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Abstract.  The norm convergence of the Trotter—Kato product formula with error
bound is shown for the semigroup generated by that operator sum of two nonnegative
self-adjoint operatord and B which is self-adjoint.
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1. Introduction and result

It is well-known [23, 15; 19] that the Trotter—Kato product formula for the self-adjoint
semigroup holds in strong operator topology. Namely, wAeand B are nonnegative
self-adjoint operators in a Hilbert spatewith domainsD[A] and D[ B], then

—tB/2ne—tA/ne—tB/2n)n

s-Iimn_mo(e —tA/ne—tB/n)n — e—tC

= S'Iimn—>oo(e ,
(1.1)

if C is the form sumA+- B which is self-adjoint, or, in particular, if the operator sum- B
is essentially self-adjoint oP[A] N D[ B] with C its closure. The convergence is uniform
on each compagtinterval in the closed half-line [®0).
The aim of this note is to elucidate some of the main ideas of our recent results on its
operator-norm convergence with error bound. In [12] we have shown

Theorem 1.1. If A and B are nonnegative self-adjoint operators i with domains
D[A] and D[B] and if their operator sunC := A + B is self-adjoint onD[C] =
D[ A] N D[B], then the product formula in operator norm holds with error bound

”(e—tB/Zne—tA/ne—tB/Zn)n _ e—[C” — 0(,,1—1/2)7
(e "A/meB/mr —e € = 03, n— occ. (1.2)
The convergence is uniform on each compact t-interval in the open halfdjne), and
further, if C is strictly positiveuniform on the closed half-lifg’, co) for everyfixed” > 0.

One of the typical examples of such a self-adjoint oper@ter A+ B is the Schadinger
operator

1
H=-ZA+ glxI L+ olx)? + 112|x|2000

in L2(R%), whereg, o and a are nonnegative constants.
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Remarkl.1. The first result of such a nhorm convergence of the Trotter—Kato product
formula (1.1) was proved by Rogava [20] in the abstract case under an additional condition
that B is A-bounded, with error boun® (n~1/?logn). The next was by Helffer [5] for

the Schodinger operatordl = Hp+V = —%A + V(x) with C* nonnegative potentials

V (x), roughly speaking, growing at most of ord@x|x|?) for large|x| with error bound

O (n~1). Each of these two results is independent of the other.

Then under some stronger or more general conditions, several further results are
obtained. As for the abstract case, a better error ba2od 1 logn) than Rogava’s is
obtained by Ichinose—Tamura [11] (cf. [9]) wh&nis A%-bounded for some & « < 1,
even though the8 = B(¢t) may ber-dependent, and by Neidhardt—Zagrebnov [16, 17]

(cf. [18]) when B is A-bounded with relative bound less than 1. As for the Sdhrger
operators, a different proof to Helffer's result was obtained by Dia—Schatzman [2].
Further, more general results were proved for continuous nonnegative potéhtials
roughly speaking, growing of orde® (|x|?) for large |x| with p > 0, together with

error bounds dependent on the poweffor instance, of ordeD (n=2/7), if p > 2), by
Ichinose—Takanobu [6] (cf. [7]), Doumeki—Ichinose—Tamura [3], Ichinose—Tamura [10],
Decombes-Dia [1] and others, although the primary purpose of most of these papers was
to prove rather a norm estimate between the Kac transfer operator and its corresponding
Schibdinger semigroup. The Sddinger operators treated in [6] and [3] may even involve
bounded magnetic field€ x A(x) : H = Ho(A) +V = %(—iv —A(X)2 4+ V(x). In

[7] and [8] the relativistic Sclirdinger operator was also dealt with.

It should be noted (see [4, 21]) that in all these cases of thé8itiger operators the sum
H = Ho+V (resp.H = Hp(A)+V)is self-adjointonthe domaiR[ H] = D[Hp]ND[V]
(resp.D[H] = D[Ho(A)] N D[V]).

Thus the present theorem not only extends Rogava’s result, but can also extend and
contain all the results mentioned above, inclusive of better error bounds in some cases.

Remarkl.2. Unless the sum + B is self-adjoint onD[A] N D[ B], the norm conver-
gence of the Trotter—Kato product formula does not always hold, even though the sum is
essentially self-adjoint there aRlis A-form-bounded with relative bound less than 1. A
counterexample is due to Hiroshi Tamura [22].

The theorem also holds with the exponential functiohreplaced by real-valued, Borel
measurable functiong andg on [0, co) satisfying

0<f =<1 fO=1 f(0=-1, (1.3)
that for every smalt > O there exists a positive constant §(¢) < 1 such that
fls)=1=348(e), s=e¢, (1.4)
and that, for some fixed constantith 1 < « < 2,
[flk = sug)s’”lf(s) —1+5| < o0, (1.5)
5>

and the same fog. Of course, the functiong(s) = e* and f(s) = (1 + k~1s)~* with
k > 0 are examples of functions having these properties.

Theorem 1.3. If 3/2 < k < 2,it holds in operator norm that
I[g(tB/2n) f(tA/n)g(tB/2n)]" — e 'C| = O(n~Y?),
I[f(tA/m)g@B/m]" —e'Cl=0nY?), n—oo. (16)
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2. Outline of proof

To prove the theorem, it is crucial to show the following operator-norm version of Cher-
noff’s theorem with error bounds. The case without error bounds was noted by Neidhardt—
Zagrebnov [18].

Lemma2.1. Let C be a nonnegative self-adjoint operator in a Hilbert spdge and
let {F(1)};>0 be a family of self-adjoint operators with < F(t) < 1. DefineS;, =
t~1(1 — F(1)). Then in the following two assertioffer 0 < « < 1, (a)implies(b).

(a)

A+ St =@+ =00, ti0. (2.1)
(b) Foranys > Owith0 < 6§ < 1,
|F@/n)" —e '€ =82 0™, n— oo, (2.2)

forallz > 0.
Thereforefor 0 < o < 1 (resp.« = 1), the convergence ifR.2) is uniform on each
compact-interval in the open half lin€0, co) (resp. in the closed half lin®, co)).
Moreover if C is strictly positivei.e. C > n for some constani > 0, the error bound
on the right-hand side qR.2)can also be replaced bl + 2/1)% 120 (n~%), so that
for0 < o < 1 (resp.a = 1), the convergence i(2.2) is uniform on the closed half line
[T, oo) for every fixedI' > O (resp. on the whole closed half lifi@, co)).

Sketch of Proof of Lemnial. Put
F(t/n)" — e 'C = (F(t/n)" — e !Sun) 4 (e7!Sn — 71C),
For the first term on the right we have by the spectral theorem
IF(t/n)" — eS| = ||F(t/n)" — e "= FUm | < e7tn ™,
because
O<e @M _m<el/y, foro<i<l
For the second term, we use
(1+ 8o e CH%) — e TO1 14+ )t

t
:/ e*(l*S)(SJFSs)[(l_’_ Ss)il -1+ C)fl]efs(tH»C)ds
0

t/2 t
=[]
0 t/2

where 0< § < 1ande > 0, to bound these two integrals on the right®$r) 1€’ 0 (¢%).
Takinge = t/n, we have

le™" S — e € < (% O((t/n)*) = 8TA T 0 ().

This proves the lemma.
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Sketch of Proof of Theorentsl. First note that sinc€ = A + B is itself self-adjoint and
so a closed operator, by the closed graph theorem there exists a canstightthat

A+ Aull + 1A+ Bull < all(I+ COull, u e D[C] = D[A] N D[B].

(2.3)

The proof of the theorem is divided into two cases: (a) the symmetric product case

F(t) = e 'B/2g71AgB/2, (2.4)
and (b) the non-symmetric product case

G@t) =e e !B, (2.5)
(a) In the symmetric case we put

S, =t Y1—F@t) =t 11— e'B/2g14g71B/2)
and use Lemma 2.1 to show that

I+ S) =@+ Y =0aY%, ty0. (2.6)
Put

Ar=tt1-e), B =tt1-e8), Cc =1r11-e"%.
We have

1+S =1+ A, +Bijo— %BE/Z + ;B,/ZAZB,/Z - %(A,B,/z + B joAy)

_ Kll/Z(l n Qz)Kll/z,

where

t
K, :1+A,+B,/2—ZB,2/22 1,

2
. _1/2 —1/2 I __—1/2 -1/2
Qz=—4K, /Bz/zAsz/th / —th /(Asz/erBz/zAr)Kt 2.

Then we can show tha&Q,u, u) > _f5T4||u||z foru € H, so that

I+ Q)7 <2/3-+5), 2.7)

1@+ S kM2 = 1k, Y2+ 007 < 2/(3- V5. (2.8)

Then we have
A+spt-a+o™t

t
=1+ St)_l |:A + B — (At + Bij2 — ZBI/Z(]- - tAt)) B2

t _
—5(ABij2 + Bz/zAz))} 1+o0t
=1+ A-A)A+ O+ A+ S HB - Bl +0)7t
t t
+@+5)7t [ZB’/Z(l —1A)By2 + 5 (A B2 + Bz/zAt)} 1+0t

= R1(t) + R2(t) + R3(1). (2.9)
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We can show the bounds
IR (Dl < cat™?, i=1,23, (2.10)

with some constant > 0.
Indeed, forRy(¢), rewriting as

1/2 1/2

Ri(t) = [(1+ SR K, 72+ ApY2

x[A+A) 2@+ A2+ DA+ HA+ 07

we have by (2.3) and (2.8) and the spectral theorem

IR (DI = al(+ A2 — A+ ApY21A+ A7 < car™?.

2
3-5

The proof forR,(¢) is the same as faR1(¢) above. We have to only replagg, A and f
by B;/2, B andg, and note that

2

1 ~1/2
X |:<1+ EBt/z) a+ Bz/2)1/2:|

x [(L+ Bij2) Y2 — 1+ B 2Y2(1+ B A+ B+ 0L

1/2
Ra(1) = [(1+ )1k} [K‘l/z (1+ 1Bt/z> }

For R3(r) we have

2 _ 1/2
R3<r>=§ Y2+ 57K ALK 2B [( Bt/2> <1—rAz>]

X [Bi2(L+ B) 1+ B)(1+ )72

1 _
+ (2 A+ ST K ALK P AP A) 2B 2L+ B Y

x 1+ B)A+0) 1+ */_ 2@+ 5) KK V2B )

: 1/2
X [(5&/2) A1+ A)—l} A+A)A+ C)‘l) .

With
1 — A\
=|A;(1+ A =S s
ap == || A ( )l A>€t(1+)»)
1— e—tk/Z
bo = |Bij2(L+ B) ™| = sup———— (2.11)

A>O E e
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it follows from (2.3) and (2.8) that

2 2J2 1 2 2 22
Rel < | Y222 4o (L2 Y2 V2N
4 3-./5 23-./5 2 3-.5
2
< ap+ b atl/?,
3_\/3(0 0)

(b) The non-symmetric case will follow from the symmetric case. We use the commutator
argument to observe that

||G(t/n)n _ F(l‘/n)”” — H(e—tA/ne—tB/n)n _ (e—tB/Zne—tA/ne—tB/Zn)nH
= 0(1/n).
This proves Theorem 1.1.

The proof of Theorem 1.2 will be done in the same way as With = g(tB/2) f(tA)
g(tB/2)andG(t) = g(tB) f(tA).

3. The final result

Inarecent preprint[14], we have shown that i 2, then Theorem 1.2 holds with optimal
error bound? (n~1). Further, the convergence is uniform on each compatderval in the
closed half-line [Qoo), and further, ifC is strictly positive, uniform on the whole closed
half-line [0, c0).

In fact, we can show (2.6) with error bour@(r) in place ofO(+/2). The idea of the
proof is to simply iterate the resolvent equation of the first identity in (2.9) with the help
of its adjoint form to get

A+SH)t-a+o0t

=(@+O +[A+ S -a+o ™ De-sHa+ot

1+0)7HC - SHA+ O+ [(C - SHA+O)
A+ S)™HC - spa+0)7t

Ry(1) + Ry(0).
Then by the same arguments together with (2.8) we can show the bounds
IR;()Il = O(r), i=12,

noting that what is actually proved in 82 is

1K Y2(C - s+ 0)7 Y = oY),

It is here that we need = 2 in the general cas€(t) = g(tB/2)f(tA)g(tB/2) and
G(t) =g(B)f(tA).

Therefore we can apply Lemma 2.1 with= 1. Thus it turns out that the product
formula (1.2) in Theorem 1.1 holds, with ultimate error bouh@: 1), properly extending
and containing all the known previous related results.

Finally, we comment about optimality of the error boutdn—1). We know that if
both A and B are bounded operators, then we have, in the symmetric product case (2.4),
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| F(t/n)"—e €| = O(n—2), while, in the non-symmetric product case (2|&)t/n)" —
e’C|| = 0(n™Y). Also in the symmetric product case, we can give an example of two
unbounded self-adjoint operatodsand B whose operator suii = A + B is self-adjoint
on D[A] N D[B] such that|| F(t/n)" — e'C|| > L(t)n=1, with a positive continuous
function L(z) of r > 0 independent of.

Part of the present results were also briefly announced in [13].
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