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Abstract. Since it became clear that the band structure of the spectrum of periodic
Sturm–Liouville operatorst = − (d2/dr2) + q(r) does not survive a spherically sym-
metric extension to Schrödinger operatorsT = −1+V with V (x) = q(|x|) for x ∈ R

d ,
d ∈ N\ {1}, a wealth of detailed information about the spectrum of such operators
has been acquired. The observation of eigenvalues embedded in the essential spectrum
[µ0,∞[ of T with exponentially decaying eigenfunctions provided evidence for the
existence of intervals of dense point spectrum, eventually proved by spherical separation
into perturbed Sturm–Liouville operatorstc = t + (c/r2). Subsequently, a numerical
approach was employed to investigate the distribution of eigenvalues ofT more closely.
An eigenvalue was discovered below the essential spectrum in the cased = 2, and it
turned out that there are in fact infinitely many, accumulating atµ0. Moreover, a method
based on oscillation theory made it possible to count eigenvalues oftc contributing to an
interval of dense point spectrum ofT . We gained evidence that an asymptotic formula,
valid for c → ∞, does in fact produce correct numbers even for small values of the
coupling constant, such that a rather precise picture of the spectrum of radially periodic
Schr̈odinger operators has now been obtained.

Keywords. Schr̈odinger operator; self-adjointness; embedded eigenvalue; exponential
decay; dense point spectrum.

0. Introduction and preliminaries

The Schr̈odinger equation

i
∂

∂t
9(t, x) = (−4 + V (x)) 9(t, x)

may certainly be counted among the most important pieces of physicsandmathematics in
the twentieth century. The mathematical interest associated with it and the corresponding
operator−4 + V can be characterized either by topical issues or by considering variants
of the operator itself.

Early on it became clear by the work of J von Neumann and M H Stone that the unique
solvability of the Schr̈odinger equation with the initial state9(0, ·) given amounts to prove
that the Schr̈odinger operator as defined in L2 on the set of test functions (smooth and
with bounded support) isessentially self-adjoint, i.e. has a unique self-adjoint extension.
Ever since, the question of (essential) self-adjointness has been central in the theory.
Although this problem was essentially settled by the early 1970s (cf. ([18], Chapter 3),
([34], Chapter III)), we will discuss some less acknowledged aspects of it in § 0.1. Started
in the early 1950s bỳE È Shnol’, the interest in the connections between thespectrum
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of Schr̈odinger operators and theasymptotic behavior of eigensolutions, to which we will
refer in § 0.2, reached its peak in the 1970s and early 1980s (cf. ([18], Chapter 4), ([34],
Chapter IV)) with the now famousKato class(named after T Kato, the ‘father of the
modern theory of Schrödinger operators ([34], p. 3523)’) emerging as the most natural
home forpotential functionsV . This was accompanied by the development of semigroup
techniques and scattering theory, which led to a more thorough investigation into the
fine structure of the spectrum these last twenty years. The discovery of peculiar spectral
phenomena, like e.g. embedded eigenvalues, dense point spectrum and singular continuous
spectrum, formed a motivation to consider magnetic (cf. ([34], Chapter X)), random (cf.
([34], Chapter VII)) and in particular one-dimensional (cf. ([34], Chapter V)) Schrödinger
operators as well as Dirac operators. Originally just a mathematical curiosity, there is
now some evidence that embedded eigenvalues can actually be observed experimentally
(cf. [5]), thus adding to the revived interest in these questions.

In this survey we do not attempt to give a historical overview of all these developments;
see the article [34] and its vast bibliography. We want to collect, correct, rearrange and
refine some of the old and more recent results of the theory. We will concentrate on a class
of operators which may not have received the attention it deserves, namelyspherically
symmetricSchr̈odinger operators (§ 1). It turns out that they live a life in between their
one-dimensional and general higher dimensional brethren. On one hand, their spectra are
qualitatively different from the spectra of the corresponding Sturm–Liouville operators; on
the other hand the emergence of phenomena like embedded eigenvalues and dense point
spectrum, orlocalizationas it has become to be called, can be obtained by recourse to the
one-dimensional theory. The spectral properties especially ofradially periodicSchr̈odinger
operators (§ 2) are therefore extra-ordinary in every sense of the word. For the same reason,
spherically symmetric Schrödinger operators can be approached by numerical methods
too, and we will report on an example of a numerical investigation into the distribution
of eigenvalues in intervals of dense point spectrum in § 3. We hope that the elementary
character of the cases treated in this article will contribute to the understanding of non-
orthodox patterns in the spectral theory of differential operators.

0.1 Self-adjointness

A Schr̈odinger operator in L2
(
R
d
)
, d ∈ N, is of the form−4 + V with a real-valued

potentialV ∈ L2,loc
(
R
d
)
. It is symmetric on a natural domain like C∞

0

(
R
d
)
, but this

domain will be too small to make the operator self-adjoint. For the sake of definiteness it is
therefore necessary to prove essential self-adjointness. A sufficient condition for a densely
defined operatorT in a Hilbert spaceH to possess a unique self-adjoint extension is the
self-adjointness of its closureT , because then for any self-adjoint extensionS of T , we
haveT ⊂ S = S∗ ⊂ T

∗ = T , whenceS = T . So we have at our disposal all the classical
criteria for self-adjointness as applied toT . In practice, this turns out to be not too easy,
but it is unavoidable, since self-adjointness ofT happens to be also necessary forT to be
essentially self-adjoint (cf., e.g., ([19], Theorem 1.2.7)).

The problem to show that−4 + V

↼

C∞
0

(
R
d
)

is self-adjoint in L2
(
R
d
)

has a long and
winding history (cf. ([18], Chapter 3)). Unfortunately, there is no handy assumption onV

which would be both sufficient and necessary. If the operator is bounded from below, it
turns out that we only need a local condition on the negative partV− := max{0,−V } of
V , namely thelocal Kato condition.



Radially periodic Schrödinger operators 87

DEFINITION 0.1

K(Rd) is the set of all measurable functionsf onR
d with

lim
r→0

sup
x∈R

d

∫
|x−y|<r

sd(x − y) |f (y)| dy = 0,

wheresd(z) = (1/ωd)
∫ |z|−1

1 ρd−3 dρ, withωd the area of the unit sphere inRd . Kloc
(
R
d
)

is the set of all functionsf onR
d with f ◦χ� ∈ K

(
R
d
)

for every bounded, open� ⊂ R
d .

With this definition, the following result holds.

Theorem 0.1. If T := −4 + V

↼

C∞
0

(
R
d
)

is bounded from below andV− ∈ Kloc
(
R
d
)
,

thenT is essentially self-adjoint inL2
(
R
d
)
.

Theproof can be based upon the criterion that a positive operatorT is essentially self-
adjoint, iff its range is dense inH , i.e. iff T ∗ is injective. The latter can be shown as
soon as one knows that everyeigensolutionfor T andλ ∈ R, i.e. u ∈ L1,loc

(
R
d
) \ {0}

with ∀ϕ ∈ C∞
0

(
R
d
)

:
∫
u T ϕ = λ

∫
uϕ, is locally bounded, which is the case if

V− ∈ Kloc
(
R
d
)

(([1], Theorem 1.5), ([18], Corollary 2.8)).

Remark.The local Kato condition is not necessary for essential self-adjointness, as can

be seen from the exampleV (x) = − c |x|−2 in R
6, whereV− /∈ Kloc

(
R

6
)

(cf. ([18],

Example 1.7)), butT is bounded from below iffc ≤ 4 and essentially self-adjoint iffc ≤ 3
(cf. ([12], VII Proposition 4.1)).

There are a couple of applications of Theorem 0.1. First of all, boundedness from below
T can be guaranteed by the assumptionV− ∈ K

(
R
d
)

due to relative form boundedness
with respect to−4 (cf. ([18], Corollary 3.3)). Moreover, by truncating the negative part
of the potential, we may even use Theorem 0.1 to obtain essential self-adjointness of
Schr̈odinger operators which are not bounded from below, namely allowing for a behavior
of thepotential like−O

(|x|2) at infinity (cf. ([18], Theorem 3.4); seealso [21]).

COROLLARY 0.1

If V− ∈ K
(
R
d
) + O

(|x|2), then−4 + V

↼

C∞
0

(
R
d
)

is essentially self-adjoint inL2
(
R
d
)
.

Let us mention that the same approach allows to treat magnetic Schrödinger operators
as well, i.e.T := − (∇ − i b)2 + V

↼

C∞
0

(
R
d
)
, as long asb is continuously differentiable

as a function fromR
d to R

d ; if one employs the method of H Leinfelder and C Simader,

one can even cover the most general case whereb ∈ (
L4,loc

(
R
d
))d

and∇ ·b ∈ L2,loc
(
R
d
)

(cf. ([19], Theorem 2.5)).
The big open question about essential self-adjointness of Schrödinger operators is con-

jecture of K J̈orgens (1972), where no progress seems to have occurred since twenty years
(cf. [7]).

Conjecture.If −4 + V

↼

C∞
0

(
R
d
)

is bounded from below and essentially self-adjoint in

L2
(
R
d
)

and ifW ∈ L2,loc
(
R
d
)

withW ≥ V , then−4 +W

↼

C∞
0

(
R
d
)

is essentially self-
adjoint in L2

(
R
d
)
.

By Theorem 0.1 this is open for dimensionsd ≥ 4, because L2,loc
(
R
d
) ⊂ Kloc

(
R
d
)

for d ≤ 3.
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0.2 Asymptotic behavior of eigensolutions and the spectrum

Once the essential self-adjointness of−4 + V

↼

C∞
0

(
R
d
)

being established, thespectrum
σ of T , by which we will from now on denote the self-adjoint closure of this operator, and
its parts are well-defined. We will consider the decompositions

σe (T ) ∪· σd (T ) = σ (T ) = σc (T ) ∪ σp (T ),

whereσp is thepoint spectrum, i.e. the set of eigenvalues,σd is thediscrete spectrum,
i.e. the set of eigenvalues of finite multiplicity which are isolated from other elements of
the spectrum, with theessential spectrumσe being its complement inσ , andσc denotes the
continuous spectrum. A further decomposition of the latter into anabsolutely continuous
and asingular continuouspart, useful in scattering theory, will not be pursued here.

There are a couple of tools to investigate the essential spectrum which are specific for
Schr̈odinger operators and show that it depends mainly on the behavior ofV at ∞. The
most important are the following, which go back to ideas of Glazman ([13], p. 59ff, 71ff)
Shnol’ ([33], p. 121) and Persson ([24], Theorem 2.1).

Theorem 0.2. LetT := −4 + V

↼

C∞
0

(
R
d
)

be self-adjoint andV− ∈ Kloc
(
R
d
)
. Then

(a) λ ∈ σe(T ) ⇔ ∃ϕn ∈ C∞
0

(
R
d\ Bn

)
, ‖ϕn‖ = 1 : (T − λ)ϕn → 0, n → ∞.

If T is bounded from below, then

(b) inf σe(T ) = sup
n∈N

inf
{
(T ϕ, ϕ); ϕ ∈ C∞

0

(
R
d \ Bn

)
, ‖ϕ‖ = 1

}
.

HereBn := {
x ∈ R

d; ‖x‖ ≤ n
}
.

Proof. A simple proof of statement (a) in this general form can be found in ([15], p. 199f).
If σe(T ) 6= ∅ in (b), then infσe(T ) ∈ σe(T ), sinceT is bounded from below, and ‘≥’
follows easily from (a).

For ‘≤’ in (b), we may assumeT ≥ 1. Let 0≤ µ < inf σe(T ). Then we have

∃K ∈ N0 ∃ψk ∈ L2

(
R
d
)
, ‖ψk‖ = 1∀ f ∈ L2

(
R
d
)

: Eµf =
K∑
k=1

(f, ψk)ψk,

where(Eλ)λ∈R denotes the spectral family ofT . Hence

∀ϕ ∈ C∞
0

(
R
d \ Bn

)
:

∥∥Eµϕ∥∥ ≤
K∑
k=1

(∫
R
n\Bn

|ψk|2
)1/2

‖ϕ‖.

Now let 0< ε < 1; then there is annε ∈ N such that∀ϕ ∈ C∞
0

(
R
d \ Bnε

)
:

∥∥Eµϕ∥∥ ≤
ε ‖ϕ‖, whence

(T ϕ, ϕ) = (
T

(
1 − Eµ

)
ϕ, ϕ

) + (
T Eµϕ, ϕ

) ≥ µ
∥∥(

1 − Eµ
)
ϕ
∥∥2

≥ µ
(‖ϕ‖ − ∥∥Eµϕ∥∥)2 ≥ µ (1 − ε)2 ‖ϕ‖2.

Therefore inf
{
(T ϕ, ϕ); ϕ ∈ C∞

0

(
R
d \ Bnε

)
, ‖ϕ‖ = 1

} ≥ µ (1− ε)2 and lettingε → 0,
we arrive at sup

n∈N

inf
{
(T ϕ, ϕ); ϕ ∈ C∞

0

(
R
d \ Bn

)
, ‖ϕ‖ = 1

} ≥ µ.
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There are intimate relations between the different parts of the spectrum and the asymp-
totic behavior of eigensolutions at infinity, the obvious one being

λ ∈ σp (T ) ⇔ ∃ eigensolutionu ∈ L2

(
R
d
)

;

such eigensolutions in L2
(
R
d
)

are calledeigenfunctions. The general idea is thatλ ∈ σ is
associated with bounded eigensolutions and that eigenfunctions for discrete eigenvalues
do decay exponentially. The precise statements, however, depend on the behavior of the
potentialV at infinity. They read as follows:

PROPOSITION 0.1

If V− ∈ K
(
R
d
) + o

(|x|2), then

σ(T ) = {
λ ∈ R; ∃ γ > 0∃ eigensolutionu for T andλ : (1 + | · |)−γ u ∈ L∞

(
R
d
)}
.

This follows from ([19], Main Theorem), where a magnetic potentialb is allowed for
too. There are two obvious questions, namely if it is utterly necessary to take the closure
on the right-hand side and ifγ = 0 would suffice for the inclusion ‘⊂’.

PROPOSITION 0.2

If V− ∈ K
(
R
d
) + o

(|x|2), then every eigenfunction ofT for λ ∈ σd(T ) decays faster
than any inverse polynomial; if V− ∈ K

(
R
d
)
, then the decay is faster thanexp(−µ|x|)

for someµ > 0.

This can be found in ([18], Corollary 4.5).
The case whereV− behaves like O

(|x|2) at infinity is open for dimensionsd ≥ 2. An
example of G Halvorsen ford = 1, where there is aλ ∈ R \ σ(T ) with a bounded eigen-
solution and an eigenfunction for a discrete eigenvalue which decays only polynomially,
indicates that both Propositions 0.1 and 0.2 may fail for these potentials in any dimension
(cf. the discussion in ([18], Chapter 5)).

More explicit bounds on eigenfunctions are known for the standard case of a potential
which tends to some constant at infinity (cf. ([18], § 4.1)).

PROPOSITION 0.3.

LetV ∈ Kloc
(
R
d
)

withV (x) → V0 ∈ R∪{∞}, as|x| → ∞. Then for every eigenfunction
u for λ ∈ σp and anyµ <

√
dist(λ, σe): u(x) = O(exp(−µ|x|)); if u > 0, then

(ln(u(x))/|x|) → −√
dist(λ, σe), as|x| → ∞. Moreover, σe (T ) = [V0,∞[.

If V (x) ≥ V0 − c |x|−1−ε outside a compact set for somec > 0 andε > 0, i.e. in
particular forshort rangepotentials, we even get, by subharmonic comparison,u(x) =
O

(|x|−((d−1)/2) exp(− √
dist(λ, σe) |x|)

)
(cf. ([6], Theorem 2) or ([17], Theorem 2) in

conjunction with ([16], Lemma 10)).
The lower bound for positiveu suggests that the exponential decay rate given in Propo-

sition 0.3 is optimal in general. Two cases are of interest: eigenvalues below the essen-
tial spectrum, as in Proposition 0.3, and eigenvalues in gaps of the essential spectrum,
whose existence has been proved in ([22], Theorem (2.2)) and [10] (cf. also [16]). We will
approach this question in the following section.
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1. Spherical symmetry

We now come to the investigation of the spectrum ofspherically symmetricSchr̈odinger
operators, whered ∈ N \ {1}, and the potential is of the formV (x) = q(r) with some
q : [0,∞[ → R, r := |x|. They have been used to demonstrate statements (cf., e.g.,
([35], Problem 8)) or to provide (counter-)examples in spectral theory and also in the
scattering theory (cf. ([2], Chapter 11)). We will start with some basic examples leading
to classical types of spectra and then turn to the phenomenon ofembedded eigenvalues,
i.e.λ ∈ σp(T ) ∩ σe(T ). All examples will be inR3.

1.1 Some basic examples

Classical types of spectra are apurely continuous spectrum, as in the case of the free
particle, whereq = 0 andσe (T ) = σ (T ) = σc (T ) = [0,∞[, σp (T ) = ∅, or apurely
discrete spectrum, as for the harmonic oscillator withq(r) = r2 andσ(T ) = σd(T ) =
{3 + 2k; k ∈ N0}.

The hydrogen atom, whereq(r) = −(1/r), has acombined discrete/continuous spec-
trum

σp (T ) = σd (T ) =
{
− 1

4 (k + 1)2
; k ∈ N0

}
, σe (T ) = σc (T ) = [0,∞[ .

The functionu(x) = exp(− (r/2)) is a ground stateeigenfunction, i.e. for the lowest
pointλ = − (1/4) of the spectrum. Eigenfunctions which do not change sign are always
associated with the lowest point of the spectrum. More general, we have the following:

Theorem 1.1. Let −4 + V
↼

C∞
0

(
R
d
)

be bounded from below andV ∈ Kloc
(
R
d
)
. If

there exists a positive eigensolutionu for λ ∈ R and T := −4 + V

↼

C∞
0

(
R
d
)
, then

λ ≤ minσ(T ).

Proof. Let ϕ ∈ C∞
0

(
R
d
)

be real-valued. Sinceu ∈ C
(
R
d
) ∩ W1

2,loc

(
R
d
)

(cf. ([18],

Corollaries 2.8 and 2.9)), we may replaceψ ∈ C∞
0

(
R
d
)

in

0 = −
∫
u4ψ +

∫
u (V − λ)ψ =

∫
∇u · ∇ψ +

∫
u (V − λ)ψ

by ϕ2/u, whence after some calculation we get

0 =
∫

|∇ϕ|2 −
∫
u2

∣∣∣∇ (ϕ
u

)∣∣∣2 +
∫
u (V − λ)

ϕ2

u
,

that is

((T − λ)ϕ, ϕ) =
∫
u2

∣∣∣∇ (ϕ
u

)∣∣∣2 ≥ 0.

As T andλ are real, we arrive at∀ϕ ∈ C∞
0

(
R
d
)

: λ ‖ϕ‖2 ≤ (T ϕ, ϕ), whenceλ ≤
minσ(T ), becauseT is self-adjoint by Theorem 0.1.

Ground state eigenfunctions can have a faster decay rate than the one expected in view
of Proposition 0.3. Here is an example.



Radially periodic Schr¨odinger operators 91

Example1. Withα(r) = r + (1/6) sin(3r) let

q(r) = α′(r)2
(

1 − 2

cosh(α(r))2

)
−

(
α′′(r)+ 2

r
α′(r)

)
tanh(α(r)) .

Then 0∈ σd(T ) with eigenfunctionu(x) = 1/ cosh(α(r)) andσe (T ) = [µ0,∞[, where
µ0 < 1(µ0 ≈ 0.9466).

Theproof for Example 1 depends on the following theorem, where

t = − d2

dr2
+ q(r)

↼

C∞
0 (R)

in L2(R) (q(−r) = q(r)).

Theorem 1.2. Letq ∈ C([0,∞[ ), with

1

r
sup

{ |q(r)− q(s)|
|r − s| ; 0< |r − s| < 1

}
→ 0, asr → ∞,

and such thatt andT are self-adjoint. Then]inf σe(t),∞[ ⊂ σe(T ). If q− is bounded,
then[inf σe(t),∞[ = σe(T ).

The proof of the first statement (cf. ([15], Corollary 1)) is based on rectangular sep-
aration and Theorem 0.2(a). (The same fundamental ideas have been employed in [27]
to study the corresponding question for three-dimensional spherically symmetric Dirac
operators.) Ifq− ∈ K(R) (and consequentlyV− ∈ K(Rd); cf. ([18], Lemma 1.6)), we
can prove[inf σe(t),∞[ ⊂ σe(T ) without any further local assumption onq, based on
spherical separation and the construction of singular sequences by cutting off eigensolu-
tions (cf. ([15], Proposition 2)). (For an alternative proof of this inclusion, see [40].) Under
the same assumption onq and making use of Theorem 0.2(b), it is possible to show that
inf σe(t) ≤ inf σe(T ) (cf. ([15], Proposition 1)), with the second statement of Theorem 1.2
as an immediate consequence. We refer to [15], where details on the determination ofµ0
in Example 1 can be found as well.

Theorem 1.2 limits the possibilities to construct an example of anisolated eigenvalue
λ of T of infinite multiplicity, i.e.

∃ ε > 0 : Eλ−ε = Eλ−, Eλ = Eλ+ε, dim (Eλ − Eλ−) L2

(
R
d
)

= ∞.

On the other hand, the results of this section yield many other eigenvalues in the essential
spectrum.

1.2 Embedded eigenvalues

Theorem 1.1 allows us to construct an example of aneigenvalue at the bottom of the
(essential) spectrum.

Example2. Letq(r) = 2 ((r2 − 3)/(1 + r2)2). Then 0∈ σp(T ), σd(T ) = ∅, σe (T ) =
[0,∞[.
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Proof. u(x) = (1/(1 + r2)) is an eigenfunction forλ = 0. The rest follows from
Theorem 1.1 and Proposition 0.3.

As mentioned in the introduction, there is now a revived interest in eigenvalues which are
strictly embedded in the essential spectrum (cf. also [37]). The example which produced
the first scandal is due to J von Neumann and E Wigner (cf. [23]; note that the source of this
reference is often cited inaccurately); here is a slightly corrected and simplified version.
Example3 (von Neumann and Wigner). With α(r) = 2r − sin(2r) let

q(r) = − 1 − 8 sin(2r)

1 + α(r)
+ 32 sin(r)4

(1 + α(r))2
.

Then 0∈ σp(T ), σe (T ) = [−1,∞[.

Proof. u(x) = sin(r)/(r(1 + α(r))) is an eigenfunction forλ = 0. The rest follows from
Proposition 0.3. 2

As in Example 2, the eigenfunction in the von Neumann/Wigner example decays only
polynomially. With Theorem 1.2 on hand, we are now able to produce anembedded
eigenvalue with an exponentially decaying eigenfunction.

Example4. Let q(r) = −1 + (1/25) sin(r)4 − (2/5) sin(2r). Then σe (T ) ⊃
[− (14/25),∞[, and 0∈ σp(T ), with eigenfunction

u(x) = (sin(r)/r) exp(− (1/10) (r − (1/2) sin(2r))).

For theproof we only have to observe that by Theorem 0.2(b), minσe(t) ≤ maxq(r)
≤ − (14/25) and use Theorem 1.2.

Example 4 seems to be the only existing example where both an embedded eigenvalue
and its exponentially decaying eigenfunction are known explicitly. It puts an end to efforts
to provide lower bounds for eigenfunctions, even for spherical means, for large classes
of Schr̈odinger operators and opens one path to the phenomenon which has now become
known aslocalization, i.e. the existence of dense point spectrum associated with exponen-
tially decaying eigenfunctions (cf. [38]).

2. Radial periodicity

Examples 1 and 4 suggest a further investigation into spherically symmetric Schrödinger
operators which areradially periodic, i.e. whereq is aperiodic (even) function; we also
assumeq to be bounded, throughout. To fix notation, we remark the following: forf ∈
L1,loc (R), let Pf := {α ∈ R; f = fα}, wherefα ∈ L1,loc (R) is given by∀ r ∈ R :
fα(r) = f (r + α), and defineαf := inf

{
α ∈ Pf ; α > 0

}
.

Lemma2.1. If f ∈ L1,loc (R), then

0< αf < ∞ ⇔ Pf = Zαf

αf = 0 ⇔ f is constant.

Proof. Pf is a subgroup of(R,+), such that it is either trivial, non-trivial and discrete or
dense inR, with αf = ∞, Pf = Zαf , αf = 0, respectively. In the latter case there is a
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sequence(αn)n∈N ⊂ Pf with 0 < αn → 0 asn → ∞. Let ϕ ∈ C∞
0 (R) be real-valued.

Then ∫
f ϕ′ = lim

n→∞

∫
f
ϕ − ϕ−αn
αn

= lim
n→∞

∫
f − fαn

αn
ϕ = 0,

whencef is constant by the Lemma of DuBois–Reymond. 2

Now the following definition makes sense.

DEFINITION 2.1

f ∈ L1,loc (R) is called periodic with (principal) periodαf , iff 0 < αf < ∞.

Remark.It is easy to extend this notion of periodicity and period to distributions.

Typically, the spectrum of a one-dimensional periodic Schrödinger operator has band
structure (cf., e.g., ([11], § 5.3), ([39], § 12)), as for instance in the prototype case of the
Mathieu operator, whereq = cos; here

σ(t) = σe(t) =
∞⋃
k=1

[
µk−1,Mk

]
, σp(t) = ∅,

with µk−1 < Mk < µk → ∞, ask → ∞ (µ0 ≈ −0.3785, M1 ≈ −0.3477, µ1 ≈
0.5948, M2 ≈ 0.9181, µ2 ≈ 1.293, . . . ). By Theorem 1.2, this is not so for radially
periodic Schr̈odinger operators, their essential spectrum being a half-line.

2.1 Dense point spectrum

A spherically symmetric extension oft could possibly produce any kind of spectrum ofT

in spectral gaps oft : (absolutely or singular) continuous or dense point spectrum or even
a mixture of these. In order to characterize the quality of the spectrum ofT in the gaps of
the spectrum of a periodict , we note the following. By spherical separation,

σc(T ) =
∞⋃
l=0

σc(tcl ), (1)

where forc ≥ − (1/4), tc is the Friedrichs extension in L2 (]0,∞[) of − (d2/dr2)+q(r)+
(c/r2) on C∞

0 (]0,∞[); cl = l(l + d − 2) + (1/4)(d − 1)(d − 3), l ∈ N0. Since the
difference of resolvents fort0 and tc is compact (cf. ([14], Lemma 1)) and the essential
spectra oft0 andt are the same by virtue of Glazman’s decomposition principle (cf. ([13],
Chapter I, Theorem 23)), we haveσe(tc) = σe(t). Combining this with (1), we arrive at
σc(T ) ⊂ σe(t). Together with Theorem 1.2, this yields the following result.

Theorem 2.1. Letq be bounded. Ifminσe(t) ≤ λ1 < λ2 with ]λ1, λ2[ ∩σe(t) = ∅, then

]λ1, λ2[ ∩ σc(T ) = ∅, [λ1, λ2] ⊂ σp(T ).

For more details of theproof, see ([14], §1).
For every suchq with a gap in the essential spectrum of the corresponding one-

dimensional operatort we therefore have aninterval of dense point spectrumfor T .
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Example5. Letq = cos, then

σc(T ) =
∞⋃
k=1

[
µk−1,Mk

]
, {µ0} ∪ σp(T ) = σd(T ) ∪ {µ0} ∪

∞⋃
k=1

[Mk,µk] .

If d ≥ 3, thenσd(T ) = ∅ andµ0 /∈ σp(T).

Proof. The first two results follow from Theorem 2.1, together with the fact that
σp(tc)∩ ]µk−1,Mk[ = ∅ (cf. ([14], Corollary 1)). For the last result we note thatcl ≥ 0
for d ≥ 3.

We have thus obtained a very elementary example of a Schrödinger operator with a
spectrum consisting of alternating intervals of (absolutely, cf. ([14], Theorem 2)) continu-
ous and dense point spectrum. The presence of intervals of dense point spectrum had been
known for magnetic Schrödinger operators since the example of K Miller and B Simon
(cf. ([8], §6.2)). Their construction, together with the ideas presented above also formed
the basis for a more general investigation into the spectrum of two-dimensional magnetic
Schr̈odinger operators with radial periodicity of both, the electric potentialV (x) = q(r)

and the magnetic field, i.e.(∂b2/∂x1)(x)− (∂b1/∂x2)(x) = B(r) with B andq periodic
with periodα (cf. [20]). It turns out that here too there are alternating intervals of abso-
lutely continuous spectrum and dense point spectrum, provided that

∫ α
0 B(r)dr = 0, and

that otherwise the essential spectrum consists entirely of dense point spectrum. Moreover,
intervals filled with dense point spectrum can also be observed for spherically symmetric
Dirac operators; cf. [28]. For localization in random Schrödinger operators we refer to [38]
and the literature cited there. We also do not want to go into the one-dimensional case,
for which we point to [25]. The construction of one-dimensional Dirac operators with a
prescribed dense set of eigenvalues can be found in [29].

An interesting question is the persistence of dense point spectrum in our radially periodic
examples under a compact support perturbation, say.

2.2 Welsh eigenvalues

In Example 5 the question of existence of discrete eigenvalues and the status of the lowest
pointµ0 of the essential spectrum ofT remained open ford = 2. As in connection with
Example 1, where we constructed an admissible function for which the value of a quadratic
form associated witht is strictly less than 1, thus showing that minσe(T ) = minσe(t) < 1,
we now produced a function in the form domain oft0 with a value of the form strictly
less thanµ0, such that forq = cos andd = 2, we haveσd(T ) 6= ∅ (cf. [3]). Numerical
calculations, based on the SLEIGN2 code to find eigenvalues oft0 as restricted to functions
defined on ]a, b[ ⊂ ]0,∞[ with 0 < a < b < ∞, revealed the ground state, which was
baptized theWelsh eigenvalueand denoted by λλ for its place of discovery, at about
−0.4016. The question if thelower spectrum, i.e. the discrete spectrum below the essential
spectrum, is finite or not is a delicate one, because the perturbation− 1/(4r2) represents
a borderline case which had not been studied before with sufficient thoroughness. The
following can be shown by oscillation theory (cf. ([30], Theorem 2)).

PROPOSITION 2.1

Let q ∈ L2,loc (R) be periodic withq− ∈ L∞ (R); d = 2. Then|σd(T )| = ∞ and
minσe(T ) ∈ σp(T ).
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3. Numerical analysis

The preceding results suggest to look at the contribution oftcl for l ∈ N0 to σp(T ) ∩
]Mk,µk[ for k ∈ N as well, if this gap in the spectrum oft is not empty, as in Example 5. For
l fixed andk large enough,|σp

(
tcl

) ∩ ]Mk,µk[ | < ∞ (cf. ([26], Corollary 3)). However,
if we look into a fixed interval]Mk,µk[, we get a similar result as in Proposition 2.1, at
least for sufficiently largel.

PROPOSITION 3.1

Let q ∈ L2,loc (R) be periodic. Ifc > ccrit = (α2/(4|D|′(Mk))), whereD(µ) is the
discriminant of−u′′ + q u = µu, then |σp (tc) ∩ ]Mk, µk[ | = ∞, with eigenvalues
accumulating atMk like (

√
(c/ccrit)− 1)/(4π)| ln (λ− Mk) | and no accumulation of

eigenvalues atµk.

For theproofwe refer to the article [31], an extension of which to periodic Dirac systems
is given in [32].

Note thatccrit > 0 in Proposition 3.1, so it applies to positivec only. In the sole case
wherecl < 0, namelyd = 2 andl = 0, there is no accumulation at the left end of a gap,
but may be at the right end, as in Proposition 2.1.

To obtain further insight inside the gaps ofσ(t), we employed a numerical analysis to
count eigenvalues oftc in a closed subinterval of]Mk, µk[. The analytic foundation for
our method to calculateN(λ1, λ2; c) := |σp (tc) ∩ [λ1, λ2] | is the following result based
on relative oscillation theory of Sturm–Liouville operators (cf. ([4], Proposition 1)).

PROPOSITION 3.2

Let q ∈ L2,loc (R) be periodic with periodα. Let c ≥ 3/4, [λ1, λ2] ⊂ ]Mk, µk[, k ∈
N. Choose constantsa > 0, m1, m2 ∈ N such that inf

r∈]0,a[

{
q(r)+ (c/r2)

}
> λ2, and∣∣(c/r2)

∣∣ ≤ dist
(
λj , σ (t)

)
for r ≥ mjα andj ∈ {1, 2}. Denote bynj the number of zeros

in
]
a,mjα

[
of a non-trivial real-valued solutionuj of

−u′′(r)+
(
q(r)− λj + c

r2

)
u(r) = 0

satisfying the boundary conditionuj (a) = 0.
ThenN (λ1, λ2; c)− (n2 − n1 + (m1 −m2)k) ∈ {−4, . . . ,3}.

Remark.The restriction toc ≥ 3/4 has been made for technical reasons only. It does not
effect but the cased = 2 andl = 0.

With Proposition 3.2 in hand, the problem is therefore reduced to count zeros of solu-
tions in finite intervals. This counting is particularly simple, if the solutions are piecewise
trigonometric or hyperbolic functions, which is the case for piecewise constant coefficients
in the equations. Such calculations have been performed in ([4], § 2). The results suggest
a formula

N(λ1, λ2; c) ≈ √
c

∫ λ2

λ1

f (λ) dλ

with some density functionf depending onq andk only.
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This compares to an asymptotic formula forc → ∞ (cf. ([36], (1.8) and Theorem 3.8)

N(λ1, λ2; c) ∼
√
c

πα

∫ ∫
χλ1,λ2(λ, r)dκ(λ) dr; (2)

hereχλ1,λ2 is the characteristic function of the set
{
(λ, r) ∈ R × ]0,∞[ ; λ+ (1/r2) ∈

[λ1, λ2]}, andκ is related to the discriminantD of t byD(λ) = 2 cos(κ(λ)) for λ inside
the spectral bands, and it is constant in the spectral gaps oft .

For instance, ifk = 1, we haveµ0 ≤ λ(κ) = D−1 (2 cos(κ)) ≤ M1 < λ1 < λ2 < µ1,
whence (2) can be written as

N(λ1, λ2; c) ∼
√
c

πα

∫ π

0

(
1√

λ1 − λ(κ)
− 1√

λ2 − λ(κ)

)
dκ,

i.e. f = F ′, whereF(λ) = − (1/(πα)) ∫ π0 (dκ/(√λ− λ(κ))), which behaves like
((

√|D′(M1)|)/(2πα)) ln(λ−M1) asλ → M1, in perfect accordance with Proposition 3.1
for largec. Together with the numerical attestation (cf. ([4], § 3)) this provides strong
evidence for formula (2) to hold already for small values of the coupling constantc.

Such an inference is an example of the great potential which lies innumerical spectral
analysisto obtain insight into the unexpected spectral behavior of differential operators
where non-asymptotic analytical methods seem to fail. A possible field of investigation
would be the decay of eigenfunctions for embedded eigenvalues. Spherically symmetric
(radially periodic) Schr̈odinger operators with their neither typically higher-dimensional
nor simply one-dimensional spectral characteristics can serve as lodestars for further dis-
coveries.
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