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Abstract.  In this article, we study the homogenization of the family of parabolic
equations over periodically perforated domains
a:b (di’ l/l5> —diva(u,, Vu,) = f(x,t) inQ, x(0,T),
’ =0 0ndQ, x (0,T),
Ug(x,0)=ug(x) IinQ,.
Here, 2, = Q\ S, is a periodically perforated domain addis a sequence of positive
numbers which goes to zero. We obtain the homogenized equation. The homogenization
of the equations on a fixed domain and also the case of perforated domain with Neumann
boundary condition was studied by the authors. The homogenization for a fixed domain

andb(i, u.) = b(u,) has been done by Jian. We also obtain certain corrector results to
improve the weak convergence.

Keywords. Homogenization; perforated domain; correctors.

1. Introduction

Let Q2 be a bounded domain iR with smooth boundary2. Let 7 > 0 be a constant,
Qr = Q x (0, T) and lete > 0 be a small parameter which eventually tends to zero. Let
Y = (-3, +%)N and S(closed)c Y. We define a periodically perforated doma®m as
follows: First define

I, ={keZ ¢k +a.S c Q}and
Se = Uker, (ek + a. ), (1.1)

whereq, is the size of an individual hole. In the case under study we kave, /(N —r)
with2 < p < N. Set

Qe = Q\S.. (1.2)

We consider the following nonlinear parabolic equation (nonlinearity on both time and
spatial components) with Dirichlet conditions on the boundary of the holes. In fact, we
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only consider the problem witth = ¢ (without loss of generality; see Remark 3.4 in §3):
0b <)—C, ue) —diva(ue, Vue) = f(x,1)in Q. x (0, T),
&

us =0 ono2, x (0, 7),
ug(x,0) = ug(x) in Q, (1.3)

whereug is a given function o2 and f is a given function o2 x (0, T'). For a given
¢, the Cauchy problem (1.3) will also be denoted By)( It is known that under suitable
assumptions on andb (cf. assumptions (A1)-(A4) below), that the problem)(Ras a
solutionu,. Our aim in this paper is to study the homogenization of the equat®naé

¢ — 0, i.e., to study the limiting behavior ef ase — 0 and obtain the limiting equation
satisfied by the limit.

Whenb is linear (i.e.b(y, s) = s) the asymptotic analysis of such problems has been
studied quite widely [5,6,8,10,11,19]. Whenis not linear, the homogenization of the
equation in a fixed domain was studied by Jian [12]#6y, s) = b(s) with appropriate
assumptions and by the authors [17] wlteis also oscillating. In the case of perforated
domains, the authors [18] have obtained results on homogenization with Neumann con-
dition on the boundary of the holes in which we also consider oscillations in the elliptic
part as well. More precisely, we considered the te(r, u., Vu.). There is considerable
difficulty in analyzing a similar problem with the Dirichlet condition on the boundary of
the holes. The oscillations in the coefficients give rise to new difficulties and are hard to
deal with in passing to the limit. So we only consideawithout periodic oscillations. The
analysis of even this case is very subtle and will use the work of Casadn{T] in the
stationary case.

In this context, we would like to point out that the analysis for the stationary problem
in the linear elliptic case (recently solved by Dal Maso—Murat [9]) with oscillations both
in a and domain is quite involved. Now one has to develop an appropriate technique
for the stationary nonlinear elliptic problem. This will then enable us to complete the
homogenization for the full parabolic problem.

The layout of the paper is as follows. In §2, we give the weak formulation for the problem
(P:). Then, we state our main results on homogenization. In §3, we obtain some crucial
convergence results for one of the terms in the equation. Finally, in 84 and 5, we complete
the homogenization using the results of 83 and the arguments from [7]. A corrector result
is also stated in 85. An associated open problem is also discussed in 85 (see Remark 5.1).

2. Assumptions and main results

For p > 1, p* will denote the conjugate exponep¥/(p — 1). Let E, be L?(0, T;
W&"’(Qs)). Let f belong toL? (0, T, w~Lr(Q,)). We defineu, € E, to be a weak
solution of(P;) if it satisfies:

b(Zoue) € L¥QO.T5 LA, b (Z.ue) € L7 (0,75 Wo (),
& & ( )
2.1

[ o (Fowe) o) as [ (o (o) b (2wo)) s avar =0

' 2.2)

that is
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forallé € E. N W10, T; L®(2,)) with £(T) = 0; and,

T T
/ <8,b(£,u€),$(x,t)> dt—i—/ / alue, Vi) - VE(x, 1) dx di
0 2 € 0 Qe
T
=/ / fx,DEx, Hdedr  (2.3)
0 Qe

forall € € E.. Here(., .), denotes the duality bracket with respecip, E..
We make the following assumptions erandb:

(A1) The functionb(y, s) is continuous iry ands, Y-periodic iny and nondecreasing in
s andb(y, 0) = 0.

(A2) There exists a constaft> 0 such that for every and R with 0 < § < R, there
existsC (8, R) > 0 such that

b(y, s1) — b(y, s2)| > C(8, R)|s1 — 52|’ (2.9
forall y € Y andsy, s2 € [—R, R] with § < |s1].

Remark2.1. The prototype fab is a function of the forna(y)|s|* sgr(s) for some positive
real numbek and continuous anil-periodic functiong(-), which is positive ory. O

(A3) The mapping, A) — a(u, A) defined fronR x RN toRY is continuous ir(, A).
Further, it is assumed that there exists positive constgntsuch that

a(u,x) - x> alrl?, (2.5)
(a(u, A1) —a(u,22)) - (A1 —12) >0, VAip# Az, (2.6)
la(u, )| < a A+ [P+ 3P h, (2.7)
la(uy, ) —a(pz, 1) (2.8)

<o g — pol" A+ P ol P 4 AP

(A4) We assume that, the dath,e L (2 x T).
(A5) Forallw, A1, A2,

(a(m, 21) —a(u, 22))(A1 — A2) = a|r1 — 12|”. (2.9)

Under the assumptions (A1)—(A4), it is known thptX admits a solution, (cf. [4]).
The assumption (A5) will be useful in proving corrector results.
We now state our main theorem.

Theorem 2.2. Let u, be a family of solutions ofP.). Assume that there is a constant
C > 0, such that

suplluell Lo (@, x©,1)) < C. (2.10)
&

Thenthere exists a subsequence, sfill denoted by, such that for ally with0 < ¢ < oo,
we have

ity — u strongly inL9(Q7) (2.11)
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andu solves

b)) —diva, Vu) + dw) = f(x,1) inQx(0,7T),

u=~0 ond x (0, 7),
u(x,00=0 inQ (2.12)
where
552 [ b5y (2.13)
and
d(s) £ /RN ao(wy, Vwy) - Vg dy, (2.14)

wherewy is a solution of

— div(ag(wy, Vwy)) =0 inD RN\ §),

ws —s € DYP(RY),

ws ¢ € Wy P RV\S) V¢ € DRY) (2.15)
andug satisfies

vo — 1€ DLP(RN),

L (2.16)
vop € Wy’ RN\S) V¢ e DRY).
O
In the above,
ao(s, &)= IimosN(”_l)/(N_p)a(s, g/eN/N=Py(s &) e R x RV, (2.17)
£—
and
DY (RN) = {u e LNP/N=P(RN) : vy e LP(RV)). (2.18)

We shall denote the expression in (2.17) whose limit is evaluated Byé¢).

Remark2.3. The assumption (2.10) is true in special cases (see [13]) and it is reasonable
on physical grounds (see [12]). O

Remark2.4. The so-called ‘strange termy’ appears even in the elliptic linear case (see
Cioranescu—Murat [14]) and so it is not very surprising to see one here. O

We will state a corrector result in 85.
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3. Some preliminary results

Inthis section we willidentify the weak limit of the sequerice , i) as itwill be necessary
for the homogenization.

An important step in this analysis is to show that— u a.e. inQ x (0, 7). This does
not come easily as there are a@riori bounds on the time derivative of the sequenge
which will allow us to use a compactness theorem of the Aubin-Lions type. For proving
this result we adapt a technique found in [4] and already used in our paper [17]. As we
closely follow the treatment in [17], some of the results will only be sketched and we refer
the reader to [17] for more details as and when necessary.

We first obtaira priori bounds under the assumption (2.10). From now(owijll denote
a generic positive constant which is independent. of

Lemma3.l. Letu, be a family of solutions afP;) and assume thgR.10)holds. Then

supllVuellLr(@.x©,1) < C, (3.1)
&
suplla(ue, Vue) |l p* (Q:x(0,T) = C, (3.2)
&
X
supllaib (=, ue) llg: = C. (3.3)
& &

Proof. Define the functiomB(.,.) : RN x R — R by

B(y,s) =b(y,s)s — /S b(y, t)dr. (3.4)
0

As in [17] we deduce that
X T
/ B(—,us(x,T)> dx—i—/ / alue, Vitg) - Vu, dx dr
Qe € 0 Qe

:/QE‘B<;—C,uo>dx+/OT/Q€fugdxdt

and from this we obtain
X T
/ B (—,ug(x, T)) dx+/ / aue, Vitg) - Vue dx dr < C (3.5)
Q 2 0 Ja,

by (2.10) and the assumptions énThen, (3.1) follows from (3.5) and (2.5), @& is
nonnegative, while (3.2) follows from (3.1) and (2.7). The estimate (3.3) may be obtained
from (3.1), (3.2) and (2.3). Thus the lemma. |

We state the following technical lemma whose proof can be found in [17].

Lemma3.2. There exists a continuopisicreasing functionn on R+ with w(0) = 0, such
that, given anyC > 0,8 > 0, if v1,v, are any two functions ifW™1-7(Q) N L () with
lvillo,o < C,i =1, 2, satisfying

/Q(b (E’”l) _”<§vv2)> (v1—wv2)dx <§ Ve >0,
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then

/Q’b (E vl) _b<§’ vz)’ dxr <) Ve>D0.

We now prove a crucial lemma.

|

Lemma3.3. Let u, be as above. Therhe sequencéi,}..o is relatively compact in
L?(Q7), whered is as in(A2). As a resultthere is a subsequencewnf such that

U, — u a.e.inQr. (3.6)

Proof.
Stepl: Using the arguments from [12], it can be shown that

h_l/oTh/Q» (b (%,ug(t+h))—b<§,u5(t))>(ug(t+h)—us(t))dxdt <c

for some constan€ which is independent of and 4. Thus, as we have assumed in
(Al) thatb(y, 0) = 0, we get

h_l/OT_h/Q(b (g,ﬁ;(l-i-h))—b(g,ﬁ;(t))) (Tt + h) — ia(t)) dx df < C.

Step2: We show that
T—h X X
/O fg o (L +m) b (2 50)| drdi 0
ash — 0, uniformly with respect t@. Set, forR > 0 and large,

Ecr= {T € (0, T —h): |u( +h)”W1~P(Q) + ||’Is(f)||wl-p(gz)

+ h*lfg (v (g T+ 1)) b (f ())

(e (t 4+ h) — e (1)) dx > R}.

We claim thatn(E; g) < C/R independent ofi. Indeed, if we set
Elp={t €T |l@®llyirq > R/4

and

E%, = {t €0, T —h): h*lfg (b (g,ig(z +h))

= b (S0 ) - @l +h) = i) > R/2},
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then clearlyE. x C El, U (EL, —h) U E? . Nowm(EZ ) < C/R by Step 1 and
m(E;R) < C/R by (2.10) and (3.1) for some consta(ht(lndeedm(E;R)(R/4)1’T <C
from which this follows sincep > 1.) The estimates fom(Esl’R), m(EeZ,R) and the
translation invariance of Lebesgue measure gives the estimatg frr).

Now setE, . to be the complement of; ¢ in (0, T — h). Hence, fort € E, , by
Lemma 3.2, we have

/Q ‘b (E Bt +h)) —b (’Ec sz(t))‘ dr < w(hR), 3.7)

where, obviously, the modulus of continuity function does not depend dherefore,

/OT_h/Q\b(g,@(Hh))—b(g,uz(r))\
:/E /Q‘b(g,b%(t+h))—b(§,@(l))‘
&R
+/E;YR/Q\b(§,@<r+h))—b(g,frg(r))]

< C/R+Tw(hR)

for all &, R andh. Now, chooseR = h~1/2 and leth — 0 to complete the proof of Step 2.

Step3: By assumption (A2), it follows from Step 2 that

T—h
/ f e (t + h) — @e(r)|’ dx df — 0 ash — O (3.8)
0 Q

uniformly with respect te.

Step4: In this crucial step, we demonstrate the relative compactness of the sequence
{(it:}e=0 in L?(Q7). This is an argument to reduce it to the time independent case. Set,

| aex,r) ifre T —h)\Esr
Ve (X, 1) = { 0 otherwise : (3.9)
Chooser so thatT is an integral multiple ok. We have

T/h

1 h T N ‘
e [ [ 1@ = Y xmin @ - Db+l b
0 0 2 i=1

1 I/h eh ih

_ _Z/ dsf dtf 172 (0) — ve (G — D+ 5)° dr
h = Jo i-vn  Jo
1 I/ pin ih )

= - ds/ dt/le(t)—v(s)|dx
h;/a—l)h G-vn o ’

T/h

1 ih ih—t
= —Z/ df/ ds/ |iZe (1) — ve(s + 1)|7 dx
hi Jicon  Jicon— Ja
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1 T/h
- dt/ ds/|u(t)—v(s+t)|dx
= h g /o D ’ ’

1 T h
=—/ dt/ ds/ e (1) — ve (s + 1)|7 dx
h Jo —h Q
1 h T
= —/ ds[ dt/ i (t) — ve(s + 1)) dx
hJ_p 0 Q
1 h
= —/ ds/ dt/ |i0e (1) — ug(s + 1)|% dx
hJ_p s Jeo
1 h
+—f ds/ dt/ |05 (1)1 dx
hJ n rJa

where foreach € [k, h], S ={r € (0, T) : s+t € (max0,—s), min(T, T —s)) \ E¢ r}
andS’( C [0, R]U[T — h, T]U E, g)) is its complement. The inequality from equality is
obtained by replacing a bigger interval for theariable. Indeed, if € [ — 1)k, ih] and

s €[ —1h —1t,ih —t], thens € [—h, h]. Thus

T/h

h
/ / /Ius(t)—ZX((z iy (DVe((i — Dh +5)|° dx dr ds

min(T,T —s)
/ / / |i0e (1) — ve (s + 1)|? dx dr ds
max(0,—s) Q

1 (h -~ 0
+—/ /qug(t)| dx dr ds
h)_nltsJa

min(T,T —s) ;
< sugs‘ﬁh/ / lie () — tie (s +1)|” dx dr
max(0,—s) Q

1 (h - 0
+—/ //|u€(t)| dx dr ds
hJ_nltsJa

<Tw(hR) + C(2h+1/R)

which can be taken small, say less thatfor all ¢), by fixing 2 small andR = h~1/2,
Therefore, there exists € (0, #) such that

A

is small uniformly ine.

Note that fork fixed as above, we have a finite combination of the sequengcég —
DA + s¢)}e~0 Which are independent of time. Therefore, in order to prove the relative
compactness of the sequen@ﬂi’ X(Gi=Dh,iny Ve (i — DA + 5¢) in LP(Q7), which we
denote byw, , for fixed, it is enough to prove the relative compactness of the sequences

T/h 14
Te(t) = Y X(-Dhiny (DVe(( — Dh +50)| drde (3.10)
i=1
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ve((@ — Dh + s¢) In LP(Q) fori = 1,2, ..., T/h. But, this follows from the compact
inclusion of W17 (Q) in LP(Q) as these sequences are boundedvih? (Q2) (by the
definition of £, g) for eachi. Then, (3.10) and the relative compactnessof in L”(Q2r)
for each fixedh, imply that the sequencé. is totally bounded inL? (27) and hence
relatively compact there. O

Remark3.4. The first inequality in Step 1 is one of the crucial inequalities. Once this
inequality is true for a general (x, u.) instead ot (<, u.), then the rest of our methods

and techniques can be carried out for more general parabolic equation with the parabolic
term o,b. (x, u.). For example, the results are true with the parabolic té,«lim;—s, Ug),
whered, > 0 andd, — 0 ase — 0. O

From Lemma 3.2 above, the continuity @find the assumption (2.10), we derive the
following corollaries.

COROLLARY 3.5
We haveb(Z, ii;) — b(%, u) — Ostrongly inLY(Qr) Yq, 0 < g < oo.

Proof. By thea priori bound (2.10), itis enough to consider the funci@ny x[—M, M]
for a largeM > 0. As b is continuous, it is uniformly continuous an x [—M, M].
Therefore, giverkg > 0, there exists & > 0 such that

Ib(y,s) —b(y',s")| < ho,
whenevelly — y'| + |s — 5| < 8.
Now, sincei, — u a.e inQr, by Egoroff’'s theorem, giveh; > 0, there exist& C Qr
such that its Lebesgue measur€E) < hjy andiz, converges uniformly ta on (Qr \ E),
which we denote by’. Therefore, we can fingy > 0 such that

e —ulloorr <8 Ve <er. (3.11)

[, G o
=[G o ()l wea
G (G e

< hdm(Qr) + 27 sup(|b|?) m(E)

! dx dr

< h m(Qr) + 27 sup(|b|) h.

This completes the proof &g andh41 can be chosen arbitrarily small. O

The following result follows easily.
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COROLLARY 3.6

We have the following convergences

b (; ﬁ;) — B(u) weakly inL9(Qy),

X X~ g in7 4
X (8> b (8,145) b* (u) weakly inL9 (7).
for ¢ > 1. Further, b(u) = b*(u).

Proof. We note that

D(55) = (6 (5.7) 0 (20)) 0 (2

— 04 D(u)
by Corollary 3.5 and the averaging principle for periodic functions.
Similarly,
() (Cm) =2 Q) 0 Com) =0 (Cu) +x Q) (Cw)

— 04+ b*(u).

From x (%) b(%,uz) = b(%, i), we readily obtain the last of the conclusions in the
corollary. O

4. Homogenization

This section is devoted to the proof of Theorem 2.2.

For passing to the limit in eq. (2.3) we need to take test functions which vanish on the
holes. In fact, we take the test functions tole v, where¢ € D(Q), ¥ € C&(O, T)
and{v,} is a bounded family of functions which satisfies

ve € WpP(Q)NL®(Q), v =0 inthe holes and
ve — 1 weakly in W7 (Q).

The construction of such functions has been established in [14] for the linear problems
(i.e., with p = 2) and in [7] for nonlinear problems. We, in fact, choesas in (2.16) and
definev, by

Ve () = vo(ye (X)),
wherey, (x) = x — ¢k (2)/e"/V=P) is a change of variable aridis defined as in §2.

Then it can be easily seen, by the choice of the size of the perforatiptisatv, satisfies
the required properties.
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Employing these test functions in (2.3) we have

r x
/ <8,b( ug) Ve QY dt—i—/ / a(ug, Vug) - V(ve ¢ Y)dx dr
0

:/O /ng(x,z)us(wdxdt. (4.1)

Rewriting

v8¢3;1ﬂdxdt

[ oo (o) veou) a=— [ [ (2
_/O /Qb g,ﬁ; vedawdid, (4.2)
ic)

we compute its limit knowing the weak limit &{ %, iz, ). This has been done in the previous

Corollary 3.5 using which we get

sliLnO/OT(a,b(f; ) veoy) d /fb(uwafwr

- /0 (OB, ¢ ) db. 4.3)
Also,
T e—0 r
/ / fveopydedr — / ffdﬂ//dxdt. (4.4)
o Ja. o Ja
It remains to compute the limit
T
IimO/ / a(ug, Vug) - V(vg @) ¥ dx dr. (4.5)
E—> 0 o

This is a difficult computation and has been done by CasatziD his paper [7] where
he considers the homogenization of the nonlinear Dirichlet problem

—diva(ug, Vug) = fin Q,,
1,
us € Wj p(Qe)

in perforated domaif2.. The two-scale convergence method (cf. [1,15,16]) used by us

in [17,18] is not helpful here. The two-scale convergence method has been seen in a new
light by Arbogastet al [2]. The key idea is that, given a sequence of functiopshey
introduce a sequence of two-variable functiapér, y) = ug(ek(3 +6%y)), wherew = 1

andy € Y, k = k(x) € Z" such thatx € (k — 1/2, k + 1/2)V. For the situation under
consideration, Casado+&r chooses = N /(N — p) and proves a compactness lemma

for the modified sequenag.. This allows him to compute the limit of a similar quantity

as in (4.5). By a similar computation we can show that

(4.6)

T
Iim/ / a(ug, Vug) - V(ve ¢) ¥ dx dt
Qe

e—0Jo

T T
=/ fa(u,Vu)~V¢1ﬁdxdt+/ /CD(M)d)lﬁdxdt. 4.7)
0 Q 0 Q

It follows from (4.3), (4.4), and (4.7) that the homogenized equation is that given by (2.12).
We briefly sketch some steps in the proof of (4.7).
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5. Computation of lim,_ g fOT fQ a(u,, Ouy) - O, ) ¥

The entire computation will not be done here, but only outlined as it differs little from that
of Casado-[iaz [7]. Except for the time dependence of the sequences involved little else
is different.

Stepl: As the sequence, is difficult in the calculation, a sequenggis defined which
has the same behavior as the original sequence near the holes helping to capjusg the
capacity’ but is otherwise the same:iad_ etag be as in (2.17).
First definezg : RN x (0, T) x RN — R to be a solution of
— divyao(zo(x, 1, y), Vyzo(x,1,¥)) =0 in D'RY\ S) ae.x,r,
20(x, 1, .) —u(x, 1) € LPRY x (0, T); DX (RY)),
200x,1, ) p(-) e WgP RV \S) Vo e DRY) aex, 1. (5.1)
Let A, be a bounded sequencelif® (RV) satisfying
he € WEL@RN) N L2 RY),
he =0a.e. iRV \ B,,,
(he =D ¢ e Wy RV \ ) Vp e DRY),

h, — 1a.e.inRY,

/RN |Vh [N dy — 0, (5.2)

wherer. is a sequence of real numbers tendingstoases — 0 in such a way that

reeP/N=P) 5 0. Such a sequeno}}% can be obtained by solving a suitableLaplacian
in B, \S. We then set

he = he(ye (X)), (5.3)
wherey, (x) = (x — k(£))/e¥/(N=P) andk(%) denotes the multi-integdr such thatr €

e(k+Y). The sequenck, helps to join the behavior near the holes and the behavior away
from the holes.

Define

- 1
S = s_Nfc IO (5.4)

whereC, (x) denotes the-cell to whichx belongs,

- 1
Vzeg(x,t) = NN N /Cg(x) Vyzo(p, t, ye(x)) dp (5-5)

and

2e(x, 1) = he(X)Zp(x, 1) + (1 — he (X)) u(x, 1). (5.6)
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It can be shown that, has the following properties
ze € LP(0, T; WHP(RYY),
¢ € L7, T; Wy" () Ve € D),
ze = u in LP(0, T; WHP(Q)),
Vze — Vu —VZ; — 0in L?((0, T) x RM). (5.7)

Step2: Main property ofz.. For any sequence, < W&”’(QS) — win W&”’(Q) and
/RS Ccl,(o, T), the sequence, satisfies

T
/ / a(zg, Vze) - Vwey dx dt —
0 Q

T T
/ /a(u,Vu)~Vw1//dxdt+/ /@(u)wl/fdxdt. (5.8)
0 Q 0 Q

The limit is computed by separating the contribution from near the holes and that away
from the holes; i.e. we write

T T
/ /a(zs,Vze)szwdxdt:/ / a(ze, Vzg) - Vwe ¢ dx dr
o Ja 0 Ja,

T
+/ / a(ze,Vze) - Vweyr dx dr, (5.9)
o Jaa,

whereA, = U, ;v B(ek, r-eV/(N=P)) Itis easy to see that

T
/ / a(ze, Vze) - Vwe iy dx dr
0o JrM\a,
T
= f f a(u, Vu) - Vwir dx dr + O(¢) (5.10)
0 Q

from the definition ofz., the weak convergence of, and the fact that the measure of the
setsA, tend to zero.

The limit of the term defined ovet, is calculated by tailoring the two-scale convergence
technique in such a way that it ‘sees’ the holes though they are not of.sidss is the
content of Lemma 3.1 in the paper by CasadmA}7]. It becomes necessary to introduce
the two-scale sequence

o 2 X N/(N=p)
Ze(x,y) = Ze <8k (8> +e y) (5.11)
using which the first term in (5.9) can be written as
T
[ [, aG M@0 va v, (5.12)
0 JRNxB,
where

1
M0 = [ Vol (5.13)

Ce(x)



438 A K Nandakumaran and M Rajesh

Written this way, (5.12) can be shown to convergﬁofQ ®(u) w dx df by Lemma 3.1
in [7].

Step3: It is then shown that the sequengehas the desired approximation properties
(Steps4—6in[7])sothaly [, a(ue, Vie)-Vwyrdedrandfy [y a(ze, Vze)-Vwey dx
dr have the same limit, thus completing the proof.

Remarks.1. Inthe above, the diffusiontemnd. , .) did notitself vary witte. Itis desirable

to consider the case whenitis of the fout, ., . ). One may even study justthe stationary
Dirichlet problem (4.6) with such a coefficient teeng, ., .). This seems to be an open
problem and as we have remarked earlier Dal Maso—Murat [9] have obtained results in the
linear case with more general coefficients.

The case when (4.6) is the Euler—Lagrange equation of a variational problem, has been
solved by Ansini and Braides [3] by the methodIofconvergence. The capacitary term
obtained by them is simply the capacity function which corresponds to the homogenized
operatolanom, When it is positively homogeneous of deggee- 1 in the gradient. O

We end by stating a corrector result whose proof may be established following [7].

Theorem 5.2. Assume that(s, &) does notdepend enThenfor a subsequence ofstill
denoted by, we have the following corrector resuforeveryf € L?" (0, T; W—17(,)),
the solutionu, of (1.3) satisfies

i — z — Ostrongly inL? (0, T; Wg" ()

wherez, is defined in(5.6). O
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