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Abstract. The integrated density of states (IDS) for random operators is an important
function describing many physical characteristics of a random system. Properties of the
IDS are derived from the Wegner estimate that describes the influence of finite-volume
perturbations on a background system. In this paper, we present a simple proof of the
Wegner estimate applicable to a wide variety of random perturbations of deterministic
background operators. The proof yields the correct volume dependence of the upper
bound. This implies the local Ḧolder continuity of the integrated density of states at
energies in the unperturbed spectral gap. The proof depends on theLp-theory of the
spectral shift function (SSF), forp ≥ 1, applicable to pairs of self-adjoint operators
whose difference is in the trace idealIp, for 0 < p ≤ 1. We present this and other
results on the SSF due to other authors. Under an additional condition of the single-site
potential, local Ḧolder continuity is proved at all energies. Finally, we present extensions
of this work to random potentials with nonsign definite single-site potentials.
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1. Introduction and main results

Much progress has been made in the study of random systems describing the propagation
of electrons and classical waves in randomly perturbed media. In this paper, we concentrate
on the Wegner estimate and on some recent results concerning the integrated density of
states for random operators onR

d , for d ≥ 1. The Wegner estimate also plays a key role
in the proof of localization for random systems, but we will not discuss localization here,
and refer the reader to various references [1,10,13,14,18,21,34]. The Wegner estimate is
a fine analysis of the effect of finite-volume, random perturbationsV3, for a bounded
region3 ⊂ R

d , on the spectrum of a self-adjoint operatorH0, describing the background,
unperturbed situation. More specifically, aWegner estimateis an upper bound on the
probability that the spectrum of the local HamiltonianH3 lies within anη-neighborhood
of a given energyE. A good Wegner estimate is one for which the upper bound depends
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linearly on the volume|3|, and vanishes as the size of the energy neighborhoodη shrinks
to zero. The linear dependence on the volume is essential for the proof of the regularity
properties of the IDS. The rate of vanishing of the upper bound asη → 0 determines the
continuity of the IDS.

We present a new, simple proof of a good Wegner estimate applicable to random oper-
ators with some additional conditions on the single-site potential. This proof uses more
directly the ideas of Krein, Birman, and Simon than the proof in [9]. As in [9], the proof
employsLp-estimates on the spectral shift function related to the single-site perturbation.
This result allows us to prove exponential localization and the local Hölder continuity of
the integrated density of states for more models than previously known.

The models that can be treated by this method are described as follows. We can treat
both multiplicative (M) and additive (A) perturbations of a background self-adjoint oper-
atorHX

0 , for X = M or X = A. Additively perturbed operators describe electron propa-
gation, and multiplicatively perturbed operators describe the propagation of acoustic and
electromagnetic waves. We refer to [10] for a further discussion of the physical interpre-
tation of these operators. For the Wegner estimate, we are interested in perturbationsV3

of a background operatorHX
0 , that are local with respect to a bounded region3 ⊂ R

d .
Multiplicatively perturbed operatorsHM

3 are of the form

HM
3 = A

−1/2
3 HM

0 A
−1/2
3 , (1.1)

whereA3 = 1+V3 is assumed to be invertible (cf. [10] for a discussion of this condition).
Additively perturbed operatorsHA

3 are of the form

HA
3 = HA

0 + V3. (1.2)

The unperturbed, background medium in the multiplicative case is described by a diver-
gence form operator

HM
0 = −C0ρ

1/2
0 ∇ · ρ−1

0 ∇ρ
1/2
0 C0, (1.3)

whereρ0 andC0 are positive functions that describe the unperturbed density and sound
velocity. We assume thatρ0 andC0 are sufficiently regular so thatC∞

0 (Rd) is an operator
core forHM

0 . The unperturbed, background medium in the additive case is described by a
Schr̈odinger operatorH0 given by

HA
0 = (−i∇ − A)2 + W, (1.4)

whereA is a vector potential withA ∈ L2
loc(R

d), andW = W+ − W− is a background
potential withW− ∈ Kd(Rd) andW+ ∈ K loc

d (Rd).
In this note, we will limit ourselves to Anderson-type perturbations. These methods can

also be used to treat the breather-type perturbations, and we refer the reader to [9] for
details. Let3̃ denote the lattice points in the region3, so that3̃ ≡ 3 ∩ Z

d . The local
perturbation in the Anderson-type model is defined by

V3(x) =
∑
i∈3̃

λi(ω)ui(x − i − ξi(ω
′)), (1.5)

provided the random variablesξi(ω
′), modeling thermal vibrations, are small enough so

that one of the conditions (H3), (H3a), (H3b), or (H3c) (given below) holds. To simplify
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the discussion in this paper, however, we takeξi(ω
′) = 0. The functionsui are nonzero

and compactly supported in a neighborhood of the origin. They need not be of the form
ui(x) = u(x), for some fixedu, since ergodicity plays no role in the Wegner estimate.
When the sum in (1.5) extends over all the lattice pointsZ

d , we writeVω for the potential
andHX

ω , with the operator forX = A given by (1.2) withV3 replaced byVω, and similarly
for (1.1) in the caseX = M.

The hypotheses for the models are listed here. The first two (H1) and (H1a) concern the
spectrum of the unperturbed operatorHX

0 . The second is a local compactness condition on
HX

0 . There are four different conditions on the single-site potentialuj . Finally, there are
two possible conditions on the random variablesλk(ω). We note that the Wegner estimate
is a local estimate so that for a finite region3 ⊂ R

d , only a finite number of single-site
potentials are involved. We denote the ball of radiusR > 0 about the origin byB(R), and
by 3r(k) = {x ∈ R

d | |kj − xj | < r/2, j = 1, . . . , d}, the cube of side lengthr > 0,
centered atk.

(H1) The self-adjoint operatorHX
0 is essentially self-adjoint onC∞

0 (Rd), for X = A

and forX = M. The operatorHX
0 is semi-bounded and has an open spectral

gap. That is, there exist constants−∞ < M0 ≤ C0 ≤ B− < B+ < C1 ≤ ∞ so
thatσ(H0) ⊂ [M0, ∞), and

σ(H0) ∩ (C0, C1) = (C0, B−] ∪ [B+, C1).

(H1a) The self-adjoint operatorHX
0 is essentially self-adjoint onC∞

0 (Rd), andHX
0 is

semi-bounded withσ(HX
0 ) ⊂ [M0, ∞), for someM0 > −∞.

(H2) The operatorHX
0 is locally compact in the sense that for anyχ ∈ L∞(Rd) with

compact support, the operatorχ(HX
0 − M1)

−1 is compact for anyM1 < M0.
(H3) The single-site potentialsuk, k ∈ Z

d , are nonzero. For the Anderson-type model
(1.5), we assume that there existsR > 0 so thatuk ∈ C0(B(R)), and thatuk ≥ 0
for eachk ∈ Z

d . Furthermore, we assume that the family{uk | k ∈ Z
d} is

equicontinuous.
(H3a) In addition to (H3), we assume that there existsε1 > 0 so thatuk ≥ ε1 on31(0).
(H3b) In addition to (H3), we assume that there is a nonempty subsetB ⊂ 31(0) so

that suppuk ⊂ B.
(H3c) The single-site potentialsuk ∈ C0(R

d). For eachk ∈ Z
d , there exists a nonempty

open setBk containing the origin so that the single-site potentialuk 6= 0 onBk.
Furthermore, we assume that

∑
j∈Zd

{∫
31(0)

|uj (x − j)|p
}1/p

< ∞, (1.6)

for p ≥ d whend ≥ 2 andp = 2 whend = 1.
(H4) The conditional probability distribution ofλ0, conditioned onλ0

⊥ ≡ {λi | i 6=
0}, is absolutely continuous with respect to Lebesgue measure. The densityh0 has
compact support [m, M], for some constants(m, M) with −∞ < m < M < ∞.
The densityh0 satisfies‖h0‖∞ < ∞, where the sup norm is defined with respect
to the probability measureP.

(H4a) In addition to (H4), the densityh0 is assumed to be locally absolutely continuous.
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We refer to the review article of Kirsch [19] for a proof of the fact that these hypotheses
imply the essential self-adjointness ofHA

ω onC∞
0 (Rd) (see [10] for theX = M case). As

stated in hypothesis (H4), we will assume that the random variables are independent, and
identically distributed, but the results hold in the correlated case, and in the case that the
supports of the single-site potentials are not necessarily compact (cf. [8,22]).

Our main results under these hypotheses on the unperturbed operatorHX
0 , and the

local perturbationV3, concern two cases depending upon whether or not the single-site
potentials are sign-definite. For the case of sign-definite single-site potentials, hypotheses
(H3), (H3a), or (H3b), our main theorem is the following.

Theorem 1.1. Assume(H1), (H2), (H3),and (H4). For anyE0 ∈ G = (B−, B+), for
anyq > 1, and for anyη < (1/2) dist (E0, σ (HX

0 )), there exists a finite constantCE0,
depending on[dist (σ (HX

0 ), E0)]−1, the dimensiond, andq > 1, such that

P

{
dist (E0, σ (HX

3 )) ≤ η
}

≤ CE0η
1/q |3| . (1.7)

If, in addition, the single-site potential satisfies(H3a),then the result(1.7)holds forq = 1
and forHX

ω | 3, with Dirichlet boundary conditions on the boundary of3, and for any
E0 ∈ R.

There are several prior results on the Wegner estimate for multidimensional, continuous
Schr̈odinger operators with Anderson-type potentials constructed from fixed-sign, single-
site potentials. Kotani and Simon [26] proved a Wegner estimate with a|3|-dependence for
Anderson models with overlapping single-site potentials satisfying (H3a). This condition
was removed and extensions were made to the band-edge case in [6] and [1]. An extension
to multiplicative perturbations was made in [10,12–14]. These methods require a spec-
tral averaging theorem (cf. [7] and references therein). Wegner’s original proof [35] for
Anderson models did not require spectral averaging. Following Wegner’s argument, Kirsch
gave a nice, short proof of the Wegner estimate in [20], but obtained a|3|2-dependence.
Recently, Stollmann [32] presented a short, elementary proof of the Wegner estimate for
Anderson-type models with singular single-site probability distributions that are assumed
to be simply Ḧolder continuous. He also obtains a|3|2-dependence. These proofs, and the
proof in this paper, do not require spectral averaging.

An immediate consequence of Theorem 1.1 concerns the IDS. In order to discuss the
IDS, we need to assume that the model is ergodic. For example, we can takeuj = u, for
all j ∈ Z

d . Let 6 denote the deterministic spectrum of the familyHω.

Theorem 1.2. Assume(H1), (H2), (H3),and (H4), and that the model is ergodic. The
integrated density of states is Hölder continuous of order1/q, for any q > 1, on the
interval (B−, B+). If, in addition, we assume that the single-site potential satisfies(H3a),
then the integrated density of states is locally Lipschitz continuous on6.

Concerning the second case of nonsign-definite single-site potentials, hypothesis (H3c),
our main results are not quite as general (see [15]). The first results concern energies
below the bottom of the spectrum ofHA

0 , and are given in Theorem 4.1 and Corollary
4.2. For the case of energies in an unperturbed spectral gap ofHX

0 , we must suppose
that the disorder is sufficiently small. The main results for this case are given in Theorem
4.3. These are, however, the first general results for nonsign-definite single-site potentials.
Some related results concern the IDS for magnetic Schrödinger operators with unbounded
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Gaussian random potentials studied by Hupfer, Leschke, Müller, and Warzel [17]. They
prove a Wegner estimate for these models and that the IDS is absolutely continuous at all
energies. Veselić [33] recently considered the nonsign-definite case for a restricted class
of Anderson-type potentials that we discuss at the end of § 4.

The existence of the integrated density of states for additively perturbed, infinite-volume,
ergodic models like (1.2) is well-known. A textbook account is found in the lecture notes
of Kirsch [19]. The same proof applies to the multiplicatively perturbed model (1.1) with
minor modifications. Recently, Nakamura [27] showed the uniqueness of the IDS, in the
sense that it is independent of Dirichlet or Neumann boundary conditions, in the case of
Schr̈odinger operators with magnetic fields. The same proof applies to the multiplicatively
perturbed model. It is interesting to note that the proof uses theL1-theory of the spectral
shift function. Another proof of the uniqueness of the IDS for Schrödinger operators with
magnetic fields is given by [11].

The contents of this paper are as follows. TheLp-theory of the spectral shift function
(SSF) forp > 1 is developed in § 2. We also give a summary of other estimates on the SSF.
We give a simple proof of Wegner’s estimate in § 3. This proof is different from the proof
in [9] and especially transparent. In § 4, we extend the results to Anderson-type potentials
with nonsign-definite single-site potentials following [15].

2. TheLp-theory of the spectral shift function, 1≤ p ≤ ∞
TheLp-theory of the spectral shift function forp ∈ [1, ∞] can be viewed as an interpo-
lation between the two well-known cases ofp = 1 andp = ∞. Let us recall theL1 and
L∞-theory, which can be found in the review paper of Birman and Yafaev [4], and the book
of Yafaev [36]. Suppose thatH0 andH are two self-adjoint operators on a separable Hilbert
spaceH having the property thatV ≡ H − H0 is in the trace class. We denote by‖V ‖1
the trace norm ofV . Under these conditions, we can define the Krein spectral shift func-
tion (SSF)ξ(λ; H, H0) through the perturbation determinant. LetR0(z) = (H0 − z)−1,
for Im z 6= 0. We then have

ξ(λ; H, H0) ≡ 1

π
lim

ε→0+
arg det(1 + V R0(λ + iε)). (2.1)

It is well-known that∫
R

ξ(λ; H, H0) dλ = Tr V, (2.2)

and that the SSF satisfies theL1-estimate:

‖ξ(· ;H, H0)‖L1 ≤ ‖V ‖1. (2.3)

At the other extreme,p = ∞, we recall that for a perturbationV of rankK, the SSF is
essentially bounded and satisfies the bound

‖ξ(·; H, H0)‖L∞ ≤ K. (2.4)

In particular, for rank one perturbations, we have

|ξ(λ; H, H0)| ≤ 1. (2.5)
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This implies that‖ξ(·; H, H0)‖L∞ ≤ K for finite-rank perturbationsV .
Let us now consider the case 1< p < ∞ (cf. [30]). LetA be a compact operator onH

and letµj (A) denote thej th singular value ofA. We say thatA ∈ I1/p, for somep ≥ 1, if∑
j

µj (A)1/p < ∞. (2.6)

We define a nonnegative functional on the idealI1/p by

‖A‖1/p ≡
(∑

j

µj (A)1/p

)p

. (2.7)

Forp > 1, this functional is not a norm but satisfies

‖A + B‖1/p

1/p ≤ ‖A‖1/p

1/p + ‖B‖1/p

1/p. (2.8)

If we define a metricρ1/p(A, B) ≡ ‖A − B‖1/p

1/p on I1/p, then the linear spaceI1/p is a
complete, separable linear metric space. The finite rank operators are dense inI1/p (cf.
[3]).

SinceI1/p ⊂ I1, for all p ≥ 1, we refer toA ∈ I1/p as being super-trace class.
Consequently, we can define the SSF for a pair of self-adjoint operatorsH0 andH for
whichV = H − H0 ∈ I1/p. Our main theorem is the following:

Theorem 2.1. Suppose thatH0 andH are self-adjoint operators so thatV = H −H0 ∈
I1/p, for somep ≥ 1. Then, the SSFξ(λ; H, H0) ∈ Lp(R), and satisfies the bound

‖ξ(· ;H, H0)‖Lp ≤ ‖V ‖1/p

1/p. (2.9)

Notice that this theorem provides the correct estimates for the endpointsp = 1 and
p = ∞, where we take 1/∞ = 0, and that the bound on the right side of (2.9) in this case
is a constant depending only on the rank ofV . In this sense, Theorem 2.1 is an interpolation
theorem for the SSF inLp-spaces forp ∈ [0, ∞]. The proof of Theorem 2.1 follows the
same lines as the proof for the trace class case as found in, for example, Yafaev [36]. This
bound was recently improved by Hundertmark and Simon [16].

Theorem 2.2 [16]. Suppose thatH0 andH are self-adjoint operators so thatV = H −
H0 ∈ I1. LetF : [0, ∞) → R

+ be a nonnegative, convex function withF(0) = 0. Then,
the SSFξ(λ; H, H0) satisfies the bound

∫
R

F(|ξ(λ; H, H0)|) dλ ≤
∞∑

j=1

[F(j) − F(j − 1)] µj (V ). (2.10)

If one takesF(t) = tp, p ≥ 1 in Theorem 2.2, one obtains∫
R

|ξ(λ; H, H0)|p dλ =
∑
j

(jp − (j − 1)p)µj (V ). (2.11)

The bound is better than the bound in Theorem 2.1, and provides an optimal upper bound
for theLp-norm of the SSF.
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Other integral bounds on the SSF were obtained by Pushnitski [28]. Among them,
we mention the following result concerning Schrödinger operators. We recall that for
unbounded operators, such as Schrödinger operators, the SSF is defined through the invari-
ance principle. Suppose thatH0 andH are two self-adjoint operators andg : R → R

is a function so that [g(H) − g(H0)] ≡ Veff ∈ I1. Then, we define the SSF for the pair
(H0, H) by

ξ(λ; H, H0) ≡ sgn(g′) ξ(g(λ); g(H), g(H0)). (2.12)

Theorem 2.3 [28]. Let d ≥ 3. Suppose thatH0 = −1 andH = H0 + V , where the
potentialV ≥ 0 and satisfies the bound

V (x) ≤ C0(1 + ‖x‖)−ρ, for ρ > d. (2.13)

Then, there exists a finite constantC1 ≥ 0, such that for any nonnegative, monotone
decreasing functionf , we have∫ ∞

0
ξ(λ; H, H0)f (λ) dλ ≤ C1

∫ ∞

0
λ(d/2)−1f (λ) dλ

∫
Rd

V (x) dx.

(2.14)

In addition to these integral bounds on the SSF, we would like to mention the pointwise
bound of Sobolev [31].

Theorem 2.4 [31]. Suppose thatH0 andH are self-adjoint operators so thatV = H −
H0 ∈ I1. Also suppose that

lim
ε→0+

‖|V |1/2(H0 − λ − iε)−1|V |1/2‖1/p < ∞, (2.15)

for somep ≥ 1. Then, there exists a finite constantCp > 0, so that for allλ > 0, the SSF
ξ(λ; H, H0) satisfies the bound

|ξ(λ; H, H0)| ≤ Cp‖|V |1/2(H0 − λ − i0)−1|V |1/2‖1/p

1/p. (2.16)

For one-dimensional Schrödinger operators, Kostrykin and Schrader [23] proved the
following pointwise bound on the SSF.

Theorem 2.5 [23]. LetH0 = −d2/dx2 be the self-adjoint Laplacian onL2(R), and let
H = H0 + V , with the potentialV satisfying∫

R

(1 + |x|2)|V (x)| dx < ∞. (2.17)

Then, there exists a constant0 ≤ CV < ∞, depending onV and independent ofλ, so that
for all λ ∈ R, the SSFξ(λ; H, H0) satisfies

|ξ(λ; H, H0)| ≤ CV . (2.18)

Moreover, there is a constant0 ≤ C0 < ∞, independent ofV andλ > 0, so that for all
λ > 0, the SSFξ(λ; H, H0) satisfies

|ξ(λ; H, H0)| ≤ C0

{
1

2
√

λ

∫
R

|V (x)| dx + 1

4λ

[∫
R

|V (x)| dx

]2
}

. (2.19)
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2.1 Various identities for the SSF

In this subsection, we study various identities for the SSF. In this setting, we consider a
one-parameter family of self-adjoint operatorsHλ, λ ∈ J ≡ [λ−, λ+] ⊂ R.

1. The familyλ ∈ J → Hλ is self-adjoint on the same domainD0. The family is weakly
differentiable onJ with the derivativeḢλ ≡ (dHλ/dλ) ∈ I1.

2. The mapλ ∈ J → ‖Ḣλ‖1 is continuous.

The first fundamental result is the Birman–Krein trace formula (cf. [4,36]).

PROPOSITION 2.6

For anyf ∈ C∞
0 (Rd), we have

Tr {f (Hλ+) − f (Hλ−)} =
∫

R

f ′(E)ξ(E; Hλ+ , Hλ−) dE. (2.20)

We also have a form of the spectral averaging theorem [2,7,29].

PROPOSITION 2.7

Under the conditions stated above, we have∫
J

Tr {Eλ(I)Ḣλ} dλ =
∫

I

ξ(E; Hλ+ , Hλ−) dE. (2.21)

Sketch of the Proof.We will sketch the proof of this identity by working formally. First,
for anyf ∈ C∞

0 (R), we note the basic identity

d

ds
Tr{f (H(s))} = Tr {f ′(H(s)) Ḣ (s)}. (2.22)

We now integrate this equation over the intervalJ ,∫
J

d

ds
Tr{f (H(s))} ds = Tr{f (H(λ+)) − f (H(λ−))}

=
∫

J

Tr {f ′(H(s)) Ḣ (s)} ds

=
∫

R

f ′(E)ξ(E; H(λ+), H(λ−)) dE. (2.23)

We used the Birman–Krein trace formula (2.20). We now use the spectral theorem for
H(s) to write the integrand on the second line of (2.23) as

Tr{f ′(H(s)) Ḣ (s)} =
∫

R

f ′(E) dµs(E), (2.24)

where dµs(E) is the measure onR with the formal density given by Tr{Es(E)Ḣ (s)}, with
Es(·) the spectral family ofH(s). We integrate the identity (2.24) overJ to obtain∫

J

Tr {f ′(H(s)) Ḣ (s)} ds =
∫

R

f ′(E)

∫
J

ds dµs(E). (2.25)
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Comparing the formula on the right in (2.25) with the one on the third line of (2.23), we
obtain

ξ(E; H(λ+), H(λ−)) dE =
∫

J

ds dµs(E). (2.26)

Integrating this identity over an intervalI ⊂ R, we obtain∫
I

ξ(E; H(λ+), H(λ−)) dE =
∫

J

T r{Es(I)Ḣ (s)} ds, (2.27)

proving the proposition.

Let us note that if we formally takef so thatf ′(x) = χI (x), then the result (2.27)
follows from the second and third lines of (2.23). 2

2.2 The integrated density of states

The integrated density of states (IDS) is defined as follows: We consider the Hamiltonian
Hω restricted to a cube3 with Dirichlet boundary conditions on∂3, the boundary of the
cube. This operator, denoted byHD

3 , has discrete spectrum. LetND
3 (λ) be the number of

eigenvalues ofHD
3 , including multiplicity, less than or equal toλ. If the following limit

exists

lim
|3|→∞

ND
3 (λ)

|3| ≡ N(λ), (2.28)

and it is called the IDS. It is known for the models discussed here thatN(λ) exists, is
nonrandom, and a monotone increasing function ofλ. We refer to [19] for a proof of this
result.

There is an interesting connection between the IDSN(λ) and the SSF for the pair
(H3, H0), with H3 = H0 + V3, that involves thespectral shift densityintroduced by
Kostrykin and Schrader [23,24]. For anyg ∈ C1

0(R), they prove that the following limit

lim
|3|→∞

∫
g(λ)

ξ(λ; H0 + V3, H0)

|3| dλ (2.29)

exists and is nonrandom.

Theorem 2.8 [24]. For the models discussed here, the integrated density of statesN(E)

exists, and belongs toLq

loc(R), for anyq ≥ 1. Furthermore, if N0(λ) is the IDS forH0, we
have the following identity, for anyg ∈ C1

0(R),

lim
|3|→∞

∫
g(λ)

ξ(λ; H0 + V3, H0)

|3| dλ =
∫

g(λ)(N0(λ) − N(λ)) dλ. (2.30)

We remark that the proof ofN(λ) ∈ L
q

loc(R), for anyq > 1, uses the estimate (2.9).

3. Proof of Wegner’s estimate

We first formulate Wegner’s estimate in general terms for a family of random operators
satisfying some assumptions. We then show that these assumptions are verified for some
Anderson-type models.
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3.1 An abstract Wegner’s estimate

We give a rather general proof of a Wegner estimate under the following assumptions:

(A1) The operatorH3 depends onN = O(|3|) random variables{λ1, . . . , λN },
distributed according to the distributionh0(λ)dλ with h0 ∈ L∞((λ−, λ+)), for
finite λ−, λ+ ∈ R.

(A2) For a bounded intervalI ⊂ R, the following identity holds for some finite
C0 > 0:

Tr {E3(Iη)} ≤ C0 Tr

{
N∑

j=1

(
∂H3

∂λj

)
E3(I)

}
. (3.1)

(A3) Let ω±
j ≡ {(λ1, . . . , λj = λ±, . . . , λn)} be the set of all configurations for

which the random variableλj is fixed at the minimum, respectively, maximum
value. For anyp > 1, letg(x) = (x + M0)

−k, for somek > (pd/2) + 2. Then,
there is a finite constantC = C(p, d, M0) > 0 so that

sup
j=1,... ,N

(
sup
k 6=j

‖g(Hω+
j
) − g(Hω−

j
)‖1/p

)
≤ C < ∞. (3.2)

These assumptions can be modified for the multiplicatively perturbed model (1.1), but we
do not do this here, and concentrate on the additively perturbed model (1.2).

Theorem 3.1. Assume that the random family of Hamiltonians satisfy assumptions(A1)–
(A3). Then, for any q > 1, there exists a finite constantCW = CW(q, d, C0, C1, k,

dist (I, M0)) > 0, so that

E{Tr (E3(I))} ≤ CW‖h0‖∞|I |1/q |3|. (3.3)

Proof. 1. Due to hypothesis (A2), we have

E{Tr (E3(I))} ≤ C0E

[
Tr

{
N∑

j=1

(
∂H3

∂λj

)
E3(I)

}]

≤ C0

N∑
j=1

E

{
Tr

(
∂H3

∂λj

)
E3(I)

}
. (3.4)

As usual, we select one random variable, sayλj , and integrate with respect to it, using
positivity,

E{Tr (E3(I))}

≤ C0

N∑
j=1

∫
I

5k 6=j h0(λk)dλk

∫
[λ−

j ,λ+
j ]

h0(λj )dλj Tr

{(
∂H3

∂λj

)
E3(I)

}

≤ C0‖h0‖∞E
′
{∫

[λ−
j ,λ+

j ]
dλj Tr

[(
∂H3

∂λj

)
E3(I)

]}
, (3.5)



The Wegner estimate 41

whereE
′ denotes the expectation with respect to the other random variablesλk, for k 6=

j = {1, . . . , N}.
2. We use the spectral averaging formula, Proposition 2.6, to evaluate the integral on the
right side of (3.5). This gives∫

[λ−
j ,λ+

j ]
dλj Tr

[(
∂H3

∂λj

)
E3(I)

]
=
∫

I

dE ξ(E; Hλ+
j
, Hλ−

j
). (3.6)

At this stage, we use theLp-estimate on the SSF and Hölder’s inequality. LetχI be the
characteristic function on the energy intervalI . For anyq > 1, letp > 1 be the conjugate
index so that(1/p) + (1/q) = 1. We then have∫

χI (E)ξ(E; Hλ+
j
, Hλ−

j
) dE ≤ |I |1/q‖ξ(·; Hλ+

j
, Hλ−

j
)‖Lp(I). (3.7)

3. The SSF appearing in (3.7) is defined through the invariance principle due to the fact
that the Hamiltonians are unbounded. Letg(E) = (E + M0)

−k, for someM0 >> 0, the
existence of which is guaranteed by (H1), and for somek > (2d/p) + 2, wherep > 1.
Note that sgng′ = −1, for E > −M0. We recall, as in (2.12), that the SSF is defined by

ξ(E; Hλ+
j
, Hλ−

j
) = −ξ(E; g(Hλ+

j
), g(Hλ−

j
)). (3.8)

Using Theorem 2.1, after changing variables in the integral, we find

‖ξ(·; Hλ+
j
, Hλ−

j
)‖Lp(I) ≤ C1(E0 − |I |/2 + M0)

−(k+1)/pk‖g(Hλ+
j
) − g(Hλ−

j
)‖1/p

1/p. (3.9)

By Proposition 3.2 ahead, the trace ideal functional is bounded independently of|3|.
Hence, from (3.5)–(3.7), we obtain

E{Tr (E3(I))} ≤ C2|I |1/q‖h0‖∞|3|, (3.10)

proving the theorem. 2

The trace estimate used above is the following: We letH0 be the Schr̈odinger operator

H0 = (−i∇ − A)2 + W, (3.11)

whereA is a vector potential withA ∈ L2
loc(R

d), andW = W+ − W− is a background
potential withW− ∈ Kd(Rd) andW+ ∈ K loc

d (Rd). We denote byH = H0 + V , for
suitable real-valued functionsV . We are interested in a bounded potentialV with compact
support. The proof of the following proposition is given in [9].

PROPOSITION 3.2

Let H0 be as above, and letV1 be a Kato-class potential such that‖V1‖Kd
≤ M1. Let

H1 ≡ H0 + V1, and letM > 0 be a sufficiently large constant given in the proof. LetV

be a Kato-class function supported inB(R), the ball of radiusR > 0 with center at the
origin. Then, for anyp > 0, we have

Veff ≡ (H1 + V + M)−k − (H1 + M)−k ∈ I1/p, (3.12)

providedk > dp/2 + 2. Under these conditions, there exists a constantC0, depending
onp, k, H0, M1, ‖V ‖Kd

, andR, so that

‖Veff‖1/p ≤ C0. (3.13)
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We remark that for the case of a locally perturbed Schrödinger operatorH0, with H =
H0 + V3, Kostrykin and Schrader [25] showed that the constantC0 in (3.13) is bounded
above byC1|3|p, for a constantC1 independent of|3|.

3.2 Application to Anderson-type models

We indicate how to verify the assumptions (A1)–(A3) for the Anderson-type additive
models described in section one. This provides a simpler proof than the one presented in
[9] provided we add hypothesis (H3b).To simplify the notation, we will drop the notation
HA

0 andHA
3 , and writeH0 andH3, respectively, for the additive case.

As with the proof in [9], we note that this proof of the Wegner estimate does not require
spectral averaging [7]. It does, however, rely upon some monotonicity of the eigenvalues
with respect to the random variables (for comparison, see the work [5] in one dimension).
Furthermore, the comparison theorem of Kirsch, Stollmann, and Stolz [21], used in [9] is
not needed for this version of the proof. In the next section, we present a technique that
removes the positivity assumption.

PROPOSITION 3.3

Let us suppose thatH3 satisfies hypotheses(H1) or (H1a), (H2), (H3b),and(H4). Then,
the additively-perturbed Anderson model satisfies assumptions(A1)–(A3).

Proof. Assumption (A1) is obviously satisfied by the Anderson-type potentials with
N = |3̃|, the number of lattice points in3. We turn to the proof of (A2). Hypothesis
(H3b) implies that the single-site potentials satisfyuiuj = δij uj . Let E0 ∈ G, where
G ⊂ ρ(H0) is a subset of an unperturbed spectral gap forH0, and chooseη > 0 so that
the intervalI of (A2) is I = Iη ≡ [E0 − η, E0 + η] ⊂ G. Since the perturbationV3 is
relativelyH0 compact, we know thatσ(H0) ∩ G is discrete. Letφ ∈ E3(Iη)L

2(Rd) be a
normalized eigenfunction ofH3 with eigenvalueE ∈ Iη. Using the eigenvalue equation,
we easily verify that

‖(H0 − E)φ‖ = ‖V3φ‖. (3.14)

Furthermore, we can expand the right side as

‖V3φ‖2 = 〈φ, V 2
3φ〉

=
∑
j∈3̃

λ2
j 〈φ, u2

jφ〉

= ‖(H0 − E)φ‖2

≥ [dist (σ (H0), Iη)]
2, (3.15)

using hypothesis (H3b). Now, we know that

∂H3

∂λj

= ∂V3

∂λj

= uj (· − j), (3.16)

so that, asuj (· − j) ≥ C0uj (· − j)2, we have
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∑
j∈3̃

〈
φ,

(
∂H3

∂λj

)
φ

〉
≥

∑
j∈3̃

C0〈φ, uj (· − j)2φ〉

≥ C0(λ
+)−2〈φ, V 2

3φ〉
≥ C0(λ

+)−2[dist (σ (H0), Iη)]
2‖φ‖2, (3.17)

where we assume, without loss of generality, that|λ+| ≥ |λ−|. This inequality immediately
implies (A2) since

Tr



∑
j∈3̃

(
∂H3

∂λj

)
E3(I)




=
∑

k

∑
j∈3̃

〈
φk,

(
∂H3

∂λj

)
φk

〉

≥ C0(λ
+)−2[dist (σ (H0), Iη)]

2
∑

k

‖φk‖2

≥ C0(λ
+)−2[dist (σ (H0), Iη)]

2 Tr E3(Iη). (3.18)

Finally, we verify (A3). We note that(H3

ω+
j

− H3

ω−
j

) = (λ+ − λ−)uj (· − j). It is proved

in [9] that given anyp > 1, for anyk > (pd/2) + 2, if we setg(E) = (E + M0)
−k, then

‖g(H3

ω+
j

) − g(H3

ω−
j

)‖1/p ≤ Ck < ∞, (3.19)

where the constantCk is independent of the indexj , and it is independent of|3| and
depends only on|suppuj |. 2

The verification of assumption (A2) is more difficult in the general case. In the absence
of hypothesis (H3b), there are two possibilities: (1) theuj satisfies hypothesis (H3a), i.e.
uj ≥ C0χ31(0), or (2) theuj satisfies hypothesis (H3), i.e.uj is nonnegative and the support
of uj is compact. In the first case, assumption (H3a), the single-site potentials satisfy∑

j∈3̃

uj (x − j) ≥ C0χ3, (3.20)

which is a strong monotonicity condition. Under this condition, we have the following
global result.

PROPOSITION 3.3

We define the local HamiltonianH3 by H3 = (H0 + Vω)|3, with Dirichlet boundary
conditions on∂3. Suppose that the local HamiltonianH3 satisfies(H1), (H2), (H3a),and
(H4). Then, for anyE0 ∈ R, and any intervalIη = [E0 − η, E0 + η] ⊂ R, there exists a
finite constantCW > 0, depending on(d, η, E0), so that we have

E{Tr(E3(Iη))} ≤ CWη|3|. (3.21)

Consequently, the IDS is Lipschitz continuous at all energies.
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Sketch of the Proof.The proof of this proposition follows the lines of the proof given in
[6]. We suppose that3 is a cube, and work on the Hilbert spaceL2(3). SinceVω is
bounded, there is a finite, positive constantV0 so that−V0 ≤ V3, H3 ≥ H3

0 − V0,
whereH3

0 ≡ H0|3, with Dirichlet boundary conditions. This lower bound and Jensen’s
inequality lead to the bound

Tr E3(Iη) ≤ e(E0+η) Tr{e−H3E3(Iη)}
≤ e(E0+η+V0) Tr{e−H3

0 E3(Iη)}. (3.22)

We decompose the cube3 into unit cubes3j , so that3 = Int ∪j3j . Dirichlet–Neumann
bracketing and the diamagnetic inequality imply that

e−H3
0 ≤ e

⊕j 1N
3j =

∑
j∈3̃

χj e
1N

3j χj , (3.23)

whereχj is the characteristic function on3j and −1N
j is the nonnegative Neumann

Laplacian on3j . Substituting this into (3.22), we obtain

TrE3(Iη) ≤ e(E0+η+V0)
∑
j∈3̃

Tr{e1N
3j χjE3(Iη)χj }. (3.24)

We now expand the trace in the eigenfunctions of1N
3j

and use spectral averaging. The

result follows by noting that Tr{e1N
3j } is bounded. 2

The general case of hypothesis (H3), was treated in [9] using a result of Kirsch, Stoll-
mann, and Stolz [21] on the localization of the eigenfunctions of the local Hamiltonian
H3. This theorem provides precise information about the eigenfunctions in the region3.
The proof of this theorem is simple and we refer the reader to [21,9].

PROPOSITION 3.4

LetH0 andV3 be as above andH3φ = Eφ with E ∈ G andφ ∈ L2(Rd). Suppose that
the following two conditions are satisfied:

1. There exists a potentialV0 such that, with H 0
3 ≡ H0 + V0, we haveE ∈ ρ(H 0

3);
2. There exists a subsetF ⊂ 3 and a constantθ > 0 so thatdist (F ∪3c, {x | V3(x) 6=

V0(x)}) > θ > 0.

We then have

‖φ‖ ≤ (1 + ‖(H 0
3 − E)−1W1‖)‖(1 − χF )φ‖, (3.25)

whereW1 ≡ [H0, χ1], withχ1 is defined in the proof, andχF is the characteristic function
of F .

4. The nonsign-definite case

Although the proof presented in §3 is elementary, it does require that the single-site poten-
tials uj have a definite sign. The case of nonsign definite single-site potentials is more
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delicate since the eigenvalues are no longer monotonic functions of the random variables.
We have two main results in the nonsign-definite case. The first, and more general result
applies to energies below the bottom of the spectrum of the background operatorH0. The
second result concerns the Wegner estimate at energies in an internal gap of the spectrum
of H0. This requires the disorder to be small. The basic idea of the proofs is to combine
the vector field method of Klopp [18] with the techniques of §3.

The single-site potentialsuj must satisfy hypothesis (H3c), that is weaker than the
other hypotheses (H3), (H3a), or (H3b). Basically, we need thatuj is continuous and
nonvanishing on some bounded, open set. As we mention in the proof below, we need a
slightly stronger hypothesis on the common distributionh0 of the random variables. This
is given in hypothesis (H4a).

4.1 Below the infimum of the spectrum ofHA
0

For energiesE < inf σ(HA
0 ) ≡ 6A

0 , the operator(H0−E) is strictly positive. This allows
us to reformulate the Wegner estimate as a statement concerning a Birman–Schwinger-
type operator. The main result, under hypotheses (H1a), (H2), (H3c), and (H4a) on the
unperturbed operatorHA

0 and the local perturbationV3, is the following theorem. We recall
that for multiplicative perturbations, we have6M

0 = inf 6M = 0, where6X ≡ σ(HX
ω )

almost surely, so these results apply only to additive perturbations.

Theorem 4.1. Assume(H1a), (H2), (H3c),and (H4a). For any q > 1, and for
any E0 ∈ (−∞, 6A

0 ), there exists a finite, positive constantCE0, depending only on
[dist (σ (HA

3), E0)]−1, the dimensiond, andq > 1,so that for anyη < dist(σ (HA
0 ), E0),

we have

P

{
dist (E0, σ (HA

3)) ≤ η
}

≤ CE0η
1/q |3| . (4.1)

As an immediate corollary of Theorem 4.1, and of the definition of the density of states,
we obtain

COROLLARY 4.2

Assume(H1a), (H2), (H3c),and(H4a),and that the modelHA
ω is ergodic. The integrated

density of states is locally Hölder continuous of order1/q, for anyq > 1, on the interval
(−∞, 6A

0 ).

Following [18], we formulate the Wegner estimate in terms of the resolvent ofHA
3 using

the fact that ifE0 < inf σ(HA
0 ), we have that(HA

0 − E0) > 0. So, for an energyE0 in
the resolvent set ofHA

3 , we have

R3(E0) = (HA
3 − E0)

−1 = (HA
0 − E0)

−1/2(1 + 03(E0; ω))−1(HA
0 − E0)

−1/2. (4.2)

The Birman–Schwinger-type operator03(E0; ω) is defined by

03(E0; ω) = (HA
0 − E0)

−1/2V3(HA
0 − E0)

−1/2

=
∑
j∈3̃

λj (ω)(HA
0 − E0)

−1/2uj (H
A
0 − E0)

−1/2. (4.3)
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Since suppuj is compact and the sum overj ∈ 3̃ is finite, the operator0(E0; ω3) is
compact, self-adjoint, and uniformly bounded. Let us writeδ for dist(E0, inf σ(HA

0 )). It
follows from (4.2) that

‖R3(E0)‖ ≤ {dist (σ (HA
0 ), E0)}−1 ‖(1 + 03(E0; ω))−1‖

≤ δ−1‖(1 + 03(E0; ω))−1‖. (4.4)

It follows from (4.4) that

P{‖R3(E0)‖ ≤ 1/η} ≥ P{‖(1 + 03(E0; ω))−1‖ ≤ δ/η}. (4.5)

Consequently, Wegner’s estimate can be reformulated as

P{dist (σ (HA
3), E0) < η} = P{ ‖R3(E0)‖ > 1/η}

≤ P{ ‖(1 + 03(E0; ω))−1‖ > δ/η}
= P{ dist (σ (03(E0; ω)), −1) < η/δ}. (4.6)

Hence, it suffices to compute

P{ dist (σ (03(E0; ω)), −1) < η/δ}. (4.7)

The key observation of [18] that takes the place of monotonicity and the eigenfunction
localization theorem of Kirsch, Stollmann, and Stolz [21], Proposition 3.4, is the following.
We define a vector fieldA3 onL2([m, M]3̃, 5j∈3̃h0(λj ) dλj ) by

A3 ≡
∑
j∈3̃

λj (ω)
∂

∂λj (ω)
. (4.8)

Then, the operator03(E0; ω) is an eigenvector ofA3 in that

A303(E0; ω) = 03(E0; ω). (4.9)

It is this relationship that replaces the positivity used in [9] since, if03(E0; ω) is restricted
to the spectral subspace where the operator is smaller than(−1 + 3κ/2), we have that
−03(E0; ω) is strictly positive, and hence invertible. We will use this below.

Sketch of the Proof of Theorem 4.1.

1. It follows from the reduction given above that we need to estimate the probability in
(4.7). LetG = (−∞, infσ(HA

0 )) be the unperturbed spectral gap. Since the local potential
V3 is a relatively compact perturbation ofHA

0 , the operator03(E0; ω) has only discrete
spectrum with zero the only possible accumulation point. Let us writeκ ≡ η/δ. We choose
η > 0 small enough so that [E0 − η, E0 + η] ⊂ G, and that [−1 − 2κ, −1 + 2κ] ⊂ R

−.
We denote byIκ the interval [−1 − κ, −1 + κ]. The probability in (4.7) is expressible
in terms of the finite-rank spectral projector for the intervalIκ and03(E0; ω), which we
write asE3(Iκ). Like03(E0; ω), this projection is a random variable, but we will suppress
any reference toω in the notation. We now apply Chebyshev’s inequality to the random
variable Tr(E3(Iκ)) and obtain

P{ dist (σ (03(E0)), −1) < κ} = P{Tr (E3(Iκ)) ≥ 1}
≤ E{Tr (E3(Iκ))}. (4.10)
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2. We now proceed to estimate the expectation of the trace in (4.10), following the original
argument of Wegner [35] as modified by Kirsch [20]. Letρ be a nonnegative, smooth
function such thatρ(x) = 1, for −M1 < x < −κ/2, andρ(x) = 0, for x ≥ κ/2 and
for x ≤ −M1, for someM1 > 0. We can assume thatM1 < ∞, so thatρ has compact
support, since03(E0) is lower semibounded and independent of3. We further assume
thatρ is monotone decreasing forx > −M1. As in [9], we have

E3{Tr (E3(Iκ))} ≤ E3{Tr [ρ(03(E0) + 1 − 3κ/2) − ρ(03(E0) + 1 + 3κ/2)]}

≤ E3

{
Tr

[∫ 3κ/2

−3κ/2

d

dt
ρ(03(E0) + 1 − t) dt

]}
. (4.11)

In order to evaluate theρ′ term, we use the fact that03(E0) is an eigenfunction for the
vector fieldA3, as expressed in (4.9). We writeρ′ as

A3ρ(03(E0) + 1 − t) = ρ′(03(E0) + 1 − t) A303(E0)

= ρ′(03(E0) + 1 − t)03(E0). (4.12)

We now note thatρ′ ≤ 0 (in the region of interest), and that on suppρ′, the operator
03(E0) ≤ (−1 + 2κ), so we obtain

−ρ′(03(E0) + 1 − t) ≤ − 1

(1 − 2κ)

∑
k∈3

λk

∂ρ

∂λk

(03(E0) + 1 − t). (4.13)

With this estimate, and the fact that dρ(x + 1− t)/dt = −ρ′(x + 1− t), the right side of
(4.11) can be bounded above by

− 1

(1 − 2κ)

∑
k∈3̃

∫ 3κ/2

−3κ/2
E

{
λk

∂

∂λk

Tr [ρ(03(E0) + 1 − t)]

}
dt. (4.14)

As in the proof of Theorem 3.1, we select one random variable, sayλk, with k ∈ 3̃, and first
integrate with respect to this variable using hypothesis (H4a). The local absolute continuity
property is necessary here because a single term in the sum of (4.14) is not necessarily
positive. Let us suppose that there is a decomposition [0, M] = ∪N−1

l=0 (Ml, Ml+1) so that
h0 is absolutely continuous on each subinterval. We denote byh̃0 the functionh̃0(λ) ≡
λh0(λ). As h̃0 is locally absolutely continuous, we can integrate by parts and obtain∣∣∣∣

∫ M

0
dλkh̃0(λk)

∂

∂λk

Tr{ρ(03(E0) + 1 − t) − ρ(03(E0)
0,k + 1 − t}

∣∣∣∣
=
∣∣∣∣∣
N−1∑
l=0

∫ Ml+1

Ml

dλkh̃0(λk)
∂

∂λk

Tr{ρ(λk) − ρ(λk = 0)}
∣∣∣∣∣

≤ h̃0(M)| Tr {ρ(03(E0)
M,k + 1 − t) − ρ(03(E0)

0,k + 1 − t)}|
+ ‖h̃′

0‖∞ sup
λ∈[0,M]

| Tr {ρ(03(E0)
λ,k + 1 − t) − ρ(03(E0)

0,k + 1 − t)}|,
(4.15)

where03(E0)
λ,k is the operator03(E0) with the coupling constantλk at thekth-site fixed

at the valueλk = λ. Similarly, the value 0 orM denotes the coupling constantλk fixed at
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those values. Consequently, we are left with the task of estimating

max(‖h̃′
0‖∞, h̃0(M))

(1 − 2κ)

∑
k∈3̃

∫ 3κ/2

−3κ/2
dt

∫ M

0
5l 6=k h0(λl) d λl | Tr {D(k, E0, 0, λ+

k )}|,

(4.16)

whereD(k, E0, 0, λ+
k ) denotes the operator

D(k, E0, 0, λ+
k ) ≡ ρ(03(E0)

0,k + 1 − t) − ρ(03(E0)
λ+

k ,k + 1 − t), (4.17)

andλ+
k ∈ [0, M] denotes the value of the coupling constantλk where the maximum in

(4.15) is obtained. We remark that each term in (4.16) is easily seen to be trace-class
since the operator03(E0) has discrete spectrum with zero the only accumulation point,
and the functionρ(x + 1 − t) is supported inx in a compact interval away from 0 for
t ∈ [−3κ/2, 3κ/2].

3. The trace in (4.16) can be rewritten in terms of a spectral shift function as follows: We
let H1 ≡ 03(E0)

0,k be the unperturbed operator, and write

03(E0)
λ+

k ,k = H1 + λ+
k (HA

0 − E0)
−1/2uk(H

A
0 − E0)

−1/2

= H1 + V. (4.18)

Although the differenceV is not trace class, the single-site potentialuk does have compact
support. A result similar to Proposition 3.2 holds in this case, and the difference of suffi-
ciently large powers of the bounded operatorsH1 = 03(E0)

0,k andH1+V = 03(E0)
λ+

k ,k

is not only in the trace class, but is in the super-trace classI1/p, for all p ≥ 1. Specifically,
let us define the functiong(λ) = λk. We prove that fork > pd/2 + 1, andp > 1,

g(H1 + V ) − g(H1) ∈ I1/p. (4.19)

The spectral shift functionξ(λ ; H1 + V, H1) is defined for the pair(H1, H1 + V ) by the
invariance principle (2.12). Recall that bothρ andρ′ have compact support. Because of
this, and the fact that the difference{g(H1 + V ) − g(H1)} is super-trace class, we can
apply the Birman–Krein identity [4] to the trace in (4.16). This gives

Tr {ρ(03(E0)
λ+

k ,k + 1 − t) − ρ(03(E0)
0,k + 1 − t)}

= −
∫

R

d

dλ
ρ(λ + 1 − t) ξ(λ; H1 + V, H1) dλ

= −
∫

R

d

dλ
ρ(λ + 1 − t) ξ(g(λ); g(H1 + V ), g(H1)). (4.20)

We estimate the integral using the Hölder inequality and theLp-theory of § 2. Let̃ξ(λ) =
ξ(g(λ); g(H1 + V ), g(H1)), for notational convenience. Letχ(x) be the characteristic
function for the support ofρ′(x) for x > 0, and we writeχ̃(x) ≡ χ(λ + 1 − t), so that
the support ofχ̃ is contained in [−1 − 2κ, −1 + 2κ]. For anyp > 1, andq such that
(1/p) + (1/q) = 1, the right side of (4.20) can be bounded above by{∫

|ρ′|q
}1/q {∫

|ξ̃ (λ) χ̃(λ)|p
}1/p

≤ C0κ
(1−q)/q ‖ξ̃ χ̃‖Lp . (4.21)
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Here, we integrated one power ofρ′, using the fact that−ρ′ > 0 in the region of interest,
and used the fact that|ρ′| = O(κ−1), to obtain{∫

|ρ′|q−1 |ρ′|
}1/q

≤ κ(1−q)/q

{
−
∫

ρ′
}1/q

≤ C0κ
(1−q)/q . (4.22)

By a simple change of variables, we find

‖ξ̃ χ̃‖p =
{∫

|ξ(g(λ); g(H1 + V ), g(H1))|p χ̃(λ) dλ

}1/p

≤ C1

{∫
R

|ξ(λ; g(H1 + V ), g(H1))|p dλ

}1/p

≤ C1 ‖g(H1 + V ) − g(H1)‖1/p

1/p. (4.23)

We recall that

V = λ+
k (HA

0 − E0)
−1/2uk(H

A
0 − E0)

−1/2. (4.24)

In particular, the volume of the support ofV has order one, and is independent of|3|.
As in § 3, one can prove that the constant‖g(H1 + V ) − g(H1)‖1/p

1/p depends only on the

single-site potentialuk and dist(E0, inf σ(HA
0 )), and is independent of|3|. Consequently,

the right side of (4.23) is bounded above byC0κ
(1−q)/q , independent of|3|. This estimate,

eqs (4.16) and (4.20), lead us to the result

P{dist (−1, σ (03(E0))) < κ} ≤ CWκ1/q‖g‖∞|3|, (4.25)

for anyq > 1. 2

4.2 The case of a general band edge and small disorder

Suppose now that the background operatorH0 has an open, internal spectral gap, as in
hypothesis (H1). In the case of nonsign-definite single-site potentials, the behavior of the
eigenvalues created byV3, as a coupling constantλj (ω) varies, may be very complicated.
In order to compensate for this, we must work in the weak disorder regime. The main
result is the following.

Theorem 4.3. We assume thatHX
0 andVω satisfy(H1), (H2), (H3c),and(H4a),and let

HA
3(λ) ≡ HA

0 +λV3,andHM
3 (λ) = (1+λV3)−1/2HM

0 (1+λV3)−1/2. LetE0 ∈ (B−, B+)

be any energy in the unperturbed spectral gap ofH0, and defineδ±(E0) ≡ dist (E0, B±).
We define a constant

λ(E0) ≡ min

(
(B+ − B−)

4‖V3‖ ,
1

4‖V3‖
(

δ+(E0)δ−(E0)

2

)1/2
)

.

Then, for anyq > 1, there exists a finite constantCE0, depending onλ0, the dimension
d, the indexq > 1, and [dist(σ (H0), I )]−1, so that for all |λ| < λ(E0), and for all
η < min (δ−(E0), δ+(E0))/32,we have

P{ dist (σ (HX
3 (λ)), E0) ≤ η} ≤ CE0η

1/q |3|. (4.26)

Consequently, for ergodic models, the IDS is Ḧolder continuous in a neighborhood ofE0.
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We give some ideas concerning the proof. Formula (4.2) is no longer valid so we replace
it with the Feshbach projection formula. LetP± denote the spectral projectors forH0
corresponding to the components of the spectrum [B+, ∞) and(−∞, B−], respectively,
so thatP+ + P− = 1, andP+P− = 0. The Feshbach method permits us to decompose
the problem relative to these two orthogonal projectors. LetH±

0 ≡ P±H0, and denote
by H±(λ) ≡ H±

0 + λP±V P±. We need the various projections of the potential between
the subspacesP±L2(Rd), and we denote them byV± ≡ P±V P±, andV+− ≡ P+V P−,
with V−+ = V ∗+− = P−V P+. Let z ∈ C, with Im z 6= 0. We can write the resolvent
R3(z) = (H3(λ) − z)−1 in terms of the resolvents of the projected operatorsH±(λ). In
order to write a formula valid for eitherP+ or P−, we letP = P±, Q = 1−P±, and write
RP (z) = (PH0 + λPV3P − zP )−1. We then have

R3(z) = PRP (z)P + {Q − λPRP (z)PV3Q}G(z){Q − λQV3PRP (z)∗P }, (4.27)

where the operatorG(z) is given by

G(z) = {QH0 + λQV3Q − zQ − λ2QV3PRP (z)PV3Q}−1. (4.28)

We notice that ifE0 ∈ G, then(H+ − E0) > 0, so that we can use the same ideas as in
the previous subsection to treat this operator. For example, let us suppose thatE0 is close
to the upper gap edgeB+. We then apply formula (4.27) withQ = P+ andP = P−. With
this choice, we see thatRP (E0) = (P−H0+λP−V3P−−zP−)−1 is bounded provided|λ|
is small enough. This implies that the singularity of the resolvent comes from the operator
G(z), for z nearE0. Following the general proof of Theorem 4.1, we reduce the statement
of the Wegner estimate to a statement concerning the norm of the operatorG(E0):

P{dist (σ (H3), E0) < η} = P{ ‖R3(E0)‖ > 1/η}
≤ P{ ‖G(E0)‖ > 1/(8η)}. (4.29)

Looking closely at the operatorG(E0) in (4.28), we see that it can be written as

G(E0) = R+
0 (E0)

1/2(1 + 0̃+(E0))
−1R+

0 (E0)
1/2, (4.30)

where we definẽ0+(E0) by

0̃+(E0) ≡ λR+
0 (E0)

1/2V+R+
0 (E0)

1/2

+ λ2R+
0 (E0)

1/2V+−(E0P− − H−(λ))−1V−+R+
0 (E0)

1/2. (4.31)

This operator̃0+(E0) is the analog of the operator03(E0; ω) appearing in (4.3). Equations
(4.29) and (4.30) show that we can, as in subsection 4.1, reduce the Wegner estimate as
follows:

P{ dist (σ (H3, E0) < η} = P{‖R3(E0)‖ > 1/η}
≤ P{ ‖(1 + 0̃+(E0))

−1‖ > δ+(E0)/(8η)}
= P{ dist (σ (0̃+(E0)), −1) < 8η/δ+(E0)}. (4.32)

We can now proceed as in subsection 4.1. The final difficulty is that the operator0̃+(E0)

is no longer an eigenvector of the operatorA3 defined in (4.8). Instead, a calculation yields
the relation

A30̃+(E0) = 0̃+(E0) + λ2W(E0). (4.33)
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The second constraint of|λ| originates with this expression. We want|λ| small enough so
that the leading term in (4.33) dominates. With this, the proof continues as in the proof of
Theorem 4.1.

We conclude by mentioning the model studied by Veselić [33]. Let0 ⊂ Z
d , be a finite

subset containing the origink = 0, and consider a finite set of real numbersα ≡ {αk | k ∈
0}. We assume thatα0 = 1, and that the remaining termsαk, k 6= 0, satisfy

∑
k 6=0 |αk| < 1.

In the simplest case, letχ0 be the characteristic function on the unit cell centered at the
origin in Z

d . We define a compactly-supported, single-site potentialu by

u(x) ≡
∑
k∈0

αkχ0(x − k). (4.34)

This potential has no fixed sign if some of the termsαk, k 6= 0, are negative. Veselić
considers the Anderson-type potentials (1.5) constructed with this single-site potential

Vω(x) =
∑
i∈Zd

λi(ω)u(x − i), (4.35)

with the coupling constantsλi(ω) being independent and identically distributed with com-
mon densityh0, as considered in this paper. Veselić observes that the potentialVω can be
written as

Vω(x) =
∑
i∈Zd

λi(ω)

[∑
k∈0

αkχ0(x − k − i)

]

=
∑

m∈Zd

νm(ω)χ0(x − m), (4.36)

where the new family of random variables{νm(ω) | m ∈ Z
d} is defined by

νm(ω) =
∑
k∈0

λm−k(ω)αk. (4.37)

The Anderson-type potentialVω in (4.36) is constructed from a sign-definite, single site
potentialχ0, but the coupling constantsνm(ω) are not necessarily independent and have a
different distribution that no longer has a product form. Note that if‖k −m‖ is sufficiently
large, depending upon0, then the random variablesνm(ω) andνk(ω) are independent.
That is, the correlation is of finite range. The distribution of the family{νm(ω) | m ∈ Z

d}
can be easily calculated. LetA be the infinite Toeplitz matrix with entriesAij = αi−j . It
follows from (4.37) thatν = Aλ. Formally, the probability distribution for the familyν is
given by

P{ν ∈ B} =
∫

B

| det(A−1)| 5k∈Zd f ((A−1ν)) dνk, (4.38)

for any measurable subsetB ⊂ A[supph0]Z
d
. These comments can be restricted to a finite

cube. It follows that the conditional probability distribution of one random variableνk,
conditioned on the others in a cube, is absolutely continuous. Consequently, the results of
[8] apply, and, because hypothesis (H3a) is satisfied, one can prove a Wegner estimate at
any energy (cf. Proposition 3.3).
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58 (1993) 55–83

[32] Stollmann P, Wegner estimates and localization for continuum Anderson models with
some singular distributions,Archiv der Mathematik75 (2000) 307–311

[33] Veselíc I, Wegner estimate for some Anderson-type Schrödinger operators, preprint
2000

[34] von Dreifus H and Klein A, A new proof of localization for the Anderson tight-binding
model,Commun. Math. Phys.124(1989) 245–299

[35] Wegner F, The density of states for disordered systems,Z. Phys.B44 (1981) 9–15
[36] Yafaev D R, Mathematical Scattering Theory: General Theory,Trans. Math. Monogr.

(Providence, RI: American Mathematical Society) (1992) vol. 105


