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Abstract. In this paper, we investigate the Hyers–Ulam stability problem for the
difference equationf (x + p, y + q)− ϕ(x, y)f (x, y)− ψ(x, y) = 0.
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1. Introduction

Mathematical computations frequently are based on equations, called difference equations
or recurrence equations that allow us to compute the value of a function recursively from
a given set of values. These equations occur in numerous settings and forms, both in
mathematics itself and in its applications to statistics, computing, electrical circuit analysis,
dynamical systems, economics, biology, and other fields. The study of linear difference
equations is important for a number of reactions. Many types of problems are naturally
formulated as linear equations [14].

In 1940, Ulam [18] raised a question concerning the stability of group homomorphisms:

Let G1 be a group and letG2 be a metric group with the metricd(·, ·). Given ε > 0,
does there exist aδ > 0 such that if a functionh : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphismH : G1 →
G2 with d(h(x),H(x)) < ε for all x ∈ G1?

In other words, we are looking for situations when the homomorphisms are stable, i.e., if
a mapping is almost a homomorphism, then there exists a true homomorphism near it. If the
answer is affirmative, we would call the equation of homomorphismH(xy) = H(x)H(y)

stable. During the last decades, the stability problems of several functional equations have
been extensively investigated by a number of authors [1,3–13,15–17].

Now, we investigate Hyers–Ulam stability problem for the following difference equa-
tion:

f (x + p, y + q)− ϕ(x, y)f (x, y)− ψ(x, y) = 0, (1.1)

f (x + p, y + q)− ϕ(x, y)f (x, y) = 0. (1.2)

Thus we find situations when the approximate solutions of an equation differing slightly
from a given difference equation must be close to the true solution of the given equation.

It is important to provide methods and suitable criterion that describe the nature and
behavior of solutions of difference systems, without actually constructing or approximating
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them. In contrast with differential equations, since the existence and uniqueness of solutions
of discrete initial value problems is already guaranteed, one of the problems is the study
of asymptotic behavior of solutions of the difference system [2].

Apart from the above point of view, in this paper we examine the situations that the differ-
ence equation (1.1) is stable in the sense of Hyers and Ulam, and for a givenδ-approximate
function we construct a true solution of the difference equation near it. Throughout this
paper, letδ > 0 andp, q ∈ N be fixed, andN denote the set of all positive integers.

2. Main results

Before taking up the main subject we point out the following situation which is similar to
that of elementary homogeneous linear differential equation. That is, if a particular solution
fp of (1.1) is given, then the general solutionf of (1.1) has the formf = fh + fp, where
fh is a solution of (1.2).

In the next theorem, let two functionsϕ : N × N → (0,∞), ψ : N × N → R satisfy

ε(x, y) :=
∞∑
j=0

j∏
i=0

1

ϕ(x + ip, y + iq)
< ∞, (2.1)

ε′(x, y) :=
∞∑
j=0

ψ(x + jp, y + jq)∏j

i=0 ϕ(x + ip, y + iq)
< ∞ (2.2)

for all x, y ∈ N.
We now investigate the Hyers–Ulam stability problem for eq. (1.1). That is, the difference

equation (1.1) is stable in the sense of Hyers and Ulam under the conditions subject to
(2.1) and (2.2).

Theorem 2.1. Suppose that functionsf,ψ : N × N → R andϕ satisfy the inequality

|f (x + p, y + q)− ϕ(x, y)f (x, y)− ψ(x, y)| ≤ δ (2.3)

for all x, y ∈ N. Then there exist unique functionsT , Th, Tp : N×N → R such thatT , Tp
satisfy eq.(1.1),Th satisfies eq.(1.2)and the relations

|f (x, y)− T (x, y)| ≤ δε(x, y),

|f (x, y)− Th(x, y)| ≤ δε(x, y)+ |ε′(x, y)|,
|Tp(x, y)| ≤ |ε′(x, y)|,
T (x, y) = Th(x, y)+ Tp(x, y) (2.4)

hold for all x, y ∈ N. If the range off is (0,∞), then the range ofTh is (0,∞).

Proof. Replacingx, y by x + p, y + q, respectively, in (2.3), we have

|f (x + 2p, y + 2q)− ϕ(x + p, y + q)f (x + p, y + q)

− ψ(x + p, y + q)| ≤ δ (2.5)
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for all x, y ∈ N. Combining the last inequality with (2.3), we get the relation

|f (x + 2p, y + 2q)− ϕ(x + p, y + q)ϕ(x, y)f (x, y)− ψ(x + p, y + q)

− ϕ(x + p, y + q)ψ(x, y)| ≤ δ + δϕ(x + p, y + q)

(2.6)

for all x, y ∈ N. Now we use induction onm ∈ N to prove∣∣∣f (x + (m+ 1)p, y + (m+ 1)q)−
m∏
i=0

ϕ(x + ip, y + iq)f (x, y)

−
m∑
j=0

ψ(x + jp, y + jq)

m∏
i=j+1

ϕ(x + ip, y + iq)

∣∣∣

≤ δ

m∑
j=0

m∏
i=j+1

ϕ(x + ip, y + iq) (2.7)

for all x, y ∈ N, where
∏j
i (·) = 1 conveniently ifi > j. Thus we obtain the inequality

which plays an important role in the sequel,∣∣∣∣∣f (x + (m+ 1)p, y + (m+ 1)q)∏m
i=0 ϕ(x + ip, y + iq)

−f (x, y)−
m∑
j=0

ψ(x+jp, y+jq)∏j

i=0 ϕ(x + ip, y + iq)

∣∣∣∣∣
≤ δ

m∑
j=0

1∏j

i=0 ϕ(x + ip, y + iq)
. (2.8)

We claim that the sequence{
Tm(x, y) = f (x + (m+ 1)p, y + (m+ 1)q)∏m

i=0 ϕ(x + ip, y + iq)

−
m∑
j=0

ψ(x + jp, y + jq)∏j

i=0 ϕ(x + ip, y + iq)

}
(2.9)

is a Cauchy sequence. Indeed, form > n we get by (2.8)

|Tm(x, y)− Tn(x, y)| = 1∏n
i=0 ϕ(x + ip, y + iq)

·
∣∣∣∣∣f (x + (m+ 1)p, y + (m+ 1)q)∏m

i=(n+1) ϕ(x + ip, y + iq)
− f (x + (n+ 1)p, y + (n+ 1)q)

−
m∑

j=(n+1)

ψ(x + jp, y + jq)∏j

i=(n+1) ϕ(x + ip, y + iq)

∣∣∣∣∣
≤ δ∏n

i=0 ϕ(x + ip, y + iq)

m∑
j=(n+1)

1∏j

i=(n+1) ϕ(x + ip, y + iq)

→ 0 as m > n → ∞. (2.10)
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Therefore, we can now define a functionT : N × N → R by

T (x, y) = lim
m→∞ Tm(x, y) (2.11)

for any(x, y) ∈ N × N.

SinceTm−1(x + p, y + q) = ϕ(x, y)Tm(x, y)+ ψ(x, y), we have

T (x + p, y + q) = ϕ(x, y)T (x, y)+ ψ(x, y) (2.12)

for anyx, y ∈ N. That is,T is a solution of eq. (1.1).
From (2.8) we have for anyx, y ∈ N∣∣∣∣f (x + (m+ 1)p, y + (m+ 1)q)∏m

i=0 ϕ(x + ip, y + iq)
− f (x, y)

∣∣∣∣
≤ δ

m∑
j=0

1∏j

i=0 ϕ(x + ip, y + iq)
+

∣∣∣∣∣
m∑
j=0

ψ(x + jp, y + jq)∏j

i=0 ϕ(x + ip, y + iq)

∣∣∣∣∣ .
(2.13)

Using similar argument to that of (2.10), we obtain that the sequence{
f (x + (m+ 1)p, y + (m+ 1)q)∏m

i=0 ϕ(x + ip, y + iq)

}
(2.14)

is a Cauchy sequence and the functionTh given by

Th(x, y) = lim
m→∞

{
f (x + (m+ 1)p, y + (m+ 1)q)∏m

i=0 ϕ(x + ip, y + iq)

}
(2.15)

is defined for any(x, y) ∈ N × N.

As in the case of (2.12), we have

Th(x + p, y + q) = ϕ(x, y)Th(x, y)

for anyx, y ∈ N. That is,Th is a solution of eq. (1.2).
As a result,

T (x, y)− Th(x, y) := Tp(x, y) = −
∞∑
j=0

ψ(x + jp, y + jq)∏j

i=0 ϕ(x + ip, y + iq)
(2.16)

is well-defined and a particular solution of (1.1) by the comment preceding the theorem.
We also have the inequality (2.4) by taking the limit on both sides in (2.8) and (2.13).
Now assume thatT

′
, T

′
h, T

′
p are the mappings satisfying the conclusions in the theorem.

SinceT , T
′
satisfy eq. (1.1), it then follows from (2.4) that

|T (x, y)− T
′
(x, y)|

= |T (x + (m+ 1)p, y + (m+ 1)q)− T
′
(x + (m+ 1)p, y + (m+ 1)q)|∏m

i=0 ϕ(x + ip, y + iq)
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≤ 2δ∏m
i=0 ϕ(x + ip, y + iq)

∞∑
j=0

j∏
i=0

1

ϕ(x+(m+1+i)p, y + (m+ 1 + i)q)

→ 0 asm → ∞. (2.17)

This implies the uniqueness ofT . Similarly we have the uniqueness ofTh by the same
method of (2.17). This completes the proof of the theorem. 2

We note that ifψ = 0, thenT = Th, Tp = 0 sinceε′(x, y) = 0 for anyx, y ∈ N.

In the next corollary, let two functionsϕ : N → (0,∞), ψ : N → R satisfy

ε(x) :=
∞∑
j=0

j∏
i=0

1

ϕ(x + ip)
< ∞, (2.18)

ε′(x) :=
∞∑
j=0

ψ(x + jp)∏j

i=0 ϕ(x + ip)
< ∞ (2.19)

for all x ∈ N. Then we obtain the Hyers–Ulam stability problem for a single variable.

COROLLARY 2.2

Suppose that functionsf,ψ : N → R andϕ satisfy the inequality

|f (x + p)− ϕ(x)f (x)− ψ(x)| ≤ δ

for all x ∈ N. Then there exist unique functionsT , Th, Tp : N → R such thatT , Tp satisfy
the equationf (x + p) − ϕ(x)f (x) − ψ(x) = 0, Th satisfies the equationf (x + p) −
ϕ(x)f (x) = 0 and the relations

|f (x)− T (x)| ≤ δε(x),

|f (x)− Th(x)| ≤ δε(x)+ |ε′(x)|,
|Tp(x)| ≤ |ε′(x)|,
T (x) = Th(x)+ Tp(x)

hold for all x ∈ N.

3. Applications

We list some examples of difference equations which are stable by Theorem 2.1 in the
sense of Hyers–Ulam.

For somea (0< a < 1) the functionf (x) = ∫ ∞
0 tx−1atdt (x ∈ N) is a solution of the

homogeneous linear difference equation

f (x + 1)+ x

ln a
f (x) = 0. (3.1)

In particular, in the casea = 1/e it is well-known that the functional equation (3.1) on
an interval(0,∞) is the gamma functional equation and Jung obtained its Hyers–Ulam
stability [13]. We obtain from Theorem 2.1 the Hyers–Ulam stability for a single variable
as follows:
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COROLLARY 3.1

Suppose that a functionf : N → R satisfies the inequality∣∣∣f (x + 1)+ x

ln a
f (x)

∣∣∣ ≤ δ (3.2)

for all x ∈ N. Then there exists a unique functionT : N → R such thatT satisfies eq.(3.1)
and the relation

|f (x)− T (x)| ≤
(

1

a
− 1

)
δ (3.3)

holds for allx ∈ N.

Proof. We apply Theorem 2.1 withϕ(x) = x/− ln a andψ(x) = 0. For anyx ∈ N

∞∑
j=0

j∏
i=0

− ln a

x + i
=

(− ln a

x
+ (− ln a)2

x(x + 1)
+ (− ln a)3

x(x + 1)(x + 2)
+ · · ·

)

≤ 1

a
− 1. (3.4)

Thus we lead to the conclusion. 2

The functionf (x) = ∫ 1
0 t

x/(5 − t)dt (x ∈ N) is a solution of the nonhomogeneous
linear difference equation

f (x + 1)− 5f (x)+ 1

x + 1
= 0. (3.5)

We obtain from Theorem 2.1 the Hyers–Ulam stability as follows:

COROLLARY 3.2

Suppose that a functionf : N → R satisfies the inequality∣∣∣∣f (x + 1)− 5f (x)+ 1

x + 1

∣∣∣∣ ≤ δ (3.6)

for all x ∈ N. Then there exist unique functionsT , Th, Tp : N → R such thatT , Tp satisfy
eq.(3.5), Th satisfies the equationf (x + 1)− 5f (x) = 0 and the relations

|f (x)− T (x)| ≤ δ

4
, |f (x)− Th(x)| ≤ δ

4
+

∞∑
i=1

1

5i · (i + 1)
,

|Tp(x)| ≤
∞∑
i=1

1

5i · (i + 1)
, T (x) = Th(x)+ Tp(x) (3.7)

hold for all x ∈ N.



Stability of some difference equations 459

Proof. We apply Theorem 2.1 withϕ(x) = 5 andψ(x) = −1/(x + 1). For anyx ∈ N

∞∑
j=0

j∏
i=0

1

5
=

(
1

5
+ 1

52
+ · · ·

)

≤ 1

4
(3.8)

and ∣∣∣∣∣
∞∑
j=0

−1/(x + j + 1)∏j

i=0 5

∣∣∣∣∣ = 1

5

(
1

x + 1
+ 1

5(x + 2)
+ 1

52(x + 3)
+ · · ·

)

≤
(

1

5 · 2
+ 1

52 · 3
+ 1

53 · 4
+ · · ·

)
. (3.9)

This leads to the conclusion. 2

The beta functionB(x, y) = ∫ 1
0 t

x−1(1 − t)y−1dt is a solution of the functional equation

f (x + 1, y + 1)− xy

(x + y)(x + y + 1)
f (x, y) = 0, x, y ∈ (0,∞). (3.10)

Jun, Kim and Lee [11] obtained the stability theorem of eq. (3.10).
Consider the following homogeneous linear difference equation

f (x + 2, y + 2)− (x + 1)(y + 1)

(x + y + 4)2
f (x, y) = 0, x, y ∈ N. (3.11)

The function

f (x, y) =
∫ π/2

0
sinxt cosyt dt, (x, y ∈ N) (3.12)

is a solution of the functional equation (3.11).

COROLLARY 3.3

Suppose that a functiong : N × N → (0,∞) satisfies the inequality

∣∣∣∣g(x + 2, y + 2)−1 − (x + y + 4)2

(x + 1)(y + 1)
g(x, y)−1

∣∣∣∣ ≤ δ (3.13)

for all x, y ∈ N. Then there exists a unique functionT : N × N → (0,∞) such thatT
satisfies eq.(3.11)and the inequality

|g(x, y)−1 − T (x, y)−1| ≤ κδ ≤ δ

12
(3.14)

holds for allx, y ∈ N, whereκ = ∑∞
j=0

∏j

i=0 (2i + 1)2/(4i + 4)2.
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Proof. We apply Theorem 2.1 withf (x, y) = g(x, y)−1 andϕ(x, y) = (x + y + 4)2/
(x + 1)(y + 1). For anyx, y ∈ N, we get

∞∑
j=0

j∏
i=0

(x + 2i + 1)(y + 2i + 1)

(x + y + 4i + 4)2

= (x + 1)(y + 1)

(x + y + 4)2

(
1 + (x + 3)(y + 3)

(x + y + 8)2

+ (x + 3)(y + 3)(x + 5)(y + 5)

(x + y + 8)2(x + y + 12)2
+ · · ·

)

≤ 1

42

(
1 + 32

82
+ 3252

82122
+ 325272

82122162
· · ·

)

≤ 1

12
. (3.15)

By Theorem 2.1, there exists a unique functionF : N × N → (0,∞) such thatF satisfies
the equation

F(x + 2, y + 2)− (x + y + 4)2

(x + 1)(y + 1)
F (x, y) = 0, x, y ∈ N (3.16)

and the inequality

|f (x, y)− F(x, y)| ≤ δ

12
(3.17)

holds for allx, y ∈ N. If we defineT (x, y) = F(x, y)−1, thenT satisfies (3.11) and
inequality (3.14). Thus we lead to the conclusion. 2

For somea (0 < a < 1), the functionf (x) = ∫ ∞
0 dt/(t2 + a2)x (x ∈ N) is a solution

of the homogeneous linear difference equation

f (x + 1)− 2x − 1

2xa2
f (x) = 0. (3.18)

(Using the integration by substitutiont = a tanu and then the relation
∫

cosn udu =
sinu cosn−1 u

n
+ n− 1

n

∫
cosn−1 udu, we obtain the eq.(3.18).)

Here we denoteω = ∑∞
j=0

2j a2j (j+1)!∏j
i=0 2i+1

for abbreviation. We obtain from Theorem 2.1

the Hyers–Ulam stability as follows:

COROLLARY 3.4

Suppose that a functionf : N → R satisfies the inequality∣∣∣∣f (x + 1)− 2x − 1

2xa2
f (x)

∣∣∣∣ ≤ δ (3.19)
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for all x ∈ N. Then there exists a unique functionT : N → R such thatT satisfies
eq.(3.18),and the relation

|f (x)− T (x)| ≤ 2a2ω (3.20)

holds for allx ∈ N.

Proof. We apply Theorem 2.1 withϕ(x) = (2x − 1)/2xa2 andψ(x) = 0. For anyx ∈ N

∞∑
j=0

j∏
i=0

a2(2x + 2i)

2x + 2i − 1
= 2xa2

2x − 1

(
1 + a2(2x + 2)

2x + 1

+a
4(2x + 2)(2x + 4)

(2x + 1)(2x + 3)
+ · · ·

)

≤ 2a2
(

1 + 4a2

3
+ 4 · 6a4

3 · 5
+ · · ·

)
≤ 2a2ω. (3.21)

Thus we lead to the conclusion. 2
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