal mapping property for families of rank 2 degree zero stable
bundles, so one gets a morphismf ∈ Mork(SpecA,USX(2, 0)). The proof of the present
proposition will follow if one shows thatζ S2 ◦ f = g. Sinceq2 is a smooth morphism,
f factors throughq2, i.e.,∃ f ′ ∈ Mork(SpecA,RSX) such thatq2 ◦ f ′ = f. Let r ∈ RSX
be a closed point above the image of the closed point viaf. ThenWA ⊕ WA inherits the
structure of a family(WA ⊕ WA,1A) in PVSX(4, 0) parametrized by SpecA via f ′ from
the family(W ⊕ W|X×USr ,D(W)) given by the following result (whose proof involves
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an application of Nakayama’s lemma and the fact that parabolic semi-stability is an open
condition on the parameter space).

Lemma6.15. LetW ∈ VSX(2, 0) and let r be a closed point ofRSX such thatq2(r) =
[W ] = [Wr ]. Let1(Wr ) be given by(1),Proposition6.4such that(Wr ⊕Wr ,1(Wr )) ∈
PVSX(4, 0). Then1(Wr ) can be extended to give a familyD(W) of parabolic structures in
PVSX(4, 0) parametrized by a suitable open neighborhoodUSr of r such that the underlying
family inVSSX (4, 0) is (W ⊕ W)|X × USr .

Because of the local universality of the family(V,D) onPRSX, and becauseUSX(2, 0) is
reduced, the compositionζ S2 ◦q2 factors locally throughq : NRSX −→ N S

X(4, 0), i.e., one
has a morphismζ ′′

r from a suitable neighborhood ofr intoNRSX such thatq ◦ζ ′′
r = ζ S2 ◦q2.

The pullbacks of the family(V,D) via ζ ′′
r ◦ f ′ andg′ are isomorphic as families in

PVSX(4, 0) because of the isomorphismWA ⊕ WA
∼= VA and (3) of Proposition 6.4. So

the morphismsζ ′′
r ◦ f ′ andg′ differ by anA-valued point ofPGL(n, k) – here the fact

thatq|NRSX : NRSX −→ N S
X(4, 0) is a principalPGL(n, k)-bundle is used. This means

thatq ◦ ζ ′′
r ◦ f ′ = q ◦ g′ ⇒ ζ S2 ◦ q2 ◦ f ′ = g ⇒ ζ S2 ◦ f = g. This finishes off the

proof of the present proposition for the case whenA is reduced.

Proof of Proposition6.14for arbitrary A. Again start withg ∈ Mork(SpecA,N S
X(4, 0)).

Let n ∈ N S
X(4, 0) be the image of the closed point underg. LetAn denote the completion

of the local ring ofN S
X(4, 0) at n. Theng factors through SpecAn by a morphismgn.

Note thatAn is reduced, so by the Special Case considered for Proposition 6.14, one gets
φn ∈ Mork(SpecAn,USX(2, 0)) such thatζ S2 ◦ φn is the canonical morphism from SpecAn
into N S

X(4, 0). Now one needs to just takef := φn ◦ gn. Q.E.D. for Prop. 6.14

PROPOSITION 6.16

LetN S
X(4, 0)

′ be the non-empty dense open subscheme of smooth points ofN S
X(4, 0) and

let USX(2, 0)′ be the open subscheme ofUSX(2, 0) given by the inverse image ofN S
X(4, 0)

′

under the morphismζ S2 of Proposition6.9. Thenζ S2 restricted toUSX(2, 0)′ is a smooth
morphism.

Proof. SinceUSX(2, 0) is smooth, by Proposition 10.4 of Chap. III of Hartshorne’s book
‘Algebraic Geometry’, it is enough to prove that the differential ofζ S2 at each closed point
of USX(2, 0)′ is surjective. But this follows by applying the previous proposition to the case
A = k[ε]/(ε2) and remembering thatζ S2 is topologically an injective map. Q.E.D.

Theorem 6.17. The bijective morphismζ S2 : USX(2, 0) −→ N S
X(4, 0) is an isomorphism

over the smooth locusN S
X(4, 0)

′ of N S
X(4, 0).

The proof essentially follows from the generic smoothness ofζ S2 just seen and the fact
that a bijective etale morphism is an isomorphism.

6.3 Smoothness of the limiting scheme

Recall from (2), Proposition 6.8, thatq : QRSX −→ Q USX(4, 0) is a principalPGL(n, k)-
bundle and hence so isq|NRSX : NRSX −→ N S

X(4, 0) (see the proof of Proposition 6.9).
Let NRX denote the canonical reduced induced closed subscheme structure on the clo-
sure ofNRSX in QRSX (or in PRSX). Sinceq : NRSX −→ N S

X(4, 0) is a principal
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PGL(n, k)-bundle and sinceN S
X(4, 0) is integral,NRSX and henceNRX are also inte-

gral. LetNX(4, 0) denote the canonical reduced induced closed subscheme structure on
the closure ofN S

X(4, 0) in Q USX(4, 0) (or in PUSX(4, 0)). SinceN S
X(4, 0) is integral, so is

NX(4, 0).

Theorem 6.18. The local ring ofNRX at each closed point is regular.

The proof will be divided into several steps.

Step 1: Lifting Criterion.LetAn be the completion of the local ring ofNRX at a closed
point n. It is enough to show thatAn is regular. For this, it is enough to prove that the
canonical map

Mork(SpecA,SpecAn) −→ Mork(SpecA0,SpecAn) : g 7−→ g ◦ i0

is surjective for any closed immersion SpecA0
i0
↪→ SpecA whereA0, A are finite dimen-

sional localk-algebras with residue fieldk.

Step 2: The family(V0,D0). Start with g0 ∈ Mork(SpecA0,SpecAn) and let the
composition ofg0 with the canonical map SpecAn −→ NRX be denotedg′

0 ∈
Mork(SpecA0, NRX). Recall that∃ a locally universal family(V,D) parametrized by
PRSX. Let (V0,D0) be the induced family parametrized by SpecA0 via the composition
of g′

0 with the closed immersionNRX ⊂ PRSX.

Step 3: The morphismf0 : SpecA0 −→ SpecRa. By the definition ofQRSX (see part (1)
of Proposition 6.8), one gets a locally free rank 4 sheafA of associative algebras with
identity onQRSX by the descent of the sheafEnd(V|QRSX ×X). LetB0 be theA0-algebra
corresponding to the sheaf induced by the sheafA|NRX via g′

0. SinceNRX is integral
and is the closure ofNRSX, by Lemma 6.12,A|NRX is locally isomorphic to the base-
change ofB′′

k by a morphism from a neighborhood ofn (in NRX) into Id-w-Sp-AzuW .
Hence∃ a morphismf0 : SpecA0 −→ SpecRa , wheref0(closed point) = a is a closed
point of Id-w-Sp-AzuW andRa is the completion of the local ring of Id-w-Sp-AzuW ata,
such that the algebraB0 = Ba ⊗Ra A0 whereBa is theRa-algebra induced byB′′

k .

Spec(An)

Spec(A0) Spec(A) Spec(R′
a)

Spec(Ra)

ff0

i0 f ′

g0
g g′ g′′g′

0

NRx PRsx
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Step 4: Extension off0 to f : SpecA −→ SpecRa. Since Id-w-Sp-AzuW ∼= A9
k (see the

beginning of §6.2),Ra is a regular local ring. Thereforef0 lifts to anf as required. If
B := Ba ⊗Ra A, then clearlyB0 = B ⊗A A0.

Step 5: Factorization off via a closed immersion.f itself may not be a closed immersion,
but it lifts to a closed immersionf ′ : SpecA −→ SpecR′

a , R
′
a := Ra [[Y1, . . . Ym]] for a

suitablem < dim k(A). Note that sinceRa is regular, so isR′
a. Let B ′

a := Ba ⊗Ra R
′
a.

Note thatB ′
a ⊗R′

a
A = B andB ′

a ⊗R′
a
A0 = B0.

Step 6: The family(Va,Da). One chooses anRa-basis for the free rank 4 algebraBa and
thus gets bases forB ′

a, B andB0 respectively overR′
a, A andA0. Therefore, the alge-

bras of endomorphisms of the underlying modules forB ′
a, B andB0 respectively over

R′
a, A andA0 are identified with the matrix algebrasM(4, R′

a), M(4, A) andM(4, A0).

Consider the duals of the right regular representations ofB ′
a, B andB0. Now if

H ′
a, H andH0 respectively denote the opposite groups to the groups of units(B ′

a)
×
, B× and

B0
×, then the images of these groups are naturally identified as subgroups of

GL(4, R′
a), GL(4, A) and GL(4, A0).

By part (b), Theorem 6.11, the structure group GL(4, A0) of the principal bundle Pr(V0)

of V0 can be reduced toH0.Now sinceA0 is an artinian quotient of the complete noetherian
localk-algebraR′

a , by Lemma 1 of §5 of [16], the principalH0-bundle Pr(V0) extends to
a principalH ′

a-bundle. LetVa be the vector bundle onX× SpecR′
a of rank 4 gotten from

this principalH ′
a-bundle by the canonical representation ofH ′

a via the dual of the right
regular representation ofB ′

a. Then clearlyVa ⊗R′
a
A0 = V0. The parabolic structure

D0 ∈ 0(SpecA0, P((V0)P0
))

onV0 extends to a parabolic structure

Da ∈ 0(SpecR′
a, P((Va)Pa ))

on Va becauseR′
a is local and because projective spaces are smooth. HereP0 := {P } ×

SpecA0 ∼= SpecA0 and a similar definition holds forPa. Now at the closed point, the
corresponding member of the family(Va,Da) is parabolic stable, and so the base being
local, the family itself is parabolic stable.

Step 7: The morphismg′ : SpecR′
a −→ NRX. Since(V,D) is locally universal, one gets

a morphismg′′ : SpecR′
a −→ PRSX such that the family induced viag′′ from (V,D)

is isomorphic to(Va,Da). One sees as follows that the morphismg′′ factors through a
morphismg′ into NRX. Now a in Id-w-Sp-AzuW is a specialization of(2 × 2)-matrix
algebras. So if Spec(K) −→ SpecR′

a is the generic point thenB ′
a ⊗R′

a
K ∼= M(2,K) and

henceH ′
a ⊗R′

a
K ∼= GL(2,K). But this means that the base-change((V)a)K of (V)a to

Spec(K) splits as a direct sum(W)K ⊕ (W)K of stable rank 2 degree zero vector bundles
onXK. Hence End((V)K) ∼= M(2,K) which implies by the definition ofNRSX that the
composite map

Spec(K) −→ SpecR′
a

g′′
−→ PRSX

factors throughNRSX. But Spec(K) −→ Spec(R′
a) being the generic point, this means

that the topological image ofg′′ lands insideNRX = NRSX. Now sinceR′
a is reduced,g′′

factors through a morphismg′ : SpecR′
a −→ NRX.
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Step 8: The lifting ofg0 to a morphismg : SpecA −→ SpecAn. Let i0 denote the closed
immersion of SpecA0 into SpecA.Theng′ ◦f ′ ◦ i0 andg′

0 both induce isomorphic families
onX × SpecA0 from (V,D) sinceVa andDa were extended fromV0 andD0. Hence
these two morphisms differ by anA0-valued pointλ0 of PGL(n, k):

λ0 · (g′ ◦ f ′ ◦ i0) = g′
0.

Now sincePGL(n, k) is smooth,λ0 lifts to anR′
a-valued pointλa. LetλA be theA-valued

point ofPGL(n, k) induced byλa and let̂g := λA · (g′ ◦ f ′). Then one has by the very
definition of an action (the action ofPGL(n, k) onNRX) that

f ′ ◦ (λa · g′) = λA · (g′ ◦ f ′) ⇒ ĝ ◦ i0 = (λA · (g′ ◦ f ′)) ◦ i0
= λ0 · (g′ ◦ f ′ ◦ i0) = g′

0.

The images of the closed point of SpecA0 underg′
0 andĝ ◦ i0 are one and the same point

n ∈ NRX(k). But sinceA is complete,̂g factors through a morphismg : SpecA −→
SpecAn. Now it is easy to check thatg lifts g0 using the following simple result:

Lemma6.19. LetB be a noetherian domain, p ⊂ B a prime ideal, and f̂ , ĝ ring homo-
morphisms from̂Bp into a complete noetherian local rinĝR. Thenf̂ |B = ĝ|B ⇒ f̂ = ĝ.

Thus the proof of Theorem 6.18 is established.

COROLLARY 6.20

NRX and NX(4, 0) are smooth, and the morphismζ S2 : USX(2, 0) −→ N S
X(4, 0) is an

isomorphism.

Proof. NRX is an integral scheme of finite type and hence is smooth by Theorem 6.18.
Now q : QRSX −→ Q USX(4, 0) is a principalPGL(n, k)-bundle and henceq is a smooth
surjective morphism. Hence

q−1(NX(4, 0)) = q−1(N S
X(4, 0)) = q−1(N S

X(4, 0)) = NRSX = NRX.

This implies thatq : NRX −→ NX(4, 0) is also a principalPGL(n, k)-bundle. Therefore,
NRX is smooth iffNX(4, 0) is smooth. But as we just saw,NRX is smooth. From these
and Theorem 6.17, it follows thatζ S2 is an isomorphism. Q.E.D.

6.4 The Seshadri Desingularization

In the following, the isomorphism(ζ S2 )
−1

: N S
X(4, 0)

∼= USX(2, 0) is extended to a desingu-
larizationπ2 : NX(4, 0) −→ USSX (2, 0).We first show the existence of a natural surjective
mapπ2(k) : NX(4, 0)(k) −→ USSX (2, 0)(k). This will be done in 4 steps.

Step 1: The morphismπ1 : NX(4, 0) −→ USSX (4, 0). For the locally universal family
(V,D) in PVSX(4, 0) parametrized byPRSX, the underlying family of vector bundlesV is
a family of semi-stable vector bundles, i.e., a family inVSSX (4, 0). SinceUSSX (4, 0) has the
universal mapping property for families of rank 4 degree zero semi-stable vector bundles,
one gets a morphismπ ′′

1 : PRSX −→ USSX (4, 0). Since this morphism isPGL(n, k)-
invariant and sincePUSX(4, 0) is a geometric quotient ofPRSX underPGL(n, k), π ′′

1 goes
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down to a morphismπ ′
1 : PUSX(4, 0) −→ USSX (4, 0) which is given on closed points

by [(V ,D)] 7−→ [V ]. Let π1 denote the composition ofπ ′
1 with the canonical closed

immersionNX(4, 0) ⊂ PUSX(4, 0).
SinceNX(4, 0) is projective (becausePUSX(4, 0) is projective),π1 is proper, hence

closed. FurtherNX(4, 0) is reduced, soπ1 is surjective onto its scheme-theoretic image
which is the same as its topological image (a closed set) given the canonical reduced
induced closed subscheme structure. AsN S

X(4, 0) is an open dense subset ofNX(4, 0),
π1(N S

X(4, 0)) is a dense subset inπ1(NX(4, 0)).

Step 2: The morphismg1 : USSX (2, 0) −→ USSX (4, 0). The association

USSX (2, 0)(k) −→ USSX (4, 0)(k) : [W ] 7−→ [W ⊕W ]

is the underlying map on closed points of a morphismg1 : USSX (2, 0) −→ USSX (4, 0).
The topological map underlying this morphism is injective because of the Jordan–Hölder
theorem for the category of semi-stable vector bundles of degree zero onX (see [15]).

SinceUSSX (2, 0) is projective,g1 is proper, hence closed. FurtherUSSX (2, 0) is reduced,
sog1 is surjective onto its scheme-theoretic image which is the same as its topological image
(a closed set) given the canonical reduced induced closed subscheme structure. AsUSX(2, 0)
is an open dense subset ofUSSX (2, 0), g1(USX(2, 0)) is a dense subset ing1(USSX (2, 0)).

Step 3: The mapπ2 : NX(4, 0) −→ USSX (2, 0). By the definition of the isomorphismζ S2
(Prop. 6.6), one sees that

π1 ◦ ζ S2 = g1 | USX(2, 0).
Thereforeg1(USX(2, 0)) = π1(N S

X(4, 0)). Therefore by Steps 1 and 2 above

g1(USSX (2, 0)) = g1(USX(2, 0)) = π1(N S
X(4, 0)) = π1(NX(4, 0)).

Now sinceg1 is injective as noted in Step 2 above, there is a well-defined set-theoretic map
π2(k) = (g1(k))

−1◦π1(k)where for a morphismf , f (k) is used to denote the underlying
map on closed points.

Note thatπ2(k) is surjective by construction. This implies in particular that if [W ] ∈
USSX (2, 0) then there is a representativeV of [W ⊕ W ] such that∃ a parabolic stable
structure1 onV.

Step 4: The isomorphismπS2 : N S
X(4, 0) −→ USX(2, 0). Sinceπ1 ◦ ζ S2 = g1 | USX(2, 0),

g1 is injective andζ S2 is an isomorphism, one has by the very definition ofπ2(k) that its
restriction toN S

X(4, 0)(k) is the inverse ofζ S2 (k). Therefore,π2(k) | N S
X(4, 0)(k) is the

underlying map on closed points of the isomorphismπS2 := (ζ S2 )
−1
. Thus we get the

following

PROPOSITION 6.21

There exists a surjective set-theoretic map

π2(k) : NX(4, 0)(k) −→ USSX (2, 0)(k)

such that its restriction toN S
X(4, 0)(k) is the underlying map on closed points of the inverse

(denoted byπS2 ) of the isomorphismζ S2 of Corollary6.20.
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Theorem 6.22. The isomorphismπS2 of Proposition6.21extends to a surjective morphism
π2 : NX(4, 0) −→ USSX (2, 0) whose underlying map on closed points isπ2(k). Further
π2 is a desingularization ofUSSX (2, 0) and is an isomorphism over the smooth locus below.

Proof. Assume that a surjective morphismπ2 exists as in the first statment of the theorem.
By Corollary 6.20,NX(4, 0) is smooth. Further it is already projective, since it is a closed
subscheme of the projective schemePUSX(4, 0). Thereforeπ2 is a proper morphism. Since
its restriction toN S

X(4, 0) is the isomorphismπS2 , it is indeed a desingularization. The
fact aboutπ2 being an isomorphism over the smooth points below is a consequence of the
‘connectedness-version’ of Zariski’s Main Theorem. So we only have to prove the first
statement of the theorem.

We note that it is enough to show thatπS2 extends to a morphismπ2 whose underlying
map on closed points isπ2(k); for then sinceNX(4, 0) is projective,π2 will be proper, and
sinceπ2(k) is surjective andUSX(2, 0) is a variety, this will imply thatπ2 is surjective.

One continues to use the notations introduced in the discussion preceding Proposi-
tion 6.21. To begin with, consider the set-theoretic graph ofπ2(k):

0π2(k) := {(n,m) ∈ NX(4, 0)× USSX (2, 0) | π2(k)(n) = m}.

Then one sees clearly that

(IdNX(4,0) × g1)
−1(0π1(k)) = 0π2(k).

Thus0π2(k) is the set of closed points of the reduced closed subscheme

0π2 := (
IdNX(4,0) × g1

)−1
(0π1)

of NX(4, 0) × USSX (2, 0). Let p1 andp2 from NX(4, 0) × USSX (2, 0) into NX(4, 0) and
USSX (2, 0) respectively denote the canonical projections. SinceUSSX (2, 0) is projective, the
morphismp1 is proper. Hence its restriction to the closed subscheme0π2 is also proper.
Further, this morphism is bijective on closed points and is birational sinceπ2(k)|N S

X(4, 0)
is the underlying map of the isomorphismπS2 = (ζ S2 )

−1. But by Corollary 6.20,NX(4, 0)
is smooth, in particular normal, and hence by Zariski’s Main Theorem, the morphism

p1|0π2 : 0π2 −→ NX(4, 0)

is an isomorphism, showing that the morphism

π2 := p2 ◦ (p1|0π2)
−1 : NX(4, 0) −→ USSX (2, 0)

extendsπS2 , as required. Q.E.D.

6.5 On the Seshadri desingularization over a general base

For this part, letR be a normal integral domain which is a universally Japanese (Nagata)
ring. For details on such rings see §7.2. LetX be a complete smooth curve overR, i.e.,
one is given a proper, smooth, finite-type morphismX −→ Spec(R) such that for every
geometric point Spec(K) −→ Spec(R), theK-schemeXK := X ×Spec(R) Spec(K) is an
integral, separated scheme of dimension one.
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By a semi-stable(resp.stable) vector bundle onX of rankn and degreed is meant a
locally-free sheaf ofOX -modulesV onX such that for every geometric point Spec(K) −→
Spec(R), V ⊗R K is a semi-stable (resp. stable) locally-free sheaf onXK of rankn and
degreed. Using Seshadri’s Geometric Invariant Theory over general base [18], one can
construct a moduli spaceUSSX (n, d) for semi-stable vector bundles onX of rankn and
degreed. ThisUSSX (n, d) turns out to be a properR-scheme. Again by using [18], one can
construct a proper moduli scheme overR for parabolic semi-stable vector bundles onX ,
of fixed rank and degree and fixed types of parabolic structures given at a finite number
of R-valued points ofX overR, generalizing the construction of Mehta–Seshadri [11].
Using the smoothness of Id-w-Sp-AzuW over Spec(R) (Theorem 3.8), and the techniques
of Seshadri [18], one can construct a properR-schemeNX (4, 0) which is smooth over
Spec(R), along with a birational, surjective, properR-morphism

52 : NX (4, 0) −→ USSX (2, 0)

i.e., a desingularization ofUSSX (2, 0) over Spec(R). Further, one can show that, when the
moduli spaceUSSX (2, 0) has geometrically reduced fibers overR, the above desingular-
ization specializes well. The proofs of all these assertions shall appear in a forthcoming
paper [21].

7. Application 2: Existence of the Nori desingularization over a general base

Introduction. This section uses Seshadri’s Geometric Invariant Theory over a general base
[18] and a theorem of Donkin [4] to extend the construction of aZ-schemeV(2,Z) of Nori
(Appendix, [16]) to a normal domainR which is a universally Japanese (Nagata) ring.
The existence and smoothness of the scheme of limits of Azumaya algebra structures on a
fixed moduleW free of rank 4 overR (Theorem 3.8) is used to show that the construction
V(2,R) is a desingularization of the Artin moduli spaceZ(2,R) of R{X1, . . . , Xg}-modules
of rank 2 overR for g ≥ 2. It is also shown that this desingularization specializes well
to the analogous desingularization over any algebraically closed field which is also anR-
algebra, provided the Artin moduli space has geometrically reduced fibers. This happens for
example whenR = Z by the work of Donkin [4]. In particular, one gets desingularizations
over fields of characteristic 2 (for algebraically closed fields of char.6=2 the existence of
such a desingularization follows from [16]).

Nori’s method is based on that of Seshadri’s which was used for desingularizing
USSX (2, 0). The latter was shown in the previous section to extend to characteristic 2
and in fact in a characteristic-free manner. Nori’sZ-schemeV(2,Z) comes along with a
canonical morphismV(2,Z) −→ Z(2,Z) which is a desingularization provided one shows
the existence of a canonicalZ-smoothZ-scheme structure on the space of those limits of
Azumaya algebra structures on a fixed freeZ-module of rank 4, for which multiplicative
identities exist. This follows as a special case of the more general result proved in A for a
vector bundle of rank 4 over any base scheme.

In §7.1, preliminaries on Artin moduli spaces, Nagata rings and on Seshadri’s Geometric
Invariant Theory over such rings are recalled. In §7.2, the construction of Nori overZ is
extended and the candidate for the desingularization is defined. In §7.3, the birationality of
this candidate with the smooth locus of the relevant Artin moduli scheme is shown. Finally
in §7.4, the desingularization is established and its specialization properties are studied.
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7.1 Artin moduli schemes, Nagata rings and Seshadri’s GIT over general base

To begin with, one extends the definition of the Artin moduli spaceZ(n,Z) (cf. [1]).

DEFINITION 7.1

Let n, g be integers≥ 2. Let R be a noetherian commutative ring with 1. LetM(n,R)
g

be theg-fold product of theR-affineR-schemeM(n,R) of (n × n)-matrices and consider
the action of the general linear groupschemeGL(n,R) on M(n,R)

g given by ‘simultaneous
conjugation’. LetB(n,R) be the ring of invariants; thenZ(n,R) := Spec(B(n,R)).

Recall 7.2   (Factsabout Nagatarings).ThestandardreferenceisChap.12of Matsumura’s
book [10]. An integral domainA is said to satisfy condition N-1 if its integral closure
AK in its quotient fieldK is a finiteA-module. It is said to satisfy condition N-2 if for
every finite extension fieldL/K, the integral closureAL of A in L is a finiteA-module.
The properties N-1 and N-2 are preserved under localization and N-2H⇒ N-1 whereas
noetherianness with N-1H⇒ N-2 only in char. 0; there exists an example of Akizuki
of a noetherian domain of positive char. which is not N-1. A commutative ringB is
called aNagataring (pseudo-geometricring in Nagata’s own terminology anduniversally
Japanesering in Grothendieck’s) if it is noetherian andB/p is N-2 for each primep of
B. Every localization ofB and every finitely generated (commutative)B-algebra are then
also Nagata, and complete noetherian local rings are Nagata as well. Dedekinds domains
of char. 0 such asZ are Nagata.

The next theorem which gives the basic facts aboutZ(n,R) is a direct application of
Seshadri’s Geometric Invariant Theory over a general base (see Theorem 3, [18]).

Theorem 7.3. The canonical morphismM(n,R)
g −→ Z(n,R) is submersive and surjective.

In fact, for every algebraically closed fieldK which is also anR-algebra, the induced map
onK-valued points is just the set-theoretic quotient map by the ‘orbit closure intersection
equivalence’ on(M(n,R)

g ⊗R K)(K). Further this morphism is a uniform categorical
quotient(which means it base-changes well under flat base extensions). Moreover, if R is
a universally Japanese(Nagata) ring, thenZ(n,R) is a scheme of finite type overR.

Remark 7.4

(1) The categorical quotient property of the above theorem implies that ifR is anS-
algebra, then one has a unique morphismα(n,R,S) such that the following diagram
commutes:

M(n,R)
g

∼=−−−−→ (M(n,S)
g)⊗S Ry y(base-chg fromS)

Z(n,R)
α(n,R,S)−−−−→ Z(n,S) ⊗S R

If furtherR′ is anR-algebra, then one gets the following commutative diagram

M(n,R′)
g

∼=−−−−→ (M(n,R)
g)⊗R R

′ ∼=−−−−→y y(base-chg fromR)

Z(n,R′)
α(n,R′,R)−−−−→ (Z(n,R))⊗R R

′ α(n,R,S)⊗RR
′

−−−−−−−→
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M(n,R′)
g

∼=−−−−→ ((M(n,S)
g)⊗S R)⊗R R

′ ∼= (M(n,S)
g)⊗S R

′y y(base-chg fromS)

Z(n,R′)
α(n,R′,R)−−−−→ (Z(n,S) ⊗S R)⊗R R

′ ∼= Z(n,S) ⊗S R
′

and the uniqueness of the morphismα(n,R′,S) implies the equality

α(n,R′,S) = (α(n,R,S) ⊗R R
′) ◦ α(n,R′,R).

(2) From Theorem 7.3, it follows that the topological map underlyingα(n,R,S) of (1) above
is bijective – in fact even bijective onL-valued points for each algebraically closed
fieldL which is also anR-algebra.

(3) The uniformity of the categorical quotient of the above theorem implies that whenR

is a flatS-algebra, then the base-change of the categorical quotient overS is also a
categorical quotient overR, and so the morphismα(n,R,S) of (1) above must be an
isomorphism.

Theorem 7.5  ([4], §3). Let K be an algebraically closed field. Then the uniform cate-
gorical quotientM(n,Z)

g −→ Z(n,Z) of Theorem7.3specializes well at geometric points,
that is, the morphismα(n,K,Z) of (1) of Remarks7.4 is an isomorphism.

Note: From now on, the value of the integerg ≥ 2 is fixed.

Remark7.6. For any commutativeR-algebraS with 1 letAS := S{X1, . . . , Xg} be the
non-commuting polynomial algebra overS in g indeterminates. Consider anAS-module
M which is free of rankn overS. If an S-basis{e1, . . . , en} is chosen forM, so that one
has an identificationM ∼= S⊕n, then theAS-module structure onM defines anAS-module
structure onSn, which is equivalent to prescribing ag-tuple of(n×n)-matrices with entries
in S, i.e., anS-valued point ofM(n,R)

g. If another identificationM ∼= Sn is chosen, then the
corresponding newS-valued point ofM(n,R)

g is in the GL(n, S) = GL(n,R)(S)-orbit of the
previous one, where the action of GL(n, S) onM(n, S)g = M(n,R)

g(S) is by simultaneous
conjugation. Therefore upto this action,M(n, S)g parametrizes pairs(M, {e1, . . . , en})
whereM is anAS-module withS-basis{e1, . . . , en}. Hence the moduli for such modules
is given by the categorical quotientZ(n,R) as defined above.

Before proceeding, one needs to know about what happens to the geometric points of
M(n,R)

g corresponding to simple modules in the light of the above remark. To this end,
one has the following elementary lemma:

Lemma 7.7

(1) Let x be a point of the topological space|M(n,R)
g| underlyingM(n,R)

g with the
property that ifK is an algebraic closure of the residue fieldκ(x) of M(n,R)

g at x,
then theg-tuple of matrices inM(n,K) to whichx corresponds makesKn into a
simple(K ⊗R AR)-module. Then this property ofx is independent of the choice of
K. In particular the subset|(M(n,R)

g)s | ⊂ |M(n,R)
g| consisting of such pointsx is

well-defined.
(2) In the above definition, the phrase ‘ifK is an algebraic closure of’ may be replaced

by ‘if K is some algebraically closed extension field of’ or by ‘ifK is any alge-
braically closed extension field of’ or further by ‘ifK is any extension field of’.
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(3) The property required ofx in property(1) of Lemma7.7 is also equivalent to the
following one: ‘for every extension fieldK of κ(x), the canonical map(K ⊗R

AR) −→ M(n,K) = EndK(Kn) is surjective.

The proofs of properties (2) and (3) of Lemma 7.7 require Burnside’s theorem.

DEFINITION 7.8

For eachR-algebraS (which is commutative with 1), let(M(n,R)
g)s(S) ⊂ (M(n,R)

g)(S)

consist of those elements ofM(n, S)g for which the canonical map ofS-algebrasAS −→
M(n, S) is surjective.

The above definition gives a subfunctor of (the functor of points of)M(n,R)
g in view of

the right-exactness of tensor product. In fact one has the following elementary result as an
application of Nakayama’s lemma.

Lemma7.9. LetS be a noetherian commutative ring with1, andψ : S{X1, . . . , Xg} −→
M(n, S)anS-algebra homomorphism. LetUS ⊂ |Spec(S)| be the subset of the topological
space underlyingSpec(S) consisting of prime idealsp such thatψ ⊗S κ(p) is surjective.
Then the subsetUS is open and thus acquires the canonical structure of an open subscheme.
The subfunctor(M(n,R)

g)s of the above definition is open, i.e., it is represented by an
open subscheme ofM(n,R)

g. This open subscheme will also be denoted by(M(n,R)
g)s . The

subset|(M(n,R)
g)s | of (1)of the previous lemma is indeed the topological space underlying

this open subscheme and therefore the canonical open immersion(M(n,R)
g)s ↪→ M(n,R)

g

base-changes well.

Theorem 7.10  ([1]). When K is an algebraically closed field, the action of PGL (n,K)
on (M(n,K)

g)s is scheme-theoretically free, so thatZ(n,K)
s is a geometric quotient under

a free action. This geometric quotientZ(n,K)
s is the smooth open subscheme ofZ(n,K)

and its set ofL-valued points corresponds to the set of isomorphism classes of simple
AL = L{X1, . . . , Xg}-modules of dimensionn over L, for each algebraically closed
extension fieldL of K. Further, the set ofL-valued points ofZ(n,K) can be identified
canonically with the set of equivalence classes ofAL-modules of dimensionn overL
under the equivalenceM ∼ M ′ iff gr(M) ∼= gr(M ′) wheregr(M) denotes the associated
graded module⊕r−1

i=0 (Mi+1/Mi) with M0 ⊂ M1 ⊂ · · · ⊂ Mr = M a Jordan–Ḧolder
series forM.

The above results combined with Seshadri’s GIT over general base imply the following
theorem.

Theorem 7.11. The open subscheme(M(n,R)
g)s of Lemma7.9 is PGL(n,R)-invariant and

if one denotes its quotient byZ(n,R)
s := (M(n,R)

g)s/PGL(n,R), then the canonical quotient
morphism(M(n,R)

g)s −→ Z(n,R)
s is also a quotient of the type mentioned in Theorem7.3.

Further the open immersion(M(n,R)
g)s ↪→ M(n,R)

g descends to give an open immersion
Z(n,R)

s ↪→ Z(n,R).

Remark 7.12

(1) WhenR is normal and integral, sinceM(n,R)
g (resp.(M(n,R)

g)s) is also normal
and integral, it follows from geometric invariant theory thatZ(n,R) (resp.Z(n,R)

s)
is normal and integral.
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(2) Assertions analogous to those in (1), Remark 7.4 are valid forZ(n,R)
s . In particular,

the diagrams we got from (1) of Remark 7.4 by replacingM(n,R)
g, Z(n,R), α(n,R,S)

etc by(M(n,R)
g)s , Z(n,R)

s , αs(n,R,S) respectively are also commutative and whenR

is a flatS-algebra,αs(n,R,S) is an isomorphism. One also has

αs(n,R′,S) = (αs(n,R,S) ⊗R R
′) ◦ αs(n,R′,R).

Further the topological map underlyingαs(n,R,S) is bijective – in fact even bijective
onL-valued points for each algebraically closed fieldLwhich is also anR-algebra.
Finally, the categorical quotient property ofZ(n,R)

s implies that the following dia-
gram is cartesian, showing thatαs(n,R,S) is an affine morphism.

Z(n,R)
s

αs
(n,R,S)−−−−→ Z(n,S)

s ⊗S R

open immersion
y y(open imm: base-chg fromS)

Z(n,R)
α(n,R,S)−−−−→ Z(n,S) ⊗S R

(3) By Seshadri’s GIT over general base, it can be seen that the canonical quotient
morphism(M(n,Z)

g)s −→ Z(n,Z)
s specializes well – in fact, one has more, as we will

see in Theorem 7.37. Note that the geometric quotientZ(n,K)
s is ∼= Z(n,Z)

s ⊗Z K

via αs
(n,K,Z)

.
(4) Thus the singularities (if any) of the normal varietyZ(n,K) lie outside the open set

Z(n,K)
s . In fact, even when char(K) = 0, there are singularities, so thatZ(n,Z) is

not smooth overZ. To see this, takeK = C andM := USSX (n, 0), the normal
projective variety of equivalence classes of semi-stable vector bundles of a fixed
rankn ≥ 2 and degree zero on a smooth projective curveX overK of fixed genus
g ≥ 2 (with g > n whenn = 2). Letm0 ∈ M be the point corresponding to the
trivial vector bundle of rankn. Thenm0 is a singular point ofM (see the beginning
of §6). An application of Luna’s Etale Slice Theorem shows that the completion
of the local ring ofM atm0 is isomorphic to the completion of the local ring of
Z(n,K) at the point corresponding to theg-tuple of identity matrices. The aim of
the present section is to show the existence of the Nori desingularization ofZ(2,R)
whenR is a normal Nagata domain and that it specializes well wheneverZ(2,R) is
geometrically reduced, and hence in particular whenR = Z.

7.2 Extension of Nori’s Construction

Nori in the Appendix to [16] constructs a schemeHilb(n,Z) which is a moduli for ‘mono-
genicAZ-modules’, and his candidate for desingularizingZ(2,Z) is caught as a closed
subscheme ofHilb(4,Z). The following shows that the analogueHilb(n,R) of Hilb(n,Z) may
also be constructed. The role of monogenic modules here is analogous to that of parabolic
vector bundles in the previous section.

DEFINITION 7.13

LetR be a noetherian commutative ring with 1 and as before let the non-commuting poly-
nomial algebra over a ringS in g indeterminates be denoted byAS := S{X1, . . . , Xg}.
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For any commutativeR-algebraS with 1, let Hilb(n,R)(S) denote the set of isomor-
phism classes of pairs(M,m) where (1)M is anAS-module, which is locally free
of rank n as anS-module, and (2)m ∈ M generatesM asAS-module. Equivalently
Hilb(n,R)(R) is the set of left idealsI ⊂ AS such thatAS/I is locally free of rankn as an
S-module.

Nori’s method of showing the representability of the functorHilb(n,Z) also works to give
the representability ofHilb(n,R). This may be shown by the construction of a quotient of
the following functor.

DEFINITION 7.14

For each commutativeR-algebraS, letU(n,R)(S)denote the set of triples(M, {e1, . . . , en},
m) where (1)M is anAS-module, (2){e1, . . . , en} is a basis forM as anS-module, and
(3)M is an m-monogenicAS-module, i.e.,m ∈ M generatesM asAS-module.

Remark 7.15

(1) Using a reasoning similar to the one in Remark 7.6, one sees that for any commutative
R-algebraS, the set of pointed free modules, i.e., triples(M, {e1, . . . , en}, m)where
M is anAS-module which is free of rankn as anS-module with basis{e1, . . . , en}
andm ∈ M, may be canonically identified with the set ofS-valued points of the
productT(n,R) := M(n,R)

g ×R AnR whereAnR is affinen-space overR. Moreover
two such triples are isomorphic (as pointed modules) iff the correspondingS-valued
points are in the same orbit of GL(n, S). Here the action on the first factor ofT(n,R)
is the one described in Definition 7.1 while the action on the second factor is the
canonical one.

(2) Note thatU(n,R)(S) may also be canonically identified (functorially inS) with the
set of pairs(I, {e1, . . . , en}) whereI ⊂ AS is a left ideal such thatAS/I is free of
rankn as anS-module with basis{e1, . . . , en}.

(3) For each commutativeR-algebraS, one has a canonical identification ofU(n,R)(S)
with aGL(n,R)(S)-invariant subset ofT(n,R)(S).Moreover, this identification is func-
torial in S. Thus one gets a subfunctorU(n,R) ↪→ T(n,R). It can be checked that this
is an open subfunctor, and henceforthU(n,R) shall also denote the openGL(n,R)-
invariant subscheme ofT(n,R) which represents it.

When the baseR = Z, the relationships between the open subschemeU(n,Z) mentioned
above, the functorHilb(n,Z) of Nori and the Artin moduli spaceZ(n,Z) are given in the
following result:

Theorem 7.16. (Nori, Proposition 1, [16]).For the action ofGL(n,Z) onU(n,Z) described
above, U(n,Z) −→ U(n,Z)/GL(n,Z) is a locally-trivial principal GL(n,Z)-bundle. Further
U(n,Z)/GL(n,Z) representsHilb(n,Z) and the first projectionU(n,Z) ↪→ T(n,Z) = M(n,Z)

g×
An

Z
−→ M(n,Z)

g goes down to a projective morphismHilb(n,Z) −→ Z(n,Z).

Remark7.17. It is immediate from the above and the definition ofHilb(n,R) thatHilb(n,R)
is representable over any baseR and that the constructionU(n,R) −→ Hilb(n,R) base-
changes well. In particularU(n,R) −→ Hilb(n,R) is a universal categorical quotient.
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Remark7.18. Now it will be shown that there is a projective morphismHilb(n,R) −→
Z(n,R) (generalizing the case ofR = Z in Theorem 7.16) such that the following diagram
commutes

U(n,R) −−−−→ M(n,R)
gy y

Hilb(n,R) −−−−→ Z(n,R)

where the top horizontal arrow is theGL(n,R)-equivariant morphism given by the
restriction, to theGL(n,R)-invariant open subschemeU(n,R), of the canonical first pro-
jectionT(n,R) = (M(n,R)

g × AnR) −→ M(n,R)
g which is alsoGL(n,R)-equivariant. Since

U(n,R) −→ Hilb(n,R) is a categorical quotient (7.17), it is clear that∃ a unique morphism
Hilb(n,R) −→ Z(n,R) such that the above diagram commutes, so only its projectivity has to
be shown. For this, observe that the above diagram can be expanded to give the following
commutative diagram

U(n,R) −−−−→ M(n,R)
g (M(n,Z)

g)⊗Z Ry y y(base-chg fromZ)

Hilb(n,R) −−−−→ Z(n,R)
α(n,R,Z)−−−−→ Z(n,Z) ⊗Z R

whereα(n,R,Z) exists by case (1), Remark 7.4, and is the unique morphism that makes the
right square commute. Again by the categorial quotient property ofU(n,R) −→ Hilb(n,R),
it follows that the composition of the lower horizontal arrows must be the same as the base-
change fromZ of the morphismHilb(n,Z) −→ Z(n,Z) of Theorem 7.16 (where Remark 7.17
has been used to identify the base-change toR of U(n,Z) −→ Hilb(n,Z) with U(n,R) −→
Hilb(n,R)). But this last morphism is projective, andα(n,R,Z) is separated. So the first lower
horizontal arrow is projective as claimed.

DEFINITION 7.19

With the notations of Definition 7.13, letHilb′
(n,R)(S) ⊂ Hilb(n,R)(S) denote the subset

corresponding to two-sided idealsI.

Remark 7.20

(1) For an idealI ∈ Hilb′
(n,R)(S), note thatAS/I is not only a monogenicS-module

locally-free of rankn, but also anS-algebra which is associative and has an identity
for multiplication.

(2) Hilb′
(n,R) is a closed subfunctor ofHilb(n,R). So by Nori’s theorem,Hilb′

(n,R) is
represented by a closed subscheme ofU(n,R)/GL(n,R). In the following,Hilb(n,R)
(respectivelyHilb′

(n,R)) will denote both the functor as well as its representing
scheme.

DEFINITION 7.21

Let P(n,R) denote the restriction of the locally-trivial principalGL(n,R)-bundleU(n,R) −→
U(n,R)/GL(n,R) = Hilb(n,R) to the closed subschemeHilb′

(n,R) ⊂ Hilb(n,R) defined above.
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Remark7.22. P(n,R) is a closed subscheme ofU(n,R) Further, by part 2 of Remark 7.15,
it is easy to see thatP(n,R)(S) can be identified (functorially in theR-algebraS) with the
set of pairs(I, {e1, . . . , en}) whereI ⊂ AS is a two-sided ideal such thatAS/I is free
of rankn as anS-module with basis{e1, . . . , en}.

Recall from §2, theX-scheme of associative algebra structures on a fixedX-vector
bundleW of rank 4 denoted by Id-w-AssocW . We takeX = Spec(R) andW to cor-
respond to the freeR-moduleW := R⊕n of rank n = m2 with the standard basis
and in this case we denote AlgW , Id-AssocW , AzuW , Sp-AzuW respectively by
AlgW, Id-AssocW, AzuW, Sp-AzuW . The smoothness of theR-scheme which will even-
tually desingularizeZ(2,R) will be deduced from the smoothness of Sp-AzuW (Theorem
3.8). As a first step, the following relates Id-AssocW to P(n,R).

DEFINITION 7.23

LetS be a commutativeR-algebra. Let(I, {e1, . . . , en}) ∈ P(n,R)(S)be as in Remark 7.22.
The associativeS-algebra with identityAS/I defines an associativeS-algebra structure
with identity onW ⊗R S via theS-module isomorphism(AS/I) ∼= W ⊗R S defined by
mapping theS-basis{e1, . . . , en} onto the standardS-basis onW ⊗R S = R⊕n ⊗R S =
S⊕n. In this way one gets a mapping

g(n,R)(S) : P(n,R)(S) −→ Id-AssocW(S).

Remark 7.24
(1) It is clear from the above definition thatg(n,R)(S) is functorial inS, i.e., one has a

morphism ofR-schemes

g(n,R) : P(n,R) −→ Id-AssocW .

(2) Recall thatP(n,R) is a locally-closedGL(n,R)-invariant subscheme of the scheme
T(n,R) defined in part 1 of Remark 7.15 above. Further also recall from §2 that
Id-AssocW is aGL(n,R) = GLW -invariant subscheme of AlgW . Now with respect
to these actions ofGL(n,R), the morphismg(n,R) above is equivariant.

Nori shows in Lemma 1, Appendix, [16], that the morphismg(n,Z) is a smooth morphism.
SinceP(n,R) base-changes well (by construction) and Id-AssocW base-changes well (§2),
and further the definition ofg(n,R) shows it also base-changes well, one gets the following
proposition.

PROPOSITION 7.25

g(n,R) is a smooth morphism.

Note: From now on, W will denote the free moduleR⊕4 of rank 4 overR given the
standard basis.

DEFINITION 7.26

Define the schemesL(2,R), H(2,R), V(2,R), andVs(2,R) as per the following commutative
diagram:
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AzuW
open−−−−→ Sp-AzuW

closed−−−−→ Id-AssocWx x xg(4,R)
H(2,R)

open−−−−→ L(2,R)
closed−−−−→ P(4,R)y y y

Vs(2,R)
open−−−−→ V(2,R)

closed−−−−→ Hilb′
(4,R)

The top row of the above diagram is naturally aGL(4,R) = GLW -equivariant sequence
by §3.L(2,R) andH(2,R) are respectively the base-changes of Sp-AzuW and AzuW . Since
g(4,R) is GL(4,R)-equivariant as remarked above, it follows that the middle row of the
above diagram is alsoGL(4,R)-equivariant. An application of Theorem 3.9 shows that
the GL4R-equivariant closed subschemeL(2,R) descends to give a closed subscheme
V(2,R). Let Vs(2,R) denote the canonical open subscheme structure on the topologi-
cal image ofH(2,R) in V(2,R) – this image is open sinceL(2,R) −→ V(2,R) is also
a locally-trivial principal GL(4,R)-bundle and hence is a flat morphism of finite type
of noetherian schemes which is open. The canonical morphismH(2,R) −→ V(2,R)
factors throughVs(2,R). The schemeV(2,Z) is Nori’s candidate for a birational model
for Z(2,Z).

Before proceeding, we need the following result connected with Theorem 3.9.

Theorem 7.27. In addition to the hypotheses of Theorem3.9, further assume thatG,
ι : Q ↪→ B, andf : B −→ T base-change well. Thenι′ : Z ↪→ T also base-changes
well.

Proof. Let S = Spec(R), R′ a commutativeR-algebra with 1, andS ′ := Spec(R′).
Then becauseZS ′ is the scheme-theoretic image ofQS ′ = QS ×S S

′ underfS ′ ◦ ιS ′ =
(f ◦ ι) ×S S

′ in TS ′ = TS ×S S
′, ∃ anS ′-morphismζ : ZS ′ −→ Z ×S S

′ such that
ζ ◦ f ′

S ′ = f ′
S ×S S

′. Thusζ is a surjective closed immersion. Note thatZS ′ andZ×S S
′

are both smooth/S ′. It follows that if S ′ were reduced, thenζ would have to be an
isomorphism. Thus the morphisms induced byζ at the geometric points ofS ′ are all
isomorphisms. Henceζ is flat and hence faithfully flat (since it is surjective). But thenζ
being a closed immersion implies that it must be an isomorphism. Q.E.D.

Theorem 7.28. The schemeV(2,R) of Definition7.26is smooth/R and also base-changes
well.

Proof. Remembering that rankR(W) = 4, since Sp-AzuW is smooth/R (Theorem 3.8)
and sinceL(2,R) −→ Sp-AzuW is a smooth morphism being the base-change ofg(4,R) (cf.
Proposition 7.25), it follows thatL(2,R) is also smooth/R. The smoothness/R of L(2,R)
andV(2,R) are equivalent by Theorem 3.9.

From the description ofP(4,R) in Remark 7.22, and the definition ofg(n,R) (cf.
Remark 7.24), it is immediate that the portion consisting of the top two rows of the com-
mutative diagram of Definition 7.26 base-changes well. That the whole diagram including
the bottom row also base-changes well is now a consequence of Definition 7.26 and
Theorem 7.27. Q.E.D.
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7.3 Birationality over the locus of simple modules

R continues to be a normal Nagata domain, and as beforeAS := S{X1, . . . , Xg} for any
ring S. The aim is to establish an isomorphismγ s(2,R) : Vs(2,R) −→ Z(2,R)

s which will
capture the ‘birational part’ of the desingularizing morphismγ(2,R) to be constructed later.

Lemma7.29. Let K be an algebraically closed field which is also anR-algebra. Let
I ⊂ AK be a two-sided ideal such that there exists aK-algebra isomorphismφI : AK/I ∼=
Mn(K), whereMn(K) is the algebra of(n × n)-matrices overK. Such an isomorphism
defines anAK -module structureMφI on theK-vector spaceKn (given the standard basis
so thatEndK(Kn) = Mn(K)). Then one has:

(1) MφI is simple and its isomorphism class does not depend onφI . As a consequence,
one writes simplyMI for MφI .

(2) If MI
∼= MI ′ (asAK -modules), thenI = I ′.

(3) Given a simpleAK -module structureM onKn, ∃ I such thatM ∼= MI .

The proofs of (1) and (2) are elementary. The proof of (3) uses Burnside’s theorem.

Lemma7.30. The constructionVs(2,R) base-changes well.

Proof. This was already seen implicitly in the proof of Theorem 7.28. Another way of
seeing this is from the description of the functor of points ofVs(2,R): for each commutative
R-algebraS with 1, Vs(2,R)(S) may be identified functorially inS (cf. (1) of Remark 7.20
and Definition 7.26) with the set of two-sided idealsI ⊂ AS such that the quotientAS/I
is locally-free of rank 4 as anS-module and is also an AzumayaS-algebra. Q.E.D.

By the above lemma, ifI ∈ Vs(2,R)(L) whereL is an algebraically closed field which is
also anR-algebra, thenAL/I is a four-dimensional AzumayaL-algebra. But by part (2)
of Proposition 3.2, this algebra is isomorphic toM2(L). Therefore it defines aAL-module
structure onL2 and following the notations of Lemma 7.29 above, the isomorphism class
of this simple module is denoted [MI ]. Next letK be an algebraically closed subfield of
L which is also anR-algebra. Observe that [MI ] ∈ Z(2,K)

s(L) by Artin’s description of
Z(n,K)

s (Theorem 7.10). Note also that by Lemma 7.30,

Vs(2,R)(L) : = (Vs(2,R) ⊗R L)(L) = ((Vs(2,R) ⊗R K)⊗K L)(L)

= (Vs(2,K) ⊗K L)(L) =: Vs(2,K)(L).

Now parts 2 and 3 of Lemma 7.29 clearly imply the following lemma.

Lemma7.31. With the above notations, the association

γ s(2,K)(L) : Vs(2,K)(L) −→ Z(2,K)
s(L) , I 7−→ [MI ]

is a well-defined bijective map.

DEFINITION 7.32

Continuing with the above notations, let

γ s(2,R)(L) : Vs(2,R)(L) −→ Z(2,R)
s(L) = (Z(2,R)

s ⊗R L)(L)

= (Z(2,R)
s ⊗R K)(L)
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denote the compositionαs(2,K,R)(L) ◦ γ s(2,K)(L) whereαs(2,K,R)(L) : Z(2,K)
s(L) −→

(Z(2,R)
s ⊗R K)(L) is the bijective map of (2), of Remark 7.12. Note that by Lemma 7.31,

γ s(2,R)(L) is bijective.

Before showing that the above maps are maps underlying morphisms, one needs the
following definition.

DEFINITION 7.33

The diagonal embeddingM(n,R) ↪→ M(n2,R) commutes with the conjugation actions of
PGL(n,R) andPGL(n2,R) (for the diagonal embedding ofPGL(n,R) in PGL(n2,R)). There-
fore by Theorem 7.3 there is an induced morphism1(n,R) : Z(n,R) −→ Z(n2,R).

Remark 7.34
(1) LetK ⊂ L be an extension of algebraically closed fields. OnL-valued points, it is

easy to see that the morphism1(n,K) sends the equivalence class of aAL-module
M to the equivalence class of theAL-moduleM ⊕ · · · ⊕ M (n summands), with
the equivalence described in Theorem 7.10. The uniqueness of the summands upto
an ordering in the associated graded module for a Jordan–Hölder Series implies that
1(n,K)(L) is injective.

(2) If S is a commutativeR-algebra with 1, then one has the following diagram

Z(n,S)
α(n,S,R)−−−−→ Z(n,R) ⊗R S

1(n,S)

y y1(n,R)⊗RS

Z(n2,S) −−−−−→
α
(n2,S,R)

Z(n2,R) ⊗R S

which commutes because of the categorical quotient property ofZ(n,S).
(3) TakingS = K an algebraically closed field in (2) above, one sees from part 1 of

Remark 7.34 above and (2) of 7.4 that1(n,R) is topologically injective–even injective
onL-valued points for each algebraically closed fieldL which is anR-algebra.

(4) It can be seen that1(n,Z) and1(n,K) are closed immersions.

By Theorem 7.16 there is a projective morphismHilb(4,Z) −→ Z(4,Z). Recall from
Definition 7.26 thatV(2,Z) is a closed subscheme ofHilb′

(4,Z) ⊂ Hilb(4,Z). Let µ(2,Z) :
V(2,Z) −→ Z(4,Z) be the induced morphism, which is clearly projective.

Theorem 7.35. (Nori, Appendix, [16])

(1) There exists a projective morphismγ(2,Z) : V(2,Z) −→ Z(2,Z) whose restriction
to the open subschemeVs(2,Z) factors through the open subschemeZ(2,Z)

s by an
isomorphismγ s

(2,Z) for which the map onK-valued points is precisely the map
γ s
(2,Z)(K) of Definition7.32,for each algebraically closed fieldK.

(2) LetK be an algebraically closed field. There exists a projective morphismγ(2,K) :
V(2,K) −→ Z(2,K) whose restriction to the open subschemeVs(2,K) factors through
the open subschemeZ(2,K)

s by an isomorphismγ s(2,K) for which the map onL-
valued points is precisely the mapγ s(2,K)(L) of Lemma7.31,for each algebraically
closed extension fieldL ofK.
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Theorem 7.36. The morphismsγ(2,Z) : V(2,Z) −→ Z(2,Z) andγ(2,K) : V(2,K) −→ Z(2,K)
are desingularizations, and in fact, the base-change ofγ(2,Z) to K may be canonically
identified withγ(2,K), i.e., the desingularizationγ(2,Z) has a good specialization property.

Proof. The morphismγ(2,Z) is projective (Theorem 7.35) and is birational as asserted
above. The smoothness overZ of V(2,Z) follows from the caseR = Z of Theorem 7.28.
Similar arguments hold whenZ is replaced byK. The good specialization property is a
consequence of the fact thatγ(2,Z) ⊗Z K = α(2,K,Z) ◦ γ(2,K), where the identification
V(2,Z) ⊗Z K ∼= V(2,K) has as usual been made in view of Theorem 7.28, and the fact that
α(2,K,Z) is an isomorphism (Donkin’s result, Theorem 7.5). Q.E.D.

Now the discussion proceeds to construct the isomorphismγ s(2,R) whenR is a normal
Nagata domain (7.2).

Theorem 7.37. LetR be a normal Nagata domain. Then the morphism(M(2,R))
s −→

Z(2,R)
s (Theorem7.11)base-changes well to extensionsR′ of R which is also a normal

Nagata domain. In other words, the canonical morphismαs
(2,R′,R) of part2of Remark7.12

is an isomorphism such that the following diagram commutes:

(M(2,R′)
g)s (M(2,R)

g)s ⊗R R
′y y

Z(2,R′)
s

∼=−−−−→
αs
(2,R′,R)

Z(2,R)
s ⊗R R

′

Proof. Recall from part 2 of Remark 7.12 thatαs
(2,R′,R) is bijective (in fact it is bijective

on L-valued points for every algebraically closed fieldL which is also anR′-algebra).
FurtherZ(2,R′)

s is of finite type overR′ by Theorem 7.3, and so it follows thatαs
(2,R′,R) is

a morphism of finite type. Therefore in the sense of EGA I [5], §6.11.3, it is a quasi-finite
morphism. Note also that it is an affine morphism (cf. part 2, Remark 7.12) and hence it
is separated.

Next, note the following properties ofZ(2,Z)
s ⊗Z R

′, which, as seen above, is of finite
type overR′. SinceR′ is an integral domain, it follows (by GIT) thatZ(2,R′)

s is integral,
and so it is immediate thatZ(n,R)

s ⊗R R
′ is irreducible. Now by Theorems 7.28 and 7.35,

Z(2,Z)
s is smooth/Z and hence its base-changeZ(2,Z)

s⊗ZR
′ is also smooth/R′. Therefore

Z(2,Z)
s ⊗Z R

′ is integral. Further, sinceR′ is normal, it follows thatZ(2,Z)
s ⊗Z R

′ is also
normal.

Finally, letQ(R′) denote the quotient field ofR′. By part 2 of Remark 7.12, one has the
following commutative diagram

(M(2,Q(R′))
g)s (M(2,R′)

g)s ⊗R′ Q(R′) −−−−→ (M(2,R′)
g)sy y y

Z(2,Q(R′))
s

αs
(2,Q(R′),R′)−−−−−−→ Z(2,R′)

s ⊗R′ Q(R′) −−−−→ Z(2,R′)
sy y y

Spec(Q(R′)) Spec(Q(R′)) −−−−→ Spec(R′)
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whereαs
(2,Q(R′),R′) is an isomorphism. Also by part 2, Remark 7.12 one has that

(αs(2,R′,Z) ⊗R′ Q(R′)) ◦ αs(2,Q(R′),R′) = αs(2,Q(R′),Z).

Therefore,αs
(2,R′,Z) is an isomorphism by Zariski’s Main Theorem. The same is true of

αs
(2,R,Z). But again by the uniqueness of the morphismαs

(2,R′,R) (part 2, Remark 7.12),
one has that

(αs(2,R,Z) ⊗R R
′) ◦ (αs(2,R′,R)) = αs(2,R′,Z)

where the canonical identification(Z(2,Z)
s ⊗Z R)⊗R R

′ ∼= Z(2,Z)
s ⊗Z R

′ has been made.
From this it follows thatαs

(2,R′,R) is indeed an isomorphism. Q.E.D.

DEFINITION 7.38

By base-changing the isomorphismγ s(2,Z) of Theorem 7.35 toR and using Lemma 7.30,
one gets an isomorphismγ s

(2,Z)⊗ZR : Vs(2,R) ∼= Z(2,Z)
s ⊗ZR. Let the composition of this

isomorphism with the inverse of the isomorphismαs
(2,R,Z) of Theorem 7.37 be denoted by

γ s(2,R) : Vs(2,R)
∼=−→ Z(2,R)

s .

7.4 Construction and specialization of the desingularization

Theorem 7.39. LetR be a normal Nagata domain. Then there exists a unique projective
morphismγ(2,R) : V(2,R) −→ Z(2,R) whose restriction to the open subschemeVs(2,R)
factors through the isomorphismγ s(2,R) constructed earlier – in other words,γ(2,R) is a
desingularization. If it is further assumed that the geometric fibers ofZ(2,R) are reduced,
then this desingularization specializes well – in particular, this is indeed the case when
R = Z.

The proof of the above theorem is divided into several steps.

Step 1: Defining the underlying set-theoretic map.By Theorem 7.35 and the good base-
change property ofV(2,R) of Theorem 7.28, one gets a morphism

γ(2,Z) ⊗Z R : V(2,R) −→ Z(2,Z) ⊗Z R.

Let |γ(2,Z) ⊗Z R| : |V(2,R)| −→ |Z(2,Z) ⊗Z R| be the underlying map of topological
spaces. Note that this map is surjective. Next let|α(2,R,Z)| : |Z(2,R)| −→ |Z(2,Z) ⊗Z R|
denote the bijective map of topological spaces underlying the morphismα(2,R,Z) (α(2,R,Z)
is bijective onL-valued points for each algebraically closed fieldL which is aZ-algebra
– see (1) and (2) of Remark 7.4). It follows that the map of sets

|γ(2,R)| := |α(2,R,Z)|−1 ◦ |γ(2,Z) ⊗Z R| : |V(2,R)| −→ |Z(2,R)|

is surjective. Further note that this map restricted to the open subsetVs(2,R) ↪→ V(2,R) is
a morphism, i.e.,|γ(2,R)| restricted to|Vs(2,R)| factors through|Z(2,R)s | by a set-theoretic
map denoted|γ s(2,R)| which is none other than the map underlying the isomorphismγ s(2,R)
of Definition 7.38.
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Step 2: ShowingV(2,R) is integral, normal and separated of finite type overR. SinceR is
reduced and normal, andV(2,R) is smooth/R (Theorem 7.28),V(2,R) is certainly reduced,
normal and separated. To see that it is irreducible, recall the diagram of Definition 7.26.
Sinceg(4,R) is a smooth morphism (Proposition 7.25) and hence open, and AzuW is an open
dense subscheme of Sp-AzuW (by the definition of Sp-AzuW ), it follows thatH(2,R) is an
open dense subscheme ofL(2,R). Further as noted in Definition 7.26,L(2,R) −→ V(2,R)
is open and surjective and henceVs(2,R) is open and dense inV(2,R). But Vs(2,R) ∼= Z(2,R)

s

via the isomorphismγ s(2,R) (Definition 7.38), and sinceZ(2,R) is irreducible, it follows that
V(2,R) is also irreducible. By Remark 7.18, one has a projective morphismHilb(4,R) −→
Z(4,R), and so the composite morphismV(2,R) ↪→ Hilb(4,R) −→ Z(4,R) is also projective
since the first one is a closed immersion. This put together with the fact thatZ(4,R) is of
finite type overR (from Theorem 7.3 sinceR is a Nagata ring) implies thatV(2,R) is also
of finite type overR.

Step 3: Construction of the reduced graph.Let the set-theoretic graph of|γ(2,R)| be
denoted by

0|γ(2,R)| ⊂ |V(2,R)| × |Z(2,R)|.
That this set is closed follows from the fact that it is the topological space underlying
the inverse-image of0(γ(2,Z)⊗ZR) – the graph of the morphismγ(2,Z) ⊗Z R induced by the
base-change ofγ(2,Z) of Theorem 7.35 – under the morphism(IdV(2,R)

×α(2,R,Z)). Let the
canonical reduced induced closed subscheme structure on0|γ(2,R)| be denoted

0γ(2,R) ↪→ (V(2,R) ×R Z(2,R))

in spite of the fact that the morphismγ(2,R) has yet to be shown to exist. Let the base-
change of this closed subscheme by the canonical open immersionVs(2,R) ×R Z(2,R)

s ↪→
V(2,R) ×R Z(2,R) give the closed subscheme

0′
γ s
(2,R)

↪→ Vs(2,R) ×R Z(2,R)
s .

Since this subscheme is also an open subscheme of0γ(2,R) , it follows that it is also
reduced. One also has another reduced closed subscheme0γ s

(2,R)
↪→ Vs(2,R) ×R Z(2,R)

s

corresponding to the graph of the (iso)morphismγ s(2,R). In fact one has the equality of closed
subschemes0γ s

(2,R)
= 0′

γ s
(2,R)

which follows from the easy check that their underlying

topological spaces are the same, since both are reduced. Letp1 : V(2,R) ×R Z(2,R) −→
V(2,R) denote the canonical first projection. It is now straightforward that

(p1|0γ(2,R) ) : 0γ(2,R) −→ V(2,R)

when further restricted to the open subscheme0γ s
(2,R)

= 0′
γ s
(2,R)

factors through the open

subschemeVs(2,R) by an isomorphism (ontoVs(2,R)). Hence(p1|0γ(2,R) ) is birational. It
is easy to check that this map is also set-theoretically bijective. SinceR is a Nagata ring,
Z(2,R) is of finite type overR due to Theorem 7.3. Therefore it follows that the morphism
(p1|0γ(2,R) ) is also a morphism of finite type and hence also quasi-finite in the sense of
EGA I, §6.11.3. That this morphism is also affine (and hence separated) follows from the
fact thatZ(2,R) is an affineR-scheme. From these observations it follows that0γ(2,R) is a
reduced separated scheme of finite-type overR.
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Step 4: Irreducibility of the graph.Pick a pointψ : Spec(K) −→ 0γ(2,R) whereK is an
algebraically closed field which is also anR-algebra. By projecting ontoV(2,R) andZ(2,R)
one gets pointsn ∈ V(2,R)(K) = V(2,K)(K) andm ∈ Z(2,R)(K) = (Z(2,R) ⊗R K)(K)

such that(γ(2,Z) ⊗Z K)(n) = (α(2,R,Z) ⊗R K)(m) because of the definition of|0γ(2,R) |.
One has the following commutative diagram:

V(2,K) V(2,R) ⊗R K V(2,Z) ⊗Z K

γ(2,K)

y y yγ(2,Z)⊗ZK

Z(2,K)
α(2,K,R)−−−−→ Z(2,R) ⊗R K

α(2,R,Z)⊗RK−−−−−−−→ Z(2,Z) ⊗Z K

where the outermost arrows commute by Theorem 7.36 and the central vertical downward
arrow has been defined so that the diagram commutes. By parts 1 and 2 of Remark 7.4,
the composition of the lower horizontal arrows must be the bijective morphismα(2,K,Z)
(in fact, this last morphism is an isomorphism, which implies thatα(2,K,R) is a surjective
closed immersion). So the second of the lower horizontal arrows of the above commutative
diagram is bijective. Therefore one has that(α(2,K,R) ◦ γ(2,K))(K)(n) = m, i.e.,(n,m) is
aK-point of the graph0K of (α(2,K,R) ◦ γ(2,K)). 0K is an integral closed subscheme of

(V(2,R) ⊗R K)⊗K (Z(2,R) ⊗R K) = (V(2,R) ⊗R Z(2,R))⊗R K

since it is isomorphic toV(2,K).By part 2 of Remark 7.12, there is also another commutative
diagram

Z(2,K)
s

αs
(2,K,R)−−−−→ Z(2,R)

s ⊗R K
αs
(2,R,Z)⊗RK−−−−−−−→ Z(2,Z)

s ⊗Z K

open
y open

y yopen

Z(2,K)
α(2,K,R)−−−−→ Z(2,R) ⊗R K

α(2,R,Z)⊗RK−−−−−−−→ Z(2,Z) ⊗Z K

where the top row consists of isomorphisms given by Theorem 7.37, and the composition
of the upper horizontal arrows is the same as the isomorphismαs

(2,K,Z). This put together
with the definition ofγ s(2,R) (Definition 7.38) implies that(α(2,K,R) ◦ γ(2,K))|Vs(2,K) is
the same as the isomorphismγ s(2,R) ⊗R K followed by the canonical open immersion
Z(2,R)

s ⊗R K ↪→ Z(2,R) ⊗R K. Hence the graph0sK of γ s(2,R) ⊗R K is an open, and
therefore dense, subset of the graph0K of (α(2,K,R) ◦ γ(2,K)). Hence ifUψ is anR-
open neighborhood of the point represented byψ , then its base-change toK contains
theK-point (n,m) and therefore must intersect0sK , i.e., it contains aK-point of0γ s

(2,R)

(since the base-change of the graph of a morphism may be canonically identified with
the graph of the base-change of that morphism). Since every point of|0γ(2,R) | is a limit
point of |0γ s

(2,R)
|, one has|0γ(2,R) | ⊂ |0γ s

(2,R)
| (closure in|V(2,R) ×R Z(2,R)|). But on the

other hand0γ s
(2,R)

↪→0γ(2,R) is an open subscheme and0γ(2,R) is closed which implies that

|0γ s
(2,R)

| ⊂ ( and hence =) |0γ(2,R) |. Now 0γ s
(2,R)

is irreducible since it is isomorphic to

Vs(2,R) and hence0γ(2,R) is also irreducible.

Step 5: The desingularization and its specializations.It now follows from Zariski’s Main
Theorem that(p1|0γ(2,R) ) : 0γ(2,R) −→ V(2,R) is an isomorphism. Thus one gets a mor-
phism

γ(2,R) := (p2|0γ(2,R) ) ◦ (p1|0γ(2,R) )−1 : V(2,R) −→ Z(2,R)
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for which the underlying map is|γ(2,R)| and whose graph is indeed0γ(2,R) . Herep2 :
V(2,R) ×R Z(2,R) −→ Z(2,R) denotes the canonical second projection. Note that by con-
struction,γ(2,R)|Vs(2,R) factors throughZ(2,R)

S by the isomorphismγ s(2,R).

Projectivity of the morphismγ(2,R). Now α(2,R,Z) ◦ γ(2,R) andγ(2,Z) ⊗Z R are two mor-
phisms from the reduced schemeV(2,R) into the separated schemeZ(2,Z) ⊗Z R that agree
on the open dense subschemeVs(2,R). Therefore they are equal. But thenγ(2,Z) is projec-
tive, and so the same is true ofγ(2,R), sinceα(2,R,Z) is separated.

Specialization properties ofγ(2,R). Observe that the central downward arrow of the first of
the two commutative diagrams of Step 4 when restricted toVs(2,R)⊗RK factors through the
isomorphismγ s(2,R)⊗R K. Hence this morphism is precisely the same asγ(2,R)⊗R K. As
noted in Step 4,α(2,K,R) is already a surjective closed immersion. So under the additional
hypothesis that the geometric fibers ofZ(2,R) overR are reduced,Z(2,R)⊗R K is reduced,
and soα(2,K,R) becomes an isomorphism. This implies thatα(2,R,Z) ⊗R K is also an
isomorphism. End of Proof of Theorem 7.39.

The last part of Step 5 of the above proof shows that Theorem 7.5 generalizes as follows:

Theorem 7.40. LetR be a normal Nagata domain and suppose that the geometric fibers
of Z(n,R) are reduced. Then these geometric fibers are in fact normal. IfK is an alge-
braically closed field which is also anR algebra, then the uniform categorical quotient
M(n,R)

g −→ Z(n,R) of Theorem7.3 specializes well, i.e., its base-change toK (overR)
may be functorially identified with the Mumford good quotientM(n,K)

g −→ Z(n,K).
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