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1. Introduction and result

It is well-known [23, 15; 19] that the Trotter–Kato product formula for the self-adjoint
semigroup holds in strong operator topology. Namely, whenA andB are nonnegative
self-adjoint operators in a Hilbert spaceH with domainsD[A] andD[B], then

s-limn→∞(e−tB/2ne−tA/ne−tB/2n)n = s-limn→∞(e−tA/ne−tB/n)n = e−tC,

(1.1)

if C is the form sumA+̇B which is self-adjoint, or, in particular, if the operator sumA+B

is essentially self-adjoint onD[A] ∩D[B] with C its closure. The convergence is uniform
on each compactt-interval in the closed half-line [0, ∞).

The aim of this note is to elucidate some of the main ideas of our recent results on its
operator-norm convergence with error bound. In [12] we have shown

Theorem 1.1. If A and B are nonnegative self-adjoint operators inH with domains
D[A] and D[B] and if their operator sumC := A + B is self-adjoint onD[C] =
D[A] ∩ D[B], then the product formula in operator norm holds with error bound:

‖(e−tB/2ne−tA/ne−tB/2n)n − e−tC‖ = O(n−1/2),

‖(e−tA/ne−tB/n)n − e−tC‖ = O(n−1/2), n → ∞. (1.2)

The convergence is uniform on each compact t-interval in the open half-line(0, ∞), and
further, if C is strictly positive,uniform on the closed half-line[T , ∞) for every fixedT > 0.

One of the typical examples of such a self-adjoint operatorC = A+B is the Schr̈odinger
operator

H = −1

2
1 + g|x|−1 + o|x|2 + a

12
|x|2000

in L2(R3), whereg, o and a are nonnegative constants.
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Remark1.1. The first result of such a norm convergence of the Trotter–Kato product
formula (1.1) was proved by Rogava [20] in the abstract case under an additional condition
thatB is A-bounded, with error boundO(n−1/2 logn). The next was by Helffer [5] for
the Schr̈odinger operatorsH = H0 +V ≡ −1

21+V (x) with C∞ nonnegative potentials
V (x), roughly speaking, growing at most of orderO(|x|2) for large|x| with error bound
O(n−1). Each of these two results is independent of the other.

Then under some stronger or more general conditions, several further results are
obtained. As for the abstract case, a better error boundO(n−1 logn) than Rogava’s is
obtained by Ichinose–Tamura [11] (cf. [9]) whenB is Aα-bounded for some 0< α < 1,
even though theB = B(t) may bet-dependent, and by Neidhardt–Zagrebnov [16, 17]
(cf. [18]) whenB is A-bounded with relative bound less than 1. As for the Schrödinger
operators, a different proof to Helffer’s result was obtained by Dia–Schatzman [2].
Further, more general results were proved for continuous nonnegative potentialsV (x),
roughly speaking, growing of orderO(|x|ρ) for large |x| with ρ > 0, together with
error bounds dependent on the powerρ (for instance, of orderO(n−2/ρ), if ρ ≥ 2), by
Ichinose–Takanobu [6] (cf. [7]), Doumeki–Ichinose–Tamura [3], Ichinose–Tamura [10],
Decombes–Dia [1] and others, although the primary purpose of most of these papers was
to prove rather a norm estimate between the Kac transfer operator and its corresponding
Schr̈odinger semigroup. The Schrödinger operators treated in [6] and [3] may even involve
bounded magnetic fields∇ × A(x) : H = H0(A) + V ≡ 1

2(−i∇ − A(x))2 + V (x). In
[7] and [8] the relativistic Schr̈odinger operator was also dealt with.

It should be noted (see [4, 21]) that in all these cases of the Schrödinger operators the sum
H = H0+V (resp.H = H0(A)+V ) is self-adjoint on the domainD[H ] = D[H0]∩D[V ]
(resp.D[H ] = D[H0(A)] ∩ D[V ]).

Thus the present theorem not only extends Rogava’s result, but can also extend and
contain all the results mentioned above, inclusive of better error bounds in some cases.

Remark1.2. Unless the sumA + B is self-adjoint onD[A] ∩ D[B], the norm conver-
gence of the Trotter–Kato product formula does not always hold, even though the sum is
essentially self-adjoint there andB is A-form-bounded with relative bound less than 1. A
counterexample is due to Hiroshi Tamura [22].

The theorem also holds with the exponential function e−s replaced by real-valued, Borel
measurable functionsf andg on [0, ∞) satisfying

0 ≤ f (s) ≤ 1, f (0) = 1, f ′(0) = −1, (1.3)

that for every smallε > 0 there exists a positive constantδ = δ(ε) < 1 such that

f (s) ≤ 1 − δ(ε), s ≥ ε, (1.4)

and that, for some fixed constantκ with 1 < κ ≤ 2,

[f ]κ := sup
s>0

s−κ |f (s) − 1 + s| < ∞, (1.5)

and the same forg. Of course, the functionsf (s) = e−s andf (s) = (1 + k−1s)−k with
k > 0 are examples of functions having these properties.

Theorem 1.3. If 3/2 ≤ κ ≤ 2, it holds in operator norm that

‖[g(tB/2n)f (tA/n)g(tB/2n)]n − e−tC‖ = O(n−1/2),

‖[f (tA/n)g(tB/n)]n − e−tC‖ = O(n−1/2), n → ∞. (1.6)
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2. Outline of proof

To prove the theorem, it is crucial to show the following operator-norm version of Cher-
noff’s theorem with error bounds. The case without error bounds was noted by Neidhardt–
Zagrebnov [18].

Lemma2.1. Let C be a nonnegative self-adjoint operator in a Hilbert spaceH and
let {F(t)}t≥0 be a family of self-adjoint operators with0 ≤ F(t) ≤ 1. DefineSt =
t−1(1 − F(t)). Then in the following two assertions, for 0 < α ≤ 1, (a)implies(b).

(a)

‖(1 + St )
−1 − (1 + C)−1‖ = O(tα), t ↓ 0. (2.1)

(b) For anyδ > 0 with 0 < δ ≤ 1,

‖F(t/n)n − e−tC‖ = δ−2t−1+αeδtO(n−α), n → ∞, (2.2)

for all t > 0.
Therefore, for 0 < α < 1 (resp.α = 1), the convergence in(2.2) is uniform on each

compactt-interval in the open half line(0, ∞) (resp. in the closed half line[0, ∞)).
Moreover, if C is strictly positive, i.e.C ≥ η for some constantη > 0, the error bound

on the right-hand side of(2.2)can also be replaced by(1 + 2/η)2t−1+αO(n−α), so that,
for 0 < α < 1 (resp.α = 1), the convergence in(2.2) is uniform on the closed half line
[T , ∞) for every fixedT > 0 (resp. on the whole closed half line[0, ∞)).

Sketch of Proof of Lemma2.1. Put

F(t/n)n − e−tC = (F (t/n)n − e−tSt/n) + (e−tSt/n − e−tC).

For the first term on the right we have by the spectral theorem

‖F(t/n)n − e−tSt/n‖ = ‖F(t/n)n − e−n(1−F(t/n))‖ ≤ e−1n−1,

because

0 ≤ e−n(1−λ) − λn ≤ e−1/n, for 0 ≤ λ ≤ 1.

For the second term, we use

(1 + Sε)
−1[e−t (δ+Sε) − e−t (δ+C)](1 + C)−1

=
∫ t

0
e−(t−s)(δ+Sε)[(1 + Sε)

−1 − (1 + C)−1]e−s(δ+C)ds

=
∫ t/2

0
+
∫ t

t/2
,

where 0< δ ≤ 1 andε > 0, to bound these two integrals on the right by(δ2t)−1eδtO(εα).
Takingε = t/n, we have

‖e−tSt/n − e−tC‖ ≤ (δ2t)−1eδtO((t/n)α) = δ−2t−1+αeδtO(n−α).

This proves the lemma.
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Sketch of Proof of Theorems1.1. First note that sinceC = A+B is itself self-adjoint and
so a closed operator, by the closed graph theorem there exists a constanta such that

‖(1 + A)u‖ + ‖(1 + B)u‖ ≤ a‖(1 + C)u‖, u ∈ D[C] = D[A] ∩ D[B].
(2.3)

The proof of the theorem is divided into two cases: (a) the symmetric product case

F(t) = e−tB/2e−tAe−B/2, (2.4)

and (b) the non-symmetric product case

G(t) = e−tAe−tB . (2.5)

(a) In the symmetric case we put

St = t−1(1 − F(t)) = t−1(1 − e−tB/2e−tAe−tB/2)

and use Lemma 2.1 to show that

‖(1 + St )
−1 − (1 + C)−1‖ = O(t1/2), t ↓ 0. (2.6)

Put

At = t−1(1 − e−tA), Bt = t−1(1 − e−tB), Ct = t−1(1 − e−tC).

We have

1 + St = 1 + At + Bt/2 − t

4
B2

t/2 + t2

4
Bt/2AtBt/2 − t

2
(AtBt/2 + Bt/2At)

= K
1/2
t (1 + Qt)K

1/2
t ,

where

Kt = 1 + At + Bt/2 − t

4
B2

t/2 ≥ 1,

Qt = t2

4
K

−1/2
t Bt/2AtBt/2K

−1/2
t − t

2
K

−1/2
t (AtBt/2 + Bt/2At)K

−1/2
t .

Then we can show that(Qtu, u) ≥ −
√

5−1
2 ‖u‖2 for u ∈ H, so that

‖(1 + Qt)
−1‖ ≤ 2/(3 −

√
5), (2.7)

‖(1 + St )
−1K

1/2
t ‖ = ‖K−1/2

t (1 + Qt)
−1‖ ≤ 2/(3 −

√
5). (2.8)

Then we have

(1 + St )
−1 − (1 + C)−1

= (1 + St )
−1
[
A + B −

(
At + Bt/2 − t

4
Bt/2(1 − tAt )

)
Bt/2

− t

2
(AtBt/2 + Bt/2At))

]
(1 + C)−1

= (1 + St )
−1(A − At)(1 + C)−1 + (1 + St )

−1(B − Bt/2)(1 + C)−1

+ (1 + St )
−1
[

t

4
Bt/2(1 − tAt )Bt/2 + t

2
(AtBt/2 + Bt/2At)

]
(1 + C)−1

≡ R1(t) + R2(t) + R3(t). (2.9)
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We can show the bounds

‖Ri(t)‖ ≤ cat1/2, i = 1, 2, 3, (2.10)

with some constantc > 0.
Indeed, forR1(t), rewriting as

R1(t) = [(1 + St )
−1K

1/2
t ][K−1/2

t (1 + At)
1/2]

× [(1 + At)
−1/2 − (1 + At)

1/2(1 + A)−1](1 + A)(1 + C)−1,

we have by (2.3) and (2.8) and the spectral theorem

‖R1(t)‖ ≤ 2

3 − √
5
a‖(1 + At)

−1/2 − (1 + At)
1/2(1 + A)−1‖ ≤ cat1/2.

The proof forR2(t) is the same as forR1(t) above. We have to only replaceAt, A andf

by Bt/2, B andg, and note that

R2(t) = [(1 + St )
−1K

1/2
t ]

[
K

−1/2
t

(
1 + 1

2
Bt/2

)1/2
]

×
[(

1 + 1

2
Bt/2

)−1/2

(1 + Bt/2)
1/2

]

× [(1 + Bt/2)
−1/2 − (1 + Bt/2)

1/2(1 + B)−1](1 + B)(1 + C)−1.

ForR3(t) we have

R3(t) =
√

2

4
t1/2[(1 + St )

−1K
1/2
t ][K−1/2

t B
1/2
t/2 ]

[(
t

2
Bt/2

)1/2

(1 − tAt )

]

× [Bt/2(1 + B)−1](1 + B)(1 + C)−1

+
(

1

2
t1/2[(1 + St )

−1K
1/2
t ][K−1/2

t A
1/2
t ][(tAt )

1/2Bt/2(1 + B)−1]

× (1 + B)(1 + C)−1 +
√

2

2
t1/2[(1 + St )

−1K
1/2
t ][K−1/2

t B
1/2
t/2 ]

×
[(

t

2
Bt/2

)1/2

At(1 + A)−1

]
(1 + A)(1 + C)−1

)
.

With

a0 := ‖At(1 + A)−1‖ = sup
λ≥0

1 − e−λ

t (1 + λ)
< ∞,

b0 := ‖Bt/2(1 + B)−1‖ = sup
λ≥0

1 − e−tλ/2

t (1 + λ)/2
< ∞, (2.11)
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it follows from (2.3) and (2.8) that

‖R3(t)‖ ≤
[√

2

4

2
√

2

3 − √
5
b0 +

(
1

2

2

3 − √
5
b0 +

√
2

2

2
√

2

3 − √
5

)
a0

]
at1/2

≤ 2

3 − √
5
(a0 + b0)at1/2.

(b) The non-symmetric case will follow from the symmetric case. We use the commutator
argument to observe that

‖G(t/n)n − F(t/n)n‖ = ‖(e−tA/ne−tB/n)n − (e−tB/2ne−tA/ne−tB/2n)n‖
= O(1/n).

This proves Theorem 1.1.
The proof of Theorem 1.2 will be done in the same way as withF(t) = g(tB/2)f (tA)

g(tB/2) andG(t) = g(tB)f (tA).

3. The final result

In a recent preprint [14], we have shown that ifκ = 2, then Theorem 1.2 holds with optimal
error boundO(n−1). Further, the convergence is uniform on each compactt-interval in the
closed half-line [0, ∞), and further, ifC is strictly positive, uniform on the whole closed
half-line [0, ∞).

In fact, we can show (2.6) with error boundO(t) in place ofO(t1/2). The idea of the
proof is to simply iterate the resolvent equation of the first identity in (2.9) with the help
of its adjoint form to get

(1 + St )
−1 − (1 + C)−1

= ((1 + C)−1 + [(1 + St )
−1 − (1 + C)−1])(C − St )(1 + C)−1

=(1 + C)−1(C − St )(1 + C)−1+ [(C − St )(1 + C)−1]∗

(1 + St )
−1(C − St )(1 + C)−1

≡ R′
1(t) + R′

2(t).

Then by the same arguments together with (2.8) we can show the bounds

‖R′
i (t)‖ = O(t), i = 1, 2,

noting that what is actually proved in §2 is

‖K−1/2
t (C − St )(1 + C)−1‖ = O(t1/2).

It is here that we needκ = 2 in the general caseF(t) = g(tB/2)f (tA)g(tB/2) and
G(t) = g(tB)f (tA).

Therefore we can apply Lemma 2.1 withα = 1. Thus it turns out that the product
formula (1.2) in Theorem 1.1 holds, with ultimate error boundO(n−1), properly extending
and containing all the known previous related results.

Finally, we comment about optimality of the error boundO(n−1). We know that if
bothA andB are bounded operators, then we have, in the symmetric product case (2.4),
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‖F(t/n)n−e−tC‖ = O(n−2), while, in the non-symmetric product case (2.5),‖G(t/n)n−
e−tC‖ = O(n−1). Also in the symmetric product case, we can give an example of two
unbounded self-adjoint operatorsA andB whose operator sumC = A + B is self-adjoint
on D[A] ∩ D[B] such that‖F(t/n)n − e−tC‖ ≥ L(t)n−1, with a positive continuous
functionL(t) of t > 0 independent ofn.

Part of the present results were also briefly announced in [13].
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