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Abstract.  Since it became clear that the band structure of the spectrum of periodic
Sturm-Liouville operators = — (d?/dr?) 4 ¢(r) does not survive a spherically sym-
metric extension to Schdinger operator = —A + V with V(x) = ¢(|x|) forx € R?,

d € N\ {1}, a wealth of detailed information about the spectrum of such operators
has been acquired. The observation of eigenvalues embedded in the essential spectrum
[0, oo[ of T with exponentially decaying eigenfunctions provided evidence for the
existence of intervals of dense point spectrum, eventually proved by spherical separation
into perturbed Sturm-Liouville operators = ¢ + (c/r?). Subsequently, a numerical
approach was employed to investigate the distribution of eigenvaluesnaire closely.

An eigenvalue was discovered below the essential spectrum in the/ case, and it
turned out that there are in fact infinitely many, accumulatingsaiMoreover, a method
based on oscillation theory made it possible to count eigenvalugsarfitributing to an
interval of dense point spectrum &f We gained evidence that an asymptotic formula,
valid for ¢ — o0, does in fact produce correct numbers even for small values of the
coupling constant, such that a rather precise picture of the spectrum of radially periodic
Schibdinger operators has now been obtained.

Keywords. Schidinger operator; self-adjointness; embedded eigenvalue; exponential
decay; dense point spectrum.

0. Introduction and preliminaries

The Schédinger equation
0
lE\Il(t,x) =(—A+4+V(x)) ¥(,x)

may certainly be counted among the most important pieces of ptyrsitaathematics in
the twentieth century. The mathematical interest associated with it and the corresponding
operator— A + V can be characterized either by topical issues or by considering variants
of the operator itself.

Early on it became clear by the work of J von Neumana BinH Stone that the unique
solvability of the Schidinger equation with the initial staig(0, -) given amounts to prove
that the Schidinger operator as defined in lon the set of test functions (smooth and
with bounded support) isssentially self-adjoini.e. has a unique self-adjoint extension.
Ever since, the question of (essential) self-adjointness has been central in the theory.
Although this problem was essentially settled by the early 1970s (cf. ([18], Chapter 3),
([34], Chapter IIl)), we will discuss some less acknowledged aspects of it in § 0.1. Started
in the early 1950s b¥ E Shnol’, the interest in the connections betweenspectrum
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of Schiddinger operators and tlesymptotic behavior of eigensolutigris which we will

referin § 0.2, reached its peak in the 1970s and early 1980s (cf. ([18], Chapter 4), ([34],
Chapter IV)) with the now famouKato class(named after T Kato, the ‘father of the
modern theory of Sclidinger operators ([34], p. 3523)’) emerging as the most natural
home forpotential functiond/. This was accompanied by the development of semigroup
techniques and scattering theory, which led to a more thorough investigation into the
fine structure of the spectrum these last twenty years. The discovery of peculiar spectral
phenomena, like e.g. embedded eigenvalues, dense point spectrum and singular continuous
spectrum, formed a motivation to consider magnetic (cf. ([34], Chapter X)), random (cf.
([34], Chapter VII)) and in particular one-dimensional (cf. ([34], Chapter V)) 8dimger
operators as well as Dirac operators. Originally just a mathematical curiosity, there is
now some evidence that embedded eigenvalues can actually be observed experimentally
(cf. [5]), thus adding to the revived interest in these questions.

In this survey we do not attempt to give a historical overview of all these developments;
see the article [34] and its vast bibliography. We want to collect, correct, rearrange and
refine some of the old and more recent results of the theory. We will concentrate on a class
of operators which may not have received the attention it deserves, naptadyically
symmetricSchibdinger operators (8 1). It turns out that they live a life in between their
one-dimensional and general higher dimensional brethren. On one hand, their spectra are
qualitatively different from the spectra of the corresponding Sturm—Liouville operators; on
the other hand the emergence of phenomena like embedded eigenvalues and dense point
spectrum, ofocalizationas it has become to be called, can be obtained by recourse to the
one-dimensionaltheory. The spectral properties especiathadlly periodicSchibdinger
operators (8 2) are therefore extra-ordinary in every sense of the word. For the same reason,
spherically symmetric Schdinger operators can be approached by numerical methods
too, and we will report on an example of a numerical investigation into the distribution
of eigenvalues in intervals of dense point spectrum in 8 3. We hope that the elementary
character of the cases treated in this article will contribute to the understanding of non-
orthodox patterns in the spectral theory of differential operators.

0.1 Self-adjointness

A Schibdinger operator in £ (R?), d € N, is of the form—A + V with a real-valued
potential V € Ly joc (R?). It is symmetric on a natural domain likeJQ(R?), but this
domain will be too small to make the operator self-adjoint. For the sake of definitenessiitis
therefore necessary to prove essential self-adjointness. A sufficient condition for a densely
defined operator in a Hilbert spaced to possess a unique self-adjoint extension is the
self-adjointness of its closurg, because then for any self-adjoint extenskaof 7', we

haveT c § = $* c T" =T, whenceS = 7. So we have at our disposal all the classical
criteria for self-adjointness as appliedZo In practice, this turns out to be not too easy,

but it is unavoidable, since self-adjointnessTohappens to be also necessaryfoio be
essentially self-adjoint (cf., e.g., ([19], Theorem 1.2.7)).

The problem to show thatA + V ICg (RY) is self-adjoint in L, (R?) has a long and
winding history (cf. ([18], Chapter 3)). Unfortunately, there is no handy assumptidhn on
which would be both sufficient and necessary. If the operator is bounded from below, it
turns out that we only need a local condition on the negative\part= max0, —V'} of
V, namely thdocal Kato condition
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DEFINITION 0.1

K(R?) is the set of all measurable functiofison R¢ with

lim sup sa(x —y)|f(y)|dy =0,

r—0 xeRe Jx—yl<r

wheres; (z) = (1/wq) ff'fl p9=2dp, with w, the area of the unit sphereRRf. Kioc (R?)
is the set of all functiong onR? with f o xo € K (R) for every bounded, open c RY.

With this definition, the following result holds.

Theorem 0.1. If T := —A + VICZ (RY) is bounded from below and_ € Kiqc (RY),
thenT is essentially self-adjoint ih, (R?).

The proof can be based upon the criterion that a positive opefaisressentially self-
adjoint, iff its range is dense i#, i.e. iff T* is injective. The latter can be shown as
soon as one knows that evegigensolutiorfor 7 and € R, i.e.u € Ly oc (Rd) \ {0}

with Vo € CF(RY) : [uT¢ = i [ug, is locally bounded, which is the case if
V_ € Kioc (R?) (([1], Theorem 1.5), ([18], Corollary 2.8)).

Remark.The local Kato condition is not necessary for essential self-adjointness, as can
be seen from the examplé(x) = —c|x|~2 in RS, whereV_ ¢ Kjoc (}R6) (cf. ([18],
Example 1.7)), but" is bounded from below i < 4 and essentially self-adjoint iff < 3

(cf. ([12], VIl Proposition 4.1)).

There are a couple of applications of Theorem 0.1. First of all, boundedness from below
T can be guaranteed by the assumptione K (}Rd) due to relative form boundedness
with respect to-A (cf. ([18], Corollary 3.3)). Moreover, by truncating the negative part
of the potential, we may even use Theorem 0.1 to obtain essential self-adjointness of
Schiddinger operators which are not bounded from below, namely allowing for a behavior
of the potentid like —O (|x|2) at infinity (cf. ([18], Theoren 3.4); see also [21]).

COROLLARY 0.1
If V_ € K (R?) + O (|x[?), then—A + V ICZ (R?) is essentially self-adjoint ib, (R).

Let us mention that the same approach allows to treat magnetio@ober operators
aswell,i.el == —(V—ib)’>+V TC8° (Rd), as long a% is continuously differentiable
as a function fronR? to R?; if one employs the method of H Leinfelder and C Simader,
one can even cover the most general case Wherél 4 joc (R“’))d andV-b € Ly joc (IRi")
(cf. ([19], Theorem 2.5)).

The big open question about essential self-adjointness ob8ictyer operators is con-
jecture of K drgens (1972), where no progress seems to have occurred since twenty years

(cf. [7]).
Conjecture.If —A +V TCS" (Rd) is bounded from below and essentially self-adjoint in
Lz (RY) and if W € Lo joc (RY) with W > V, then—a + W IC3° (RY) is essentially self-
adjoint in Ly (R).

By Theorem 0.1 this is open for dimensiatis> 4, because ioc (R?) C Kioc (R?)
ford < 3.
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0.2 Asymptotic behavior of eigensolutions and the spectrum

Once the essential self-adjointness-at + V TCSO (Rd) being established, thepectrum
o of T, by which we will from now on denote the self-adjoint closure of this operator, and
its parts are well-defined. We will consider the decompositions

oe(T)Waq(T) =0 (T) = 0c(T)Uop(T),

whereoyp is the point spectrumi.e. the set of eigenvaluesy is thediscrete spectrum
i.e. the set of eigenvalues of finite multiplicity which are isolated from other elements of
the spectrum, with thessential spectruia being its complement is, ando. denotes the
continuous spectrunA further decomposition of the latter into asolutely continuous
and asingular continuoupart, useful in scattering theory, will not be pursued here.

There are a couple of tools to investigate the essential spectrum which are specific for
Schivdinger operators and show that it depends mainly on the behaviérabbo. The
most important are the following, which go back to ideas of Glazman ([13], p. 59ff, 71ff)
Shnol’ ([33], p. 121) and Persson ([24], Theorem 2.1).

Theorem 0.2. LetT := —A + V IC (R) be self-adjoint and/_ € Kjoc (R?). Then

@  reoe(T) © I, € CF (RU\B,), llgnll =1: (T = Mg, — 0, n — oc.
If T is bounded from beloywhen
(b) inf oe(T) = su§inf {(Te,9); ¢ € CF (RT\B,), llgll =1}.

ne

HereB, := {x € RY; |Ix|| < n}.

Proof. A simple proof of statement (a) in this general form can be found in ([15], p. 199f).
If 0e(T) # @ in (b), then infoe(T) € 0e(T), sinceT is bounded from below, and-"
follows easily from (a).

For ‘<’ in (b), we may assum& > 1. Let 0< u < inf 0e(T). Then we have

K
3K €No3yn € Lo (RY). il =1V f e Lo (RY)  Euf = ) (£ 90 i,
k=1

where(E, ), g denotes the spectral family @f. Hence
NP K )\ V2
Vo eC3 (R \Bn) L Ene| < ;(/Rn\m |kl ) el
Now let 0 < ¢ < 1; then there is an, € Nsuchthat ¢ € C3° (R?\B,,) : |Ene| <
¢ llell, whence
(To, @) = (T (1= E,) 0.9) + (TEup. ) = 1 (1 - E,) o]
> (lell = | Enel)? = 11— )2 gl

Therefore inf{(Te, ¢); ¢ € CF (R \ By,.), llgll = 1} > 11 (1—e)2 and lettings — O,

we arrive at supnf {(Te, ¢); ¢ € CF (RY\ B,)., ll¢ll =1} > pu.
neN
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There are intimate relations between the different parts of the spectrum and the asymp-
totic behavior of eigensolutions at infinity, the obvious one being

1 € 0p (T) & 3 eigensolution: € L (Rd) :

such eigensolutions inzL(Rd) are calleckigenfunctionsThe general idea is thate o is
associated with bounded eigensolutions and that eigenfunctions for discrete eigenvalues
do decay exponentially. The precise statements, however, depend on the behavior of the
potentialV at infinity. They read as follows:

PROPOSITION 0.1
If V_ e K (RY) 4+ 0o(|x[?), then

o(T) = {1 e R; 3y > 03 eigensolution: for Tandx : (1+ - )77 u € Lo (RY)}.

This follows from ([19], Main Theorem), where a magnetic poteniiéd allowed for
too. There are two obvious questions, namely if it is utterly necessary to take the closure
on the right-hand side andjf = 0 would suffice for the inclusionc’.

PROPOSITION 0.2

If V_ e K (RY) + o(]x|?), then every eigenfunction @f for A € o4(T) decays faster

than any inverse polynomiaf V_ € K (Rd), then the decay is faster thaxp(—p|x|)
for someu > 0.

This can be found in ([18], Corollary 4.5).

The case wher&_ behaves like Q|x|2) at infinity is open for dimensiong > 2. An
example of G Halvorsen faf = 1, where there is a € R \ o (T) with a bounded eigen-
solution and an eigenfunction for a discrete eigenvalue which decays only polynomially,
indicates that both Propositions 0.1 and 0.2 may fail for these potentials in any dimension
(cf. the discussion in ([18], Chapter 5)).

More explicit bounds on eigenfunctions are known for the standard case of a potential
which tends to some constant at infinity (cf. ([18], § 4.1)).

PROPOSITION 0.3.

LetV € Kjoc (]Rd) with V (x) — Vo € RU{oo}, as|x| — oo. Then for every eigenfunction
u for » € op and anyp < J/dist(x, oe): u(x) = O(exp(—ulx|); if u > 0, then
(In(u(x))/|x]) = — J/dist(r, oe), as|x| — oco. Moreover oe (T) = [V, oo].

If V(x) > Vo — c|x|~17¢ outside a compact set for some> 0 ande > 0, i.e. in
particular forshort rangepotentials, we even get, by subharmonic comparigadn) =
O (|x|=@=D/2) exp(— /dist(x, oe) Ix])) (cf. ([6], Theorem 2) or ([17], Theorem 2) in
conjunction with ([16], Lemma 10)).

The lower bound for positive suggests that the exponential decay rate given in Propo-
sition 0.3 is optimal in general. Two cases are of interest: eigenvalues below the essen-
tial spectrum, as in Proposition 0.3, and eigenvalues in gaps of the essential spectrum,
whose existence has been proved in ([22], Theorem (2.2)) and [10] (cf. also [16]). We will
approach this question in the following section.
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1. Spherical symmetry

We now come to the investigation of the spectrunsjgiierically symmetri&chiddinger
operators, wherd € N\ {1}, and the potential is of the fori(x) = ¢(r) with some

g . [0,00[— R, r := |x|. They have been used to demonstrate statements (cf., e.g.,
([35], Problem 8)) or to provide (counter-)examples in spectral theory and also in the
scattering theory (cf. ([2], Chapter 11)). We will start with some basic examples leading
to classical types of spectra and then turn to the phenomenemioédded eigenvalues
i.e.x € op(T) Noe(T). All examples will be inR3.

1.1 Some basic examples

Classical types of spectra areparely continuous spectrynas in the case of the free
particle, wherez = 0 andoe (T) = o (T) = oc (T) = [0, oo[, op (T) = @, or apurely
discrete spectrumas for the harmonic oscillator with(r) = 2 ando (T) = og(T) =
{3+ 2k; k € Np}.

The hydrogen atom, wheegr) = —(1/r), has acombined discrete/continuous spec-
trum

Cfp(T)=0d(T)={ kGNo},Ue(T)=Gc(T)=[0,OO['

l .
4(k+ 12’

The functionu(x) = exp(— (r/2)) is aground stateeigenfunction, i.e. for the lowest
pointA = — (1/4) of the spectrum. Eigenfunctions which do not change sign are always
associated with the lowest point of the spectrum. More general, we have the following:

Theorem 1.1. Let—A + VICF (RY) be bounded from below and € Kioc (RY). If

there exists a positive eigensolutienfor » € R and 7 = —A + VICg (RY), then
A <mino(T).

Proof. Let ¢ € Cg° (R?) be real-valued. Since € C(RY) N W3

3 10c (RY) (cf. (18],
Corollaries 2.8 and 2.9)), we may replages CS° (RY) in

O=—/uAI//—i—/u(V—)»)l/f=/VM~V¢+fu(V—X)W

by ¢?/u, whence after some calculation we get

0=/|V<p|2—fu2 V<$>)2+/M(V—A)%2,

(T — 1. 9) = /u2 V(9 =0

As T andx are real, we arrive &t ¢ € CF (R?) : Allgll? < (Te, ¢), whencer <
mino (T), becausd’ is self-adjoint by Theorem 0.1.

Ground state eigenfunctions can have a faster decay rate than the one expected in view
of Proposition 0.3. Here is an example.

that is
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Examplel. Witha(r) =r + (1/6) sin(3r) let

(r) =o' (r)? <1 - #> - <a”(r) + goe’(r)) tanh(e(r))
7= cosh(x(r))? r -

Then Oe o4(T) with eigenfunctionu(x) = 1/ cosh(«(r)) andoe (T) = [0, oo[, where
o < 1(up ~ 0.9466.

Theprooffor Example 1 depends on the following theorem, where

2

d
t=-13 + 4 ICF®)

inLa(R) (g(=r) = q(r)).
Theorem 1.2. Letg € C ([0, oo[ ), with

1 —

- sup{M; O<|r—s| < 1} — 0, asr — oo,

r |r —s|

and such that and T are self-adjoint. TheRinf ce(7), oo[ C oe(T). If g is bounded,
then[inf oe(t), oo[ = oe(T).

The proof of the first statement (cf. ([15], Corollary 1)) is based on rectangular sep-
aration and Theorem 0.2(a). (The same fundamental ideas have been employed in [27]
to study the corresponding question for three-dimensional spherically symmetric Dirac
operators.) Ify_ € K(R) (and consequently_ e K(R?); cf. ([18], Lemma 1.6)), we
can provelinf oe(t), oo C oe(T) without any further local assumption @n based on
spherical separation and the construction of singular sequences by cutting off eigensolu-
tions (cf. ([15], Proposition 2)). (For an alternative proof of this inclusion, see [40].) Under
the same assumption gnand making use of Theorem 0.2(b), it is possible to show that
inf oe(t) < inf oe(T) (cf. ([15], Proposition 1)), with the second statement of Theorem 1.2
as an immediate consequence. We refer to [15], where details on the determination of
in Example 1 can be found as well.

Theorem 1.2 limits the possibilities to construct an example afalated eigenvalue
A of T of infinite multiplicity, i.e.

Je > 0: Ey_p = Es_, Es = Epie, dim(E; — E;_) Lo (Rd) = .

On the other hand, the results of this section yield many other eigenvalues in the essential
spectrum.

1.2 Embedded eigenvalues

Theorem 1.1 allows us to construct an example okayenvalue at the bottom of the
(essentigl spectrum

Example2. Letq(r) = 2((r2 — 3)/(1+ r?)?). Then O¢ op(T), 0d(T) = B, 0e (T) =
[0, <.
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Proof. u(x) = (/1 + r2)) is an eigenfunction foi. = 0. The rest follows from
Theorem 1.1 and Proposition 0.3.

As mentioned in the introduction, there is now arevived interest in eigenvalues which are
strictly embedded in the essential spectrum (cf. also [37]). The example which produced
the first scandal is due to J von Neumann and E Wigner (cf. [23]; note that the source of this
reference is often cited inaccurately); here is a slightly corrected and simplified version.

Exampé 3 (von Neumam and Wigner). Witha(r) = 2r — sin(2r) let

8 sin(2r) N 32 sinr)?

——1- .
qr) T1et)  Atat)?

Then O€ op(T), oe (T) = [—1, o0l

Proof. u(x) = sin(r)/(r(1 + a(r))) is an eigenfunction fok = 0. The rest follows from
Proposition 0.3. O

As in Example 2, the eigenfunction in the von Neumann/Wigner example decays only
polynomially. With Theorem 1.2 on hand, we are now able to producerabedded
eigenvalue with an exponentially decaying eigenfunction

Exampled. Let g(r) = —1 + (1/25 sin(r)* — (2/5) sin(2r). Then oe(T) D
[ (14/25), o[, and Oe op(T), with eigenfunction

u(x) = (sin(r)/r) exp(— (1/10) (r — (1/2) sin(2r))).

For theproof we only have to observe that by Theorem 0.2(b), sqi) < maxq (r)
< —(14/25) and use Theorem 1.2.

Example 4 seems to be the only existing example where both an embedded eigenvalue
and its exponentially decaying eigenfunction are known explicitly. It puts an end to efforts
to provide lower bounds for eigenfunctions, even for spherical means, for large classes
of Schibdinger operators and opens one path to the phenomenon which has now become
known adocalization i.e. the existence of dense point spectrum associated with exponen-
tially decaying eigenfunctions (cf. [38]).

2. Radial periodicity

Examples 1 and 4 suggest a further investigation into spherically symmetrigdiafper
operators which areadially periodic, i.e. whereg is aperiodic (even) function; we also
assumey to be bounded, throughout. To fix notation, we remark the following:ffar
Liioc (R), let Py := {a e R; f = fyu}, wheref, € Lijoc (R) is given byVr € R :
fa(r) = f(r + «), and definex; := inf {Ot € Ps; o > 0}.

Lemma2.1. If f € L1joc (R), then

0<af<oo<:>Pf=Zaf
ar =0« f is constant.

Proof. Py is a subgroup ofR, +), such that it is either trivial, non-trivial and discrete or
dense iR, with s = oo, Py = Zay, oy = 0, respectively. In the latter case there is a
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sequencéa,),eny C Py With 0 < oy — 0 asn — oo. Letg € C3°(R) be real-valued.

Then
/m/: lim /f—go_q)_“” = lim /—f_f“"<p=o,
n—o00 oy n—0o0 oy

whencef is constant by the Lemma of DuBois—Reymond. O
Now the following definition makes sense.

DEFINITION 2.1
f € Lyjoc (R) is called periodic with (principal) periody, iff 0 < oy < occ.

Remark.It is easy to extend this notion of periodicity and period to distributions.

Typically, the spectrum of a one-dimensional periodic dimger operator has band
structure (cf., e.g., ([11], 8 5.3), ([39], § 12)), as for instance in the prototype case of the
Mathieu operatorwhereg = cos; here

]

o(t) = oe(t) = | [u—1. Mi], op(t) =,
k=1

with up_1 < My < pup — 00, ask — oo (g ~ —0.3785 M1 ~ —0.3477, u1 ~
0.5948 M, ~ 0.9181, uo ~ 1.293...). By Theorem 1.2, this is not so for radially
periodic Schddinger operators, their essential spectrum being a half-line.

2.1 Dense point spectrum

A spherically symmetric extension otould possibly produce any kind of spectrumiof

in spectral gaps of (absolutely or singular) continuous or dense point spectrum or even
a mixture of these. In order to characterize the quality of the spectrummthe gaps of

the spectrum of a periodic we note the following. By spherical separation,

oe(T) = | Joclte), (1)
=0

where forc > — (1/4), 1. is the Friedrichs extension irpl(]0, oo[) of — (d?/dr2)+¢ (r) +
(c/r?) on & 10, 00D); ¢ =1l +d —2) + (1/4(d — D(d — 3), | € Np. Since the
difference of resolvents fap andz. is compact (cf. ([14], Lemma 1)) and the essential
spectra ofg andr are the same by virtue of Glazman’s decomposition principle (cf. ([13],
Chapter I, Theorem 23)), we hawg(t.) = oe(r). Combining this with (1), we arrive at
oc(T) C oe(t). Together with Theorem 1.2, this yields the following result.

Theorem 2.1. Letqg be bounded. Iminoe(t) < A1 < Ap with]A1, A2[ Noe(t) = ¥, then
11, 22[ N oc(T) =@, [A1, k2] C op(T).

For more details of thproof, see ([14], 81).
For every suchy with a gap in the essential spectrum of the corresponding one-
dimensional operatarwe therefore have ainterval of dense point spectrufor 7.
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Examples. Letqg = cos, then

oo(T) = | k-1, Mi], {10} U 0p(T) = 0a(T) U {0} U | [M, ] -
k=1 k=1

If d > 3, thenoy(T) = ¥ andug ¢ op(T).

Proof. The first two results follow from Theorem 2.1, together with the fact that
op(te) N ptk—1, My[ = 9 (cf. ([14], Corollary 1)). For the last result we note that> 0
ford > 3.

We have thus obtained a very elementary example of ad8etger operator with a
spectrum consisting of alternating intervals of (absolutely, cf. ([14], Theorem 2)) continu-
ous and dense point spectrum. The presence of intervals of dense point spectrum had been
known for magnetic Sclidinger operators since the example of K Miller and B Simon
(cf. ([8], 86.2)). Their construction, together with the ideas presented above also formed
the basis for a more general investigation into the spectrum of two-dimensional magnetic
Schibdinger operators with radial periodicity of both, the electric poterfial) = ¢ (r)
and the magnetic field, i.€db2/0x1)(x) — (3b1/9dx2)(x) = B(r) with B andq periodic
with perioda (cf. [20]). It turns out that here too there are alternating intervals of abso-
lutely continuous spectrum and dense point spectrum, provide(fgha(r)dr =0, and
that otherwise the essential spectrum consists entirely of dense point spectrum. Moreover,
intervals filled with dense point spectrum can also be observed for spherically symmetric
Dirac operators; cf. [28]. For localization in random Sattinger operators we refer to [38]
and the literature cited there. We also do not want to go into the one-dimensional case,
for which we point to [25]. The construction of one-dimensional Dirac operators with a
prescribed dense set of eigenvalues can be found in [29].

Aninteresting question is the persistence of dense point spectrum in our radially periodic
examples under a compact support perturbation, say.

2.2 Welsh eigenvalues

In Example 5 the question of existence of discrete eigenvalues and the status of the lowest
point wo of the essential spectrum @f remained open fod = 2. As in connection with
Example 1, where we constructed an admissible function for which the value of a quadratic
form associated withis strictly less than 1, thus showing that mig{7') = minoe(t) < 1,

we now produced a function in the form domainsgfwith a value of the form strictly

less thanug, such that foly = cos andd = 2, we havesy(T) # @ (cf. [3]). Numerical
calculations, based on the SLEIGN2 code to find eigenvalugssfrestricted to functions
defined on¢, [ C]0, co[ with 0 < a < b < o0, revealed the ground state, which was
baptized theWelsh eigenvaluand denoted byw. for its place of discovery, at about
—0.4016. The question if thewer spectrumi.e. the discrete spectrum below the essential
spectrum, is finite or not is a delicate one, because the perturbatlgdr?) represents

a borderline case which had not been studied before with sufficient thoroughness. The
following can be shown by oscillation theory (cf. ([30], Theorem 2)).

PROPOSITION 2.1

Letg € Lo joc(R) be periodic withg_ € Lo (R); d = 2. Then|oy(T)| = oo and
minoe(T) € op(T).
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3. Numerical analysis

The preceding results suggest to look at the contribution, dbr [ € Ng to op(7) N
1My, k[ for k € Naswell, if this gap in the spectrumois not empty, asin Example 5. For
1 fixed andk large enoughloyp (t¢;) N 1My, il | < oo (cf. ([26], Corollary 3)). However,

if we look into a fixed interva] My, u[, we get a similar result as in Proposition 2.1, at
least for sufficiently largeé.

PROPOSITICN 3.1

Letg € Lo joc(R) be periodic. Ifc > cgit = («?/(4|D|'(My))), where D(w) is the
discriminant of—u” + qu = pu, thenjop (z.) N Mg, uk[| = oo, with eigenvalues
accumulating atMy, like (/(c/cerit) — 1)/(4m)| In (A — My) | and no accumulation of
eigenvalues afy.

For theproofwe refer to the article [31], an extension of which to periodic Dirac systems
is given in [32].

Note thatceit > 0 in Proposition 3.1, so it applies to positiveonly. In the sole case
wherec; < 0, namelyd = 2 and/ = 0, there is no accumulation at the left end of a gap,
but may be at the right end, as in Proposition 2.1.

To obtain further insight inside the gapsaoft), we employed a numerical analysis to
count eigenvalues af in a closed subinterval dMy, ux[. The analytic foundation for
our method to calculat®/ (11, A2; ¢) := |op (t.) N [A1, A2] | is the following result based
on relative oscillation theory of Sturm—Liouville operators (cf. ([4], Proposition 1)).

PROPOSITICN 3.2

Letg € Lajoc (R) be periodic with periodr. Letc > 3/4, [A1, 22] C My, pil, k €
N. Choose constanis > 0, m1, m> € N such that i]l‘(l)f [{q(r) + (c/rz)} > Ao, and
refV,a

|(c/r?)| < dist(r;, o (1)) for r > mje and j € {1, 2}. Denote by:; the number of zeros
in Ja, m ja[ of a non-trivial real-valued solution ; of

_u//(r) + (q(r) — )"J -+ %) u(r) = 0

satisfying the boundary conditian; (a) = 0.
ThenN (A1, A2;¢) — (n2 — n1 + (m1 — mo)k) € {—4, ..., 3.

Remark. The restriction ta: > 3/4 has been made for technical reasons only. It does not
effect but the casé = 2 and/ = 0.

With Proposition 3.2 in hand, the problem is therefore reduced to count zeros of solu-
tions in finite intervals. This counting is particularly simple, if the solutions are piecewise
trigonometric or hyperbolic functions, which is the case for piecewise constant coefficients
in the equations. Such calculations have been performed in ([4], § 2). The results suggest
a formula

A2
N(A1, A2;0) & /e f)da
Al

with some density functiorf depending oy andk only.
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This compares to an asymptotic formula for> oo (cf. ([36], (1.8) and Theorem 3.8)

N(A1, 225 ¢) ~ g//xh,xz(hr) dic (1) dr; 2

herex,,.», is the characteristic function of the S[E(n, r)eR x10,00[; A+ (1/r?) €
[r1, A2]}, andk is related to the discriminar® of ¢ by D(A) = 2 cos(x (1)) for A inside
the spectral bands, and it is constant in the spectral gaps of

For instance, ik = 1, we haveug < A(k) = D1 (2cogk)) < M1 < A1 < A2 < 1,
whence (2) can be written as

‘ NLE T 1 _ 1
NG, 2210 na/o (m-xm m—xw) e

ie. f = F', where F(,) = —(1/(na))fg(d/c/(«/)h — A(x))), which behaves like
((WTD’(MD])/(2ra)) In(h—My) ask — My, in perfect accordance with Proposition 3.1
for large c. Together with the numerical attestation (cf. ([4], § 3)) this provides strong
evidence for formula (2) to hold already for small values of the coupling constant

Such an inference is an example of the great potential which liegrimerical spectral
analysisto obtain insight into the unexpected spectral behavior of differential operators
where non-asymptotic analytical methods seem to fail. A possible field of investigation
would be the decay of eigenfunctions for embedded eigenvalues. Spherically symmetric
(radially periodic) Schizdinger operators with their neither typically higher-dimensional
nor simply one-dimensional spectral characteristics can serve as lodestars for further dis-
coveries.
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