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Abstract. In this article, we study the homogenization of the family of parabolic
equations over periodically perforated domains

∂tb

(
x

dε
, uε

)
− div a(uε,∇uε)= f (x, t) in �ε × (0, T ) ,

uε = 0 on∂�ε × (0, T ) ,

uε(x,0)= u0(x) in �ε.

Here,�ε = � \ Sε is a periodically perforated domain anddε is a sequence of positive
numbers which goes to zero. We obtain the homogenized equation. The homogenization
of the equations on a fixed domain and also the case of perforated domain with Neumann
boundary condition was studied by the authors. The homogenization for a fixed domain
andb( x

dε
, uε) ≡ b(uε) has been done by Jian. We also obtain certain corrector results to

improve the weak convergence.

Keywords. Homogenization; perforated domain; correctors.

1. Introduction

Let� be a bounded domain inRN with smooth boundary∂�. Let T > 0 be a constant,
�T = �× (0, T ) and letε > 0 be a small parameter which eventually tends to zero. Let
Y = (−1

2,+1
2)
N andS(closed)⊂ Y . We define a periodically perforated domain�ε as

follows: First define

Iε = {k ∈ Z
N : εk + aεS ⊂ �} and

Sε = ∪k∈Iε (εk + aεS), (1.1)

whereaε is the size of an individual hole. In the case under study we have,aε = εN/(N−p)
with 2 ≤ p < N . Set

�ε = �\Sε. (1.2)

We consider the following nonlinear parabolic equation (nonlinearity on both time and
spatial components) with Dirichlet conditions on the boundary of the holes. In fact, we
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only consider the problem withdε = ε (without loss of generality; see Remark 3.4 in §3):

∂tb
(x
ε
, uε

)
− div a(uε,∇uε) = f (x, t) in �ε × (0, T ) ,

uε = 0 on∂�ε × (0, T ) ,

uε(x,0) = u0(x) in �ε, (1.3)

whereu0 is a given function on� andf is a given function on� × (0, T ). For a given
ε, the Cauchy problem (1.3) will also be denoted by (Pε). It is known that under suitable
assumptions ona andb (cf. assumptions (A1)–(A4) below), that the problem (Pε) has a
solutionuε. Our aim in this paper is to study the homogenization of the equations (Pε) as
ε → 0, i.e., to study the limiting behavior ofuε asε → 0 and obtain the limiting equation
satisfied by the limit.

Whenb is linear (i.e.b(y, s) = s) the asymptotic analysis of such problems has been
studied quite widely [5,6,8,10,11,19]. Whenb is not linear, the homogenization of the
equation in a fixed domain was studied by Jian [12] forb(y, s) ≡ b(s) with appropriate
assumptions and by the authors [17] whenb is also oscillating. In the case of perforated
domains, the authors [18] have obtained results on homogenization with Neumann con-
dition on the boundary of the holes in which we also consider oscillations in the elliptic
part as well. More precisely, we considered the terma(x

ε
, uε,∇uε). There is considerable

difficulty in analyzing a similar problem with the Dirichlet condition on the boundary of
the holes. The oscillations in the coefficients give rise to new difficulties and are hard to
deal with in passing to the limit. So we only considera without periodic oscillations. The
analysis of even this case is very subtle and will use the work of Casado–Dı́az [7] in the
stationary case.

In this context, we would like to point out that the analysis for the stationary problem
in the linear elliptic case (recently solved by Dal Maso–Murat [9]) with oscillations both
in a and domain is quite involved. Now one has to develop an appropriate technique
for the stationary nonlinear elliptic problem. This will then enable us to complete the
homogenization for the full parabolic problem.

The layout of the paper is as follows. In §2, we give the weak formulation for the problem
(Pε). Then, we state our main results on homogenization. In §3, we obtain some crucial
convergence results for one of the terms in the equation. Finally, in §4 and 5, we complete
the homogenization using the results of §3 and the arguments from [7]. A corrector result
is also stated in §5. An associated open problem is also discussed in §5 (see Remark 5.1).

2. Assumptions and main results

For p > 1, p∗ will denote the conjugate exponentp/(p − 1). Let Eε be Lp(0, T ;
W

1,p
0 (�ε)). Let f belong toLp(0, T ;W−1,p∗

(�ε)). We defineuε ∈ Eε to be a weak
solution of(Pε) if it satisfies:

b
(x
ε
, uε

)
∈ L∞(0, T ;L1(�ε)), ∂tb

(x
ε
, uε

)
∈ Lp∗

(0, T ;W1,p
0 (�ε)) ,

(2.1)

that is ∫ T

0

〈
∂tb

(x
ε
, uε

)
, ξ(x, t)

〉
ε

dt +
∫ T

0

∫
�ε

(
b

(x
ε
, uε

)
− b

(x
ε
, u0

))
∂t ξ dx dt = 0

(2.2)
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for all ξ ∈ Eε ∩W1,1(0, T ;L∞(�ε)) with ξ(T ) = 0; and,∫ T

0

〈
∂tb

(x
ε
, uε

)
, ξ(x, t)

〉
ε

dt +
∫ T

0

∫
�ε

a(uε,∇uε) · ∇ξ(x, t)dx dt

=
∫ T

0

∫
�ε

f (x, t)ξ(x, t)dx dt (2.3)

for all ξ ∈ Eε. Here〈 . , . 〉ε denotes the duality bracket with respect toE∗
ε , Eε.

We make the following assumptions ona andb:

(A1) The functionb(y, s) is continuous iny ands, Y -periodic iny and nondecreasing in
s andb(y,0) = 0.

(A2) There exists a constantθ > 0 such that for everyδ andR with 0 < δ < R, there
existsC(δ, R) > 0 such that

|b(y, s1)− b(y, s2)| > C(δ,R)|s1 − s2|θ (2.4)

for all y ∈ Y ands1, s2 ∈ [−R,R] with δ < |s1|.
Remark2.1. The prototype forb is a function of the formc(y)|s|k sgn(s) for some positive
real numberk and continuous andY -periodic function,c(·), which is positive onY . 2

(A3) The mapping(µ, λ) 7→ a(µ, λ) defined fromR×R
N toR

N is continuous in(µ, λ).
Further, it is assumed that there exists positive constantsα, r such that

a(µ, λ) · λ ≥ α|λ|p, (2.5)

(a(µ, λ1)− a(µ, λ2)) · (λ1 − λ2) > 0, ∀ λ1 6= λ2, (2.6)

|a(µ, λ)| ≤ α−1(1 + |µ|p−1 + |λ|p−1), (2.7)

|a(µ1, λ)− a(µ2, λ)| (2.8)

≤ α−1|µ1 − µ2|r (1 + |µ1|p−1−r + |µ2|p−1−r + |λ|p−1−r )

(A4) We assume that, the data,f ∈ L∞(�× T ).
(A5) For allµ, λ1, λ2,

(a(µ, λ1)− a(µ, λ2))(λ1 − λ2) ≥ α|λ1 − λ2|p. (2.9)

Under the assumptions (A1)–(A4), it is known that (Pε) admits a solutionuε (cf. [4]).
The assumption (A5) will be useful in proving corrector results.

We now state our main theorem.

Theorem 2.2. Let uε be a family of solutions of(Pε). Assume that there is a constant
C > 0, such that

sup
ε

‖uε‖L∞(�ε×(0,T )) ≤ C. (2.10)

Then there exists a subsequence ofε, still denoted byε, such that for allq with0< q < ∞,
we have

ũε → u strongly inLq(�T ) (2.11)
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andu solves,

∂tb(u)− div a(u,∇u)+8(u) = f (x, t) in �× (0, T ) ,

u = 0 on ∂�× (0, T ) ,

u(x,0) = 0 in � (2.12)

where

b(s) ,
∫
Y

b(y, s)dy (2.13)

and

8(s) ,
∫

RN

a0(ws,∇ws) · ∇v0 dy, (2.14)

wherews is a solution of

− div(a0(ws,∇ws)) = 0 in D′
(RN \ S),

ws − s ∈ D1,p(RN),

ws φ ∈ W1,p
0 (RN \S) ∀φ ∈ D(RN) (2.15)

andv0 satisfies

v0 − 1 ∈ D1,p(RN),

v0 φ ∈ W1,p
0 (RN \S) ∀φ ∈ D(RN).

(2.16)

2

In the above,

a0(s, ξ)= lim
ε→0

εN(p−1)/(N−p)a(s, ξ/εN/(N−p)∀(s, ξ) ∈ R × R
N, (2.17)

and

D1,p(RN) = {u ∈ LNp/(N−p)(RN) : ∇u ∈ Lp(RN)}. (2.18)

We shall denote the expression in (2.17) whose limit is evaluated byaε(s, ξ).

Remark2.3. The assumption (2.10) is true in special cases (see [13]) and it is reasonable
on physical grounds (see [12]). 2

Remark2.4. The so-called ‘strange term’φ appears even in the elliptic linear case (see
Cioranescu–Murat [14]) and so it is not very surprising to see one here. 2

We will state a corrector result in §5.
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3. Some preliminary results

In this section we will identify the weak limit of the sequenceb(x
ε
, ũε)as it will be necessary

for the homogenization.
An important step in this analysis is to show thatuε → u a.e. in�× (0, T ). This does

not come easily as there are noa priori bounds on the time derivative of the sequenceuε
which will allow us to use a compactness theorem of the Aubin–Lions type. For proving
this result we adapt a technique found in [4] and already used in our paper [17]. As we
closely follow the treatment in [17], some of the results will only be sketched and we refer
the reader to [17] for more details as and when necessary.

We first obtaina priori bounds under the assumption (2.10). From now on,C will denote
a generic positive constant which is independent ofε.

Lemma3.1. Letuε be a family of solutions of(Pε) and assume that(2.10)holds. Then,

sup
ε

‖∇uε‖Lp(�ε×(0,T )) ≤ C, (3.1)

sup
ε

‖a(uε,∇uε)‖Lp∗
(�ε×(0,T )) ≤ C, (3.2)

sup
ε

‖∂tb
(x
ε
, uε

)
‖E∗

ε
≤ C. (3.3)

Proof. Define the functionB(., .) : R
N × R → R by

B(y, s) = b(y, s)s −
∫ s

0
b(y, τ )dτ. (3.4)

As in [17] we deduce that∫
�ε

B
(x
ε
, uε(x, T )

)
dx +

∫ T

0

∫
�ε

a(uε,∇uε) · ∇uε dx dt

=
∫
�ε

B
(x
ε
, u0

)
dx +

∫ T

0

∫
�ε

f uε dx dt

and from this we obtain∫
�

B
(x
ε
, uε(x, T )

)
dx +

∫ T

0

∫
�ε

a(uε,∇uε) · ∇uε dx dt ≤ C (3.5)

by (2.10) and the assumptions onb. Then, (3.1) follows from (3.5) and (2.5), asB is
nonnegative, while (3.2) follows from (3.1) and (2.7). The estimate (3.3) may be obtained
from (3.1), (3.2) and (2.3). Thus the lemma. 2

We state the following technical lemma whose proof can be found in [17].

Lemma3.2. There exists a continuous, increasing functionω onR
+ withω(0) = 0, such

that, given anyC > 0, δ > 0, if v1,v2 are any two functions inW1,p(�) ∩ L∞(�) with
‖vi‖∞,� ≤ C, i = 1,2, satisfying∫

�

(
b

(x
ε
, v1

)
− b

(x
ε
, v2

))
(v1 − v2)dx ≤ δ ∀ε > 0,
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then ∫
�

∣∣∣b (x
ε
, v1

)
− b

(x
ε
, v2

)∣∣∣ dx ≤ ω(δ) ∀ε > 0.

2
We now prove a crucial lemma.

Lemma3.3. Let uε be as above. Then, the sequence{ũε}ε>0 is relatively compact in
Lθ(�T ), whereθ is as in(A2). As a result, there is a subsequence ofuε such that

ũε → u a.e. in�T . (3.6)

Proof.

Step1: Using the arguments from [12], it can be shown that

h−1
∫ T−h

0

∫
�ε

(
b

(x
ε
, uε(t + h)

)
− b

(x
ε
, uε(t)

))
(uε(t + h)− uε(t))dxdt ≤ C

for some constantC which is independent ofε and h. Thus, as we have assumed in
(A1) thatb(y,0) = 0, we get

h−1
∫ T−h

0

∫
�

(
b

(x
ε
, ũε(t + h)

)
− b

(x
ε
, ũε(t)

))
(ũε(t + h)− ũε(t))dx dt ≤ C.

Step2: We show that∫ T−h

0

∫
�

∣∣∣b (x
ε
, ũε(t + h)

)
− b

(x
ε
, ũε(t)

)∣∣∣ dx dt → 0

ash → 0, uniformly with respect toε. Set, forR > 0 and large,

Eε,R =
{
t ∈ (0, T − h) : ‖ũε(t + h)‖W1,p(�) + ‖ũε(t)‖W1,p(�)

+ h−1
∫
�

(
b

(x
ε
, ũε(t + h)

)
− b

(x
ε
, ũε(t)

))

· (ũε(t + h)− ũε(t))dx > R

}
.

We claim thatm(Eε,R) ≤ C/R independent ofh. Indeed, if we set

E1
ε,R = {t ∈ (0, T ) : ‖ũε(t)‖W1,p(�) > R/4}

and

E2
ε,R =

{
t ∈ (0, T − h) : h−1

∫
�

(
b

(x
ε
, ũε(t + h)

)

− b
(x
ε
, ũε(t)

))
· (ũε(t + h)− ũε(t))dx > R/2

}
,
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then clearlyEε,R ⊂ E1
ε,R ∪ (E1

ε,R − h) ∪ E2
ε,R. Now m(E2

ε,R) < C/R by Step 1 and

m(E1
ε,R) < C/R by (2.10) and (3.1) for some constantC. (Indeedm(E1

ε,R)(R/4)
pT ≤ C

from which this follows sincep ≥ 1.) The estimates form(E1
ε,R), m(E

2
ε,R) and the

translation invariance of Lebesgue measure gives the estimate form(Eε,R).
Now setE

′
ε,R to be the complement ofEε,R in (0, T − h). Hence, fort ∈ E

′
ε,R, by

Lemma 3.2, we have∫
�

∣∣∣b (x
ε
, ũε(t + h)

)
− b

(x
ε
, ũε(t)

)∣∣∣ dx < ω(hR), (3.7)

where, obviously, the modulus of continuity function does not depend onε. Therefore,∫ T−h

0

∫
�

∣∣∣b (x
ε
, ũε(t + h)

)
− b

(x
ε
, ũε(t)

)∣∣∣
=

∫
Eε,R

∫
�

∣∣∣b (x
ε
, ũε(t + h)

)
− b

(x
ε
, ũε(t)

)∣∣∣
+

∫
E

′
ε,R

∫
�

∣∣∣b (x
ε
, ũε(t + h)

)
− b

(x
ε
, ũε(t)

)∣∣∣
≤ C/R + T ω(hR)

for all ε, R andh. Now, chooseR = h−1/2 and leth → 0 to complete the proof of Step 2.

Step3: By assumption (A2), it follows from Step 2 that∫ T−h

0

∫
�

|ũε(t + h)− ũε(t)|θ dx dt → 0 ash → 0 (3.8)

uniformly with respect toε.

Step4: In this crucial step, we demonstrate the relative compactness of the sequence
{ũε}ε>0 in Lθ(�T ). This is an argument to reduce it to the time independent case. Set,

vε(x, t) =
{
ũε(x, t) if t ∈ (0, T − h)\Eε,R
0 otherwise

. (3.9)

Chooseh so thatT is an integral multiple ofh. We have

1

h

∫ h

0
ds

∫ T

0
dt

∫
�

|ũε(t)−
T/h∑
i=1

χ((i−1)h,ih)(t)vε((i − 1)h+ s)|θ dx

= 1

h

T/h∑
i=1

∫ h

0
ds

∫ ih

(i−1)h
dt

∫
�

|ũε(t)− vε((i − 1)h+ s)|θ dx

= 1

h

T/h∑
i=1

∫ ih

(i−1)h
ds

∫ ih

(i−1)h
dt

∫
�

|ũε(t)− vε(s)|θ dx

= 1

h

T/h∑
i=1

∫ ih

(i−1)h
dt

∫ ih−t

(i−1)h−t
ds

∫
�

|ũε(t)− vε(s + t)|θ dx
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≤ 1

h

T/h∑
i=1

∫ ih

(i−1)h
dt

∫ h

−h
ds

∫
�

|ũε(t)− vε(s + t)|θ dx

= 1

h

∫ T

0
dt

∫ h

−h
ds

∫
�

|ũε(t)− vε(s + t)|θ dx

= 1

h

∫ h

−h
ds

∫ T

0
dt

∫
�

|ũε(t)− vε(s + t)|θ dx

= 1

h

∫ h

−h
ds

∫
S

dt
∫
�

|ũε(t)− uε(s + t)|θ dx

+ 1

h

∫ h

−h
ds

∫
S′

dt
∫
�

|ũε(t)|θ dx,

where for eachs ∈ [−h, h], S = {t ∈ (0, T ) : s+t ∈ (max(0,−s),min(T , T −s)) \Eε,R}
andS′( ⊂ [0, h] ∪ [T − h, T ] ∪Eε,R)) is its complement. The inequality from equality is
obtained by replacing a bigger interval for thes variable. Indeed, ift ∈ [(i − 1)h, ih] and
s ∈ [(i − 1)h− t, ih− t ], thens ∈ [−h, h]. Thus

1

h

∫ h

0

∫ T

0

∫
�

|ũε(t)−
T/h∑
i=1

χ((i−1)h,ih)(t)vε((i − 1)h+ s)|θ dx dt ds

≤ 1

h

∫ h

−h

∫ min(T ,T−s)

max(0,−s)

∫
�

|ũε(t)− vε(s + t)|θ dx dt ds

+ 1

h

∫ h

−h

∫
S′

∫
�

|ũε(t)|θ dx dt ds

≤ sup|s|≤h
∫ min(T ,T−s)

max(0,−s)

∫
�

|ũε(t)− ũε(s + t)|θ dx dt

+ 1

h

∫ h

−h

∫
S′

∫
�

|ũε(t)|θ dx dt ds

≤ T w(hR)+ C(2h+ 1/R)

which can be taken small, say less thanδ (for all ε), by fixing h small andR = h−1/2.
Therefore, there existssε ∈ (0, h) such that

∫
�T

∣∣∣∣ũε(t)−
T/h∑
i=1

χ((i−1)h,ih)(t)vε((i − 1)h+ sε)

∣∣∣∣
θ

dx dt (3.10)

is small uniformly inε.
Note that forh fixed as above, we have a finite combination of the sequences{vε((i −

1)h + sε)}ε>0 which are independent of time. Therefore, in order to prove the relative
compactness of the sequence

∑T/h

i=1 χ((i−1)h,ih)vε((i − 1)h + sε) in Lp(�T ), which we
denote bywε,h for fixedh, it is enough to prove the relative compactness of the sequences
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vε((i − 1)h + sε) in Lp(�) for i = 1,2, ..., T /h. But, this follows from the compact
inclusion ofW1,p(�) in Lp(�) as these sequences are bounded inW1,p(�) (by the
definition ofEε,R) for eachi. Then, (3.10) and the relative compactness ofwε,h inLp(�T )
for each fixedh, imply that the sequencẽuε is totally bounded inLθ(�T ) and hence
relatively compact there. 2

Remark3.4. The first inequality in Step 1 is one of the crucial inequalities. Once this
inequality is true for a generalbε(x, uε) instead ofb(x

ε
, uε), then the rest of our methods

and techniques can be carried out for more general parabolic equation with the parabolic
term ∂tbε(x, uε). For example, the results are true with the parabolic term∂tb(

x
dε
, uε),

wheredε > 0 anddε → 0 asε → 0. 2

From Lemma 3.2 above, the continuity ofb and the assumption (2.10), we derive the
following corollaries.

COROLLARY 3.5

We have, b(x
ε
, ũε)− b(x

ε
, u) → 0 strongly inLq(�T ) ∀ q, 0< q < ∞.

Proof. By thea priori bound (2.10), it is enough to consider the functionb onY×[−M,M]
for a largeM > 0. As b is continuous, it is uniformly continuous onY × [−M,M].
Therefore, givenh0 > 0, there exists aδ > 0 such that

|b(y, s)− b(y′, s′)| < h0,

whenever|y − y′| + |s − s′| < δ.
Now, sincẽuε → u a.e in�T , by Egoroff’s theorem, givenh1 > 0, there existsE ⊂ �T

such that its Lebesgue measurem(E) < h1 andũε converges uniformly tou on(�T \E),
which we denote byE′. Therefore, we can findε1 > 0 such that

‖ũε − u‖∞,E′ < δ ∀ ε < ε1. (3.11)

Therefore, forε < ε1 we have∫
�T

∣∣∣b (x
ε
, ũε

)
− b

(x
ε
, u

)∣∣∣q dx dt

=
∫
E′

∣∣∣b (x
ε
, ũε

)
− b

(x
ε
, u

)∣∣∣q dx dt

+
∫
E

∣∣∣(b (x
ε
, ũε

)
− b

(x
ε
, u

))∣∣∣q dx dt

≤ h
q

0m(�T )+ 2q sup(|b|q)m(E)

≤ h
q

0m(�T )+ 2q sup(|b|q) h1.

This completes the proof ash0 andh1 can be chosen arbitrarily small. 2

The following result follows easily.
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COROLLARY 3.6

We have the following convergences:

b
(x
ε
, ũε

)
⇀ b(u) weakly inLq(�T ),

χ
(x
ε

)
b

(x
ε
, ũε

)
⇀ b∗(u) weakly inLq(�T ).

for q > 1. Further, b(u) = b∗(u).

Proof. We note that

b
(x
ε
, ũε

)
=

(
b

(x
ε
, ũε

)
− b

(x
ε
, u

))
+ b

(x
ε
, u

)
→ 0 + b(u)

by Corollary 3.5 and the averaging principle for periodic functions.
Similarly,

χ
(x
ε

)
b

(x
ε
, ũε

)
= χ

(x
ε

) (
b

(x
ε
, ũε

)
− b

(x
ε
, u

))
+ χ

(x
ε

)
b

(x
ε
, u

)
→ 0 + b∗(u).

Fromχ(x
ε
) b( x

ε
, ũε) = b(x

ε
, ũε), we readily obtain the last of the conclusions in the

corollary. 2

4. Homogenization

This section is devoted to the proof of Theorem 2.2.

For passing to the limit in eq. (2.3) we need to take test functions which vanish on the
holes. In fact, we take the test functions to bevε φ ψ , whereφ ∈ D(�), ψ ∈ C1

0(0, T )
and{vε} is a bounded family of functions which satisfies

vε ∈ W1,p
0 (�) ∩ L∞(�), vε = 0 in the holes and

vε ⇀ 1 weakly in W1,p(�).

The construction of such functions has been established in [14] for the linear problems
(i.e., withp = 2) and in [7] for nonlinear problems. We, in fact, choosev0 as in (2.16) and
definevε by

vε(x) = v0(yε(x)),

whereyε(x) = x − εk
(
x
ε

)
/εN/(N−p) is a change of variable andk is defined as in §2.

Then it can be easily seen, by the choice of the size of the perforationsaε, thatvε satisfies
the required properties.
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Employing these test functions in (2.3) we have∫ T

0

〈
∂tb

(x
ε
, uε

)
, vε φ ψ

〉
ε

dt +
∫ T

0

∫
�ε

a(uε,∇uε) · ∇(vε φ ψ)dx dt

=
∫ T

0

∫
�ε

f (x, t)vε φ ψ dx dt. (4.1)

Rewriting ∫ T

0

〈
∂tb

(x
ε
, uε

)
, vε φ ψ

〉
ε

dt = −
∫ T

0

∫
�ε

b
(x
ε
, uε

)
vε φ ∂tψ dx dt

= −
∫ T

0

∫
�

b
(x
ε
, ũε

)
vε φ ∂tψ dx dt , (4.2)

we compute its limit knowing the weak limit ofb(x
ε
, ũε). This has been done in the previous

Corollary 3.5 using which we get

lim
ε→0

∫ T

0

〈
∂tb

(x
ε
, uε

)
, vε φ ψ

〉
ε

dt = −
∫ T

0

∫
�

b(u)φ ∂tψ dt

=
∫ T

0
〈∂tb(u), φ ψ〉 dt. (4.3)

Also, ∫ T

0

∫
�ε

f vε φψ dx dt
ε→0→

∫ T

0

∫
�

f φ ψ dx dt. (4.4)

It remains to compute the limit

lim
ε→0

∫ T

0

∫
�ε

a(uε,∇uε) · ∇(vε φ)ψ dx dt. (4.5)

This is a difficult computation and has been done by Casado–Dı́az in his paper [7] where
he considers the homogenization of the nonlinear Dirichlet problem

− div a(uε,∇uε) = f in �ε,

uε ∈ W1,p
0 (�ε)

(4.6)

in perforated domain�ε. The two-scale convergence method (cf. [1,15,16]) used by us
in [17,18] is not helpful here. The two-scale convergence method has been seen in a new
light by Arbogastet al [2]. The key idea is that, given a sequence of functionsuε they
introduce a sequence of two-variable functionsûε(x, y) = uε(εk(

x
ε
+εαy)), whereα = 1

andy ∈ Y , k = k(x) ∈ Z
N such thatx ∈ (k − 1/2, k + 1/2)N . For the situation under

consideration, Casado–Dı́az choosesα = N/(N − p) and proves a compactness lemma
for the modified sequencêuε. This allows him to compute the limit of a similar quantity
as in (4.5). By a similar computation we can show that

lim
ε→0

∫ T

0

∫
�ε

a(uε,∇uε) · ∇(vε φ)ψ dx dt

=
∫ T

0

∫
�

a(u,∇u) · ∇φ ψ dx dt +
∫ T

0

∫
�

8(u)φ ψ dx dt. (4.7)

It follows from (4.3), (4.4), and (4.7) that the homogenized equation is that given by (2.12).
We briefly sketch some steps in the proof of (4.7).
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5. Computation of limε→0
∫ T

0

∫
�ε
a(uε,∇uε) · ∇(vε φ)ψ

The entire computation will not be done here, but only outlined as it differs little from that
of Casado–D́ıaz [7]. Except for the time dependence of the sequences involved little else
is different.

Step1: As the sequenceuε is difficult in the calculation, a sequencezε is defined which
has the same behavior as the original sequence near the holes helping to capture the ‘µa0-
capacity’ but is otherwise the same asu. Let a0 be as in (2.17).

First definez0 : R
N × (0, T )× R

N → R to be a solution of

− divya0(z0(x, t, y),∇yz0(x, t, y)) = 0 in D′(RN \ S) a.e.x, t,

z0(x, t, . )− u(x, t) ∈ Lp(RN × (0, T );D1,p(RN)),

z0(x, t, . ) φ( · ) ∈ W1,p
0 (RN \ S) ∀φ ∈ D(RN) a.e.x, t. (5.1)

Let ĥε be a bounded sequence inL∞(RN) satisfying

ĥε ∈ W1,1(RN) ∩ L∞(RN),

ĥε = 0 a.e. inR
N \ Brε ,

(ĥε − 1) φ ∈ W1,N
0 (RN \ S) ∀φ ∈ D(RN),

ĥε → 1 a.e. inR
N,∫

RN

|∇ĥε|N dy → 0, (5.2)

where rε is a sequence of real numbers tending to∞ as ε → 0 in such a way that
rεε

p/(N−p) → 0. Such a sequencêhε can be obtained by solving a suitablep-Laplacian
in Brε \S. We then set

hε = ĥε(yε(x)), (5.3)

whereyε(x)= (x − k( x
ε
))/εN/(N−p) andk( x

ε
) denotes the multi-integerk such thatx ∈

ε(k+Y ). The sequencehε helps to join the behavior near the holes and the behavior away
from the holes.

Define

z̃ε(x, t) = 1

εN

∫
Cε(x)

z0(ρ, t, yε(x))dρ, (5.4)

whereCε(x) denotes theε-cell to whichx belongs,

∇ z̃ε(x, t) = 1

εN+N/(N−p)

∫
Cε(x)

∇yz0(ρ, t, yε(x))dρ (5.5)

and

zε(x, t) = hε(x)z̃ε(x, t)+ (1 − hε(x)) u(x, t). (5.6)



Homogenization of a parabolic equation 437

It can be shown thatzε has the following properties

zε ∈ Lp(0, T ;W1,p(RN)),

zε φ ∈ Lp(0, T ;W1,p
0 (�ε)) ∀φ ∈ D(�),

zε ⇀ u in Lp(0, T ;W1,p(�)),

∇zε − ∇u− ∇ z̃ε → 0 inLp((0, T )× R
N). (5.7)

Step2: Main property ofzε. For any sequencewε ∈ W
1,p
0 (�ε) ⇀ w in W1,p

0 (�) and
ψ ∈ C1

0(0, T ), the sequencezε satisfies∫ T

0

∫
�

a(zε,∇zε) · ∇wεψ dx dt −→∫ T

0

∫
�

a(u,∇u) · ∇wψ dx dt +
∫ T

0

∫
�

8(u)w ψ dx dt. (5.8)

The limit is computed by separating the contribution from near the holes and that away
from the holes; i.e. we write∫ T

0

∫
�

a(zε,∇zε) · ∇wεψ dx dt =
∫ T

0

∫
Aε

a(zε,∇zε) · ∇wεψ dx dt

+
∫ T

0

∫
�\Aε

a(zε,∇zε) · ∇wεψ dx dt, (5.9)

whereAε , ∪k∈ZNB(εk, rεε
N/(N−p)). It is easy to see that∫ T

0

∫
RN\Aε

a(zε,∇zε) · ∇wεψ dx dt

=
∫ T

0

∫
�

a(u,∇u) · ∇wψ dx dt +O(ε) (5.10)

from the definition ofzε, the weak convergence ofwε and the fact that the measure of the
setsAε tend to zero.

The limit of the term defined overAε is calculated by tailoring the two-scale convergence
technique in such a way that it ‘sees’ the holes though they are not of sizeε. This is the
content of Lemma 3.1 in the paper by Casado–Dı́az [7]. It becomes necessary to introduce
the two-scale sequence

ẑε(x, y) , zε

(
εk

(x
ε

)
+ εN/(N−p)y

)
(5.11)

using which the first term in (5.9) can be written as∫ T

0

∫
RN×Brε

aε(ẑε,Mε(∇yz0)) · ∇yŵε ψ dx dy, (5.12)

where

Mε(∇yz0) = 1

εN

∫
Cε(x)

∇yz0(ρ, y)dρ. (5.13)
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Written this way, (5.12) can be shown to converge to
∫ T

0

∫
�
8(u)w ψ dx dt by Lemma 3.1

in [7].

Step3: It is then shown that the sequencezε has the desired approximation properties
(Steps 4–6 in [7]) so that

∫ T
0

∫
�
a(uε,∇uε)·∇wεψ dx dt and

∫ T
0

∫
�
a(zε,∇zε)·∇wεψ dx

dt have the same limit, thus completing the proof.

Remark5.1. In the above, the diffusion terma( . , . )did not itself vary withε. It is desirable
to consider the case when it is of the forma(x

ε
, . , . ). One may even study just the stationary

Dirichlet problem (4.6) with such a coefficient terma(x
ε
, . , . ). This seems to be an open

problem and as we have remarked earlier Dal Maso–Murat [9] have obtained results in the
linear case with more general coefficients.

The case when (4.6) is the Euler–Lagrange equation of a variational problem, has been
solved by Ansini and Braides [3] by the method of0-convergence. The capacitary term
obtained by them is simply the capacity function which corresponds to the homogenized
operatorahom, when it is positively homogeneous of degreep − 1 in the gradient. 2

We end by stating a corrector result whose proof may be established following [7].

Theorem 5.2. Assume thata(s, ξ)does not depend ons. Then, for a subsequence ofε,still
denoted byε,we have the following corrector result: for everyf ∈ Lp∗

(0, T ;W−1,p(�ε)),
the solutionuε of (1.3)satisfies

ũε − zε → 0 strongly inLp(0, T ;W1,p
0 (�))

wherezε is defined in(5.6). 2
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