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Abstract. The integrated density of states (IDS) for random operators is an important
function describing many physical characteristics of a random system. Properties of the
IDS are derived from the Wegner estimate that describes the influence of finite-volume
perturbations on a background system. In this paper, we present a simple proof of the
Wegner estimate applicable to a wide variety of random perturbations of deterministic
background operators. The proof yields the correct volume dependence of the upper
bound. This implies the local &lder continuity of the integrated density of states at
energies in the unperturbed spectral gap. The proof depends dtt itieory of the
spectral shift function (SSF), fgp > 1, applicable to pairs of self-adjoint operators
whose difference is in the trace ideB), for 0 < p < 1. We present this and other
results on the SSF due to other authors. Under an additional condition of the single-site
potential, local Hblder continuity is proved at all energies. Finally, we present extensions
of this work to random potentials with nonsign definite single-site potentials.
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1. Introduction and main results

Much progress has been made in the study of random systems describing the propagation
of electrons and classical waves in randomly perturbed media. In this paper, we concentrate
on the Wegner estimate and on some recent results concerning the integrated density of
states for random operators B4, for 4 > 1. The Wegner estimate also plays a key role

in the proof of localization for random systems, but we will not discuss localization here,
and refer the reader to various references [1,10,13,14,18,21,34]. The Wegner estimate is
a fine analysis of the effect of finite-volume, random perturbatiggsfor a bounded
regionA C R9, on the spectrum of a self-adjoint operaffy, describing the background,
unperturbed situation. More specifically,Véegner estimatés an upper bound on the
probability that the spectrum of the local Hamiltoni&ia lies within anp-neighborhood

of a given energ\E. A good Wegner estimate is one for which the upper bound depends
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linearly on the voluméA |, and vanishes as the size of the energy neighborh@badinks

to zero. The linear dependence on the volume is essential for the proof of the regularity
properties of the IDS. The rate of vanishing of the upper boungd-as0 determines the
continuity of the IDS.

We present a new, simple proof of a good Wegner estimate applicable to random oper-
ators with some additional conditions on the single-site potential. This proof uses more
directly the ideas of Krein, Birman, and Simon than the proof in [9]. As in [9], the proof
employsL?-estimates on the spectral shift function related to the single-site perturbation.
This result allows us to prove exponential localization and the logédét continuity of
the integrated density of states for more models than previously known.

The models that can be treated by this method are described as follows. We can treat
both multiplicative (/) and additive A) perturbations of a background self-adjoint oper-
atong‘, for X = M or X = A. Additively perturbed operators describe electron propa-
gation, and multiplicatively perturbed operators describe the propagation of acoustic and
electromagnetic waves. We refer to [10] for a further discussion of the physical interpre-
tation of these operators. For the Wegner estimate, we are interested in perturbations
of a background operatdi, that are local with respect to a bounded regiorc R?.
Multiplicatively perturbed operatord }{” are of the form

HY = APHY A2, (1.1)

whereA, = 14V, isassumed to be invertible (cf. [10] for a discussion of this condition).
Additively perturbed operatord ;\‘ are of the form

H{ = H} + Va. (1.2)

The unperturbed, background medium in the multiplicative case is described by a diver-
gence form operator
2 - 2

HY! = —Copy/*V - p5 v pa/*Co, (1.3)
wherepp and Cg are positive functions that describe the unperturbed density and sound
velocity. We assume thabp andCy are sufficiently regular so théIOOO(IR{d) is an operator
core forHé”. The unperturbed, background medium in the additive case is described by a
Schibdinger operatoHy given by

H = (—iV — A2+ W, (1.4)

where A is a vector potential withd < L%C(Rd), andW = W, — W_ is a background

potential withw_ e K4(RY) andW, € K'°¢(R%).

In this note, we will limit ourselves to Anderson-type perturbations. These methods can
also be used to treat the breather-type perturbations, and we refer the reader to [9] for
details. LetA denote the lattice points in the regian so thatA = A N Z¢. The local
perturbation in the Anderson-type model is defined by

Va() =Y hi(@ui(x —i — & (), (1.5)
ieA

provided the random variablés(w’), modeling thermal vibrations, are small enough so
that one of the conditions (H3), (H3a), (H3b), or (H3c) (given below) holds. To simplify
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the discussion in this paper, however, we tgk@’) = 0. The functions:; are nonzero

and compactly supported in a neighborhood of the origin. They need not be of the form
u; (x) = u(x), for some fixedu, since ergodicity plays no role in the Wegner estimate.
When the sum in (1.5) extends over all the lattice pdittswe write V,, for the potential
andHX, with the operator foX = A given by (1.2) withV, replaced by,,, and similarly

for (1.1) in the cas&X = M.

The hypotheses for the models are listed here. The first two (H1) and (H1a) concern the
spectrum of the unperturbed operaﬂ‘g‘. The second is a local compactness condition on
Hé‘. There are four different conditions on the single-site poteatiaFinally, there are
two possible conditions on the random variablg&o). We note that the Wegner estimate
is a local estimate so that for a finite regianc R?, only a finite number of single-site
potentials are involved. We denote the ball of raditus 0 about the origin byB(R), and
by A,(k) = {x € RY||k; —x;| <r/2,j =1,...,d}, the cube of side length > 0,
centered ak.

(H1) The self-adjoint operatdlié( is essentially self-adjoint o63° R7), for X = A
and forX = M. The operatod—lg‘ is semi-bounded and has an open spectral
gap. That is, there exist constantso < Mg < Co < B_ < By < (C1 <0 S0
thato (Hp) C [Mo, 00), and

O.(I_]O) N (C07 Cl) = (CO’ B—] U [B+9 Cl)

(H1a) The self-adjoint operatdfg‘ is essentially self-adjoint o0 ° RY), andHé‘ is
semi-bounded witlr (Hg) C [Mo, 00), for someMg > —oo.
(H2) The operatoHcf is locally compact in the sense that for gnye L°°(R4) with
compact support, the operatptH — M1)~! is compact for anyf1 < Mo.
(H3) The single-site potentialg , k € Z¢, are nonzero. For the Anderson-type model
(1.5), we assume that there exigts> 0 so thai;, € Co(B(R)), and that; > 0
for eachk e Z¢. Furthermore, we assume that the fanfily. | k € Z%} is
equicontinuous.
(H3a) Inadditionto (H3), we assume that there exigts 0 so thaty;, > €3 on A1(0).
(H3b) In addition to (H3), we assume that there is a nonempty subsetA1(0) so
that suppuy C B.
(H3c) Thesingle-site potentialg € Co(RY). Foreacht € Z¢, there exists anonempty
open seB;, containing the origin so that the single-site potenijat% 0 on By.
Furthermore, we assume that

1/p
Z{/ |u,~<x—j)|f’} < 00, (1.6)
A1(0)

jezd

for p > d whend > 2 andp = 2 whend = 1.
(H4) The conditional probability distribution 6fy, conditioned orko™ = {A; | i #
0}, is absolutely continuous with respectto Lebesgue measure. The dgyisity
compact suppori}, M], for some constant@z, M) with —oco <m < M < oo.
The densityig satisfied|hgllco < 00, Where the sup normis defined with respect
to the probability measur@.
(H4a) Inadditionto (H4), the density is assumed to be locally absolutely continuous.



34 J M Combes et al

We refer to the review article of Kirsch [19] for a proof of the fact that these hypotheses
imply the essential self-adjointness®f on Cy (R9) (see [10] for theX = M case). As
stated in hypothesis (H4), we will assume that the random variables are independent, and
identically distributed, but the results hold in the correlated case, and in the case that the
supports of the single-site potentials are not necessarily compact (cf. [8,22]).

Our main results under these hypotheses on the unperturbed opHg‘éI(nnd the
local perturbationV,, concern two cases depending upon whether or not the single-site
potentials are sign-definite. For the case of sign-definite single-site potentials, hypotheses
(H3), (H3a), or (H3b), our main theorem is the following.

Theorem 1.1. AssumdH1), (H2), (H3),and (H4). Forany £y € G = (B—, B4), for
anyqg > 1, and for anyn < (1/2)dist(Eo,a(HOX)), there exists a finite constani,,
depending oridist (o (HZ), Eo)] "1, the dimensior/, andg > 1, such that

P {dist (Eo. o () < n} < Ceon™? |A]. (L.7)

If, in addition, the single-site potential satisfiéld3a),then the resulfl1.7)holds forg = 1
and for HX | A, with Dirichlet boundary conditions on the boundary &f and for any
Eo e R.

There are several prior results on the Wegner estimate for multidimensional, continuous
Schibdinger operators with Anderson-type potentials constructed from fixed-sign, single-
site potentials. Kotani and Simon [26] proved a Wegner estimate witfrdependence for
Anderson models with overlapping single-site potentials satisfying (H3a). This condition
was removed and extensions were made to the band-edge case in [6] and [1]. An extension
to multiplicative perturbations was made in [10,12-14]. These methods require a spec-
tral averaging theorem (cf. [7] and references therein). Wegner’s original proof [35] for
Anderson models did not require spectral averaging. Following Wegner’s argument, Kirsch
gave a nice, short proof of the Wegner estimate in [20], but obtainad?adependence.
Recently, Stollmann [32] presented a short, elementary proof of the Wegner estimate for
Anderson-type models with singular single-site probability distributions that are assumed
to be simply Holder continuous. He also obtaing/s/?-dependence. These proofs, and the
proof in this paper, do not require spectral averaging.

An immediate consequence of Theorem 1.1 concerns the IDS. In order to discuss the
IDS, we need to assume that the model is ergodic. For example, we can;take, for
all j € Z4. Let © denote the deterministic spectrum of the fanfily.

Theorem 1.2. AssumgH1), (H2), (H3),and (H4), and that the model is ergodic. The
integrated density of states isdldler continuous of ordefl/q, for anyg > 1, on the
interval (B_, By). If, in addition, we assume that the single-site potential sati§fis),
then the integrated density of states is locally Lipschitz continuous.on

Concerning the second case of nonsign-definite single-site potentials, hypothesis (H3c),
our main results are not quite as general (see [15]). The first results concern energies
below the bottom of the spectrum &£, and are given in Theorem 4.1 and Corollary
4.2. For the case of energies in an unperturbed spectral ga{g‘ofwe must suppose
that the disorder is sufficiently small. The main results for this case are given in Theorem
4.3. These are, however, the first general results for nonsign-definite single-site potentials.
Some related results concern the IDS for magnetic@thger operators with unbounded
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Gaussian random potentials studied by Hupfer, Leschk@lek] and Warzel [17]. They
prove a Wegner estimate for these models and that the IDS is absolutely continuous at all
energies. Vesdli[33] recently considered the nonsign-definite case for a restricted class
of Anderson-type potentials that we discuss at the end of § 4.

The existence of the integrated density of states for additively perturbed, infinite-volume,
ergodic models like (1.2) is well-known. A textbook account is found in the lecture notes
of Kirsch [19]. The same proof applies to the multiplicatively perturbed model (1.1) with
minor modifications. Recently, Nakamura [27] showed the uniqueness of the IDS, in the
sense that it is independent of Dirichlet or Neumann boundary conditions, in the case of
Schibdinger operators with magnetic fields. The same proof applies to the multiplicatively
perturbed model. It is interesting to note that the proof uses. thimeory of the spectral
shift function. Another proof of the uniqueness of the IDS for ®dimger operators with
magnetic fields is given by [11].

The contents of this paper are as follows. Thetheory of the spectral shift function
(SSF) forp > 1lis developedin § 2. We also give a summary of other estimates on the SSF.
We give a simple proof of Wegner’s estimate in § 3. This proof is different from the proof
in [9] and especially transparent. In 8 4, we extend the results to Anderson-type potentials
with nonsign-definite single-site potentials following [15].

2. The L?-theory of the spectral shift function, 1< p <

The L?-theory of the spectral shift function fgr € [1, oo] can be viewed as an interpo-
lation between the two well-known cases;of= 1 andp = co. Let us recall the.! and
L*°-theory, which can be found in the review paper of Birman and Yafaev [4], and the book
of Yafaev [36]. Suppose th&fy andH are two self-adjoint operators on a separable Hilbert
spaceH having the property that = H — Hp is in the trace class. We denote by |1

the trace norm of/. Under these conditions, we can define the Krein spectral shift func-
tion (SSF)&(X; H, Hp) through the perturbation determinant. LR$(z) = (Ho — z) 1,

for Im z # 0. We then have

1 .
&\ H, Hy) = — Ilrr(}+ arg det(1+ VRo(A + i€)). (2.1)
T €—
It is well-known that
/ E H,Hp) dA =Tr Vv, (2.2)
R

and that the SSF satisfies thé-estimate:
NEC; H, Ho)llpr < (V2. (2.3)

At the other extremep = oo, we recall that for a perturbatiovi of rank K, the SSF is
essentially bounded and satisfies the bound

I§C; H, Ho)llL= < K. (2.9)
In particular, for rank one perturbations, we have

|§(x; H, Ho)| = 1. (2.5)
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This implies that|&(-; H, Hp)||L.~ < K for finite-rank perturbation¥ .
Let us now consider the case<lp < oo (cf. [30]). Let A be a compact operator Git
and leti; (A) denote thgth singular value ofi. We say tha#d € 7/, for somep > 1, if

D (AP < oo, (2.6)
j

We define a nonnegative functional on the idégl, by

p
1Al = (Z MJ-(A)W) : 2.7)
J

For p > 1, this functional is not a norm but satisfies

1 1 1
IA+BITD < IAITY + 1Bl (2.8)
If we define a metrigpy,,(A, B) = ||A — B||1§p onZy,,, then the linear spacky, is a
complete, separable linear metric space. Tﬁe finite rank operators are déigg (cf.
(3)-

SinceZy;, C Iy, forall p > 1, we refer toA € 7/, as being super-trace class.
Consequently, we can define the SSF for a pair of self-adjoint oper&tpend H for
whichV = H — Hp € Z1/,. Our main theorem is the following:

Theorem 2.1. Suppose thally and H are self-adjoint operators sothdt = H — Hp €
Ty1/p, for somep > 1. Then, the SSE(}; H, Hp) € L?(R), and satisfies the bound

lEC: H, Hollr < V)P, (2.9)
Notice that this theorem provides the correct estimates for the endpoigatsl and

p = o0, Where we take oo = 0, and that the bound on the right side of (2.9) in this case

is a constant depending only on the rankoin this sense, Theorem 2.1 is an interpolation

theorem for the SSF i ”-spaces fop € [0, oc]. The proof of Theorem 2.1 follows the

same lines as the proof for the trace class case as found in, for example, Yafaev [36]. This

bound was recently improved by Hundertmark and Simon [16].

Theorem 2.2 [16]. Suppose thatlp and H are self-adjoint operators so that = H —
Hgp € I1. Let F : [0, c0) — RT be a nonnegativeconvex function withF (0) = 0. Then
the SSE(A; H, Hp) satisfies the bound

/R F(E; H, Ho dh < D [F(j) = F(j = D] (V). (2.10)
j=1

If one takesF'(t) = t?, p > 1in Theorem 2.2, one obtains
/H; |EGs H, Ho)|? dd =) (7 — (j = DP ) (V). (2.11)
J

The bound is better than the bound in Theorem 2.1, and provides an optimal upper bound
for the L”-norm of the SSF.
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Other integral bounds on the SSF were obtained by Pushnitski [28]. Among them,
we mention the following result concerning Setinger operators. We recall that for
unbounded operators, such as Sclimger operators, the SSF is defined through the invari-
ance principle. Suppose thaly and H are two self-adjoint operators agd: R — R
is a function so thatd(H) — g(Hp)] = Vet € Z1. Then, we define the SSF for the pair
(Ho, H) by

&(x; H, Ho) = sgn(g’) £(g(M); g(H), g(Ho)). (2.12)

Theorem 2.3 [28]. Letd > 3. Suppose thatlp = —A and H = Hp + V, where the
potentialV > 0 and satisfies the bound

V(x) < Co(1+ ||xID~", for p > d. (2.13)
Then there exists a finite constaiit; > 0, such that for any nonnegativenonotone
decreasing functiorf, we have
o o
/ E H, Ho f()dr < C1 / AP d / V(x) dx.
0 0 Rd
(2.14)

In addition to these integral bounds on the SSF, we would like to mention the pointwise
bound of Sobolev [31].

Theorem 2.4 [31]. Suppose thakly and H are self-adjoint operators so th&t = H —
Hy € 7;. Also suppose that

lim 1V [2(Ho — 2 = i€) VY2l < oo, (2.15)
€—>

for somep > 1. Then there exists a finite constaat, > 0, so that for all» > 0, the SSF
&(\; H, Hp) satisfies the bound

£ H, Ho)l < C,llIVIY2(Ho — & —i0) 71 V|*2| 30 (2.16)

For one-dimensional Scbdinger operators, Kostrykin and Schrader [23] proved the
following pointwise bound on the SSF.

Theorem 2.5 [23]. Let Hy = —d?/dx? be the self-adjoint Laplacian oh?(R), and let
H = Hp + V, with the potentialV satisfying

/(1+ Ix|?)|V (x)| dx < oo. (2.17)
R

Then there exists a constaft< Cy < oo, depending orV and independent &f, so that
forall A € R, the SSE()\; H, Hp) satisfies

|E(x; H, Ho)| < Cy. (2.18)

Moreover there is a constar® < Cp < oo, independent of andi > 0, so that for all
A > 0,the SSE(A; H, Hp) satisfies

1 1 2
Ié(k,H,Ho)lSCo{m/RIV(X)IdX+a[/RIV(X)IdX} } (2.19)
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2.1 Various identities for the SSF

In this subsection, we study various identities for the SSF. In this setting, we consider a
one-parameter family of self-adjoint operatdfs, » € J = [A~, AT] C R.

1. Thefamilyr € J — H, is self-adjoint on the same domai. The family is weakly
differentiable on/ with the derivativeH, = (dH, /d}) € 7.
2. The map. € J — ||H, |1 is continuous.

The first fundamental result is the Birman—Krein trace formula (cf. [4,36]).

PROPOSITION 2.6
For any f € C°(R%), we have

Tt (f(Hy) — f(Hy-)) = fR FUEYE(E: Hy+. Hy-) dE. (2.20)

We also have a form of the spectral averaging theorem [2,7,29].

PROPOSITION 2.7

Under the conditions stated abgwee have
/ Tr{E,()H,} dr = / £(E; Hy+, H,-) dE. (2.21)
J I

Sketch of the ProofVe will sketch the proof of this identity by working formally. First,
forany f € C5°(R), we note the basic identity

d—iTr{f(H(S))} = Tr{f'(H(s)) H(s)}- (2.22)
We now integrate this equation over the interyal
[ & TGO & = TG - £H6)
- /J Tr {f/(H(s)) H(s)) ds
=/Rf’(E)§(E; H(M), HO. 7)) dE. (2.23)

We used the Birman—Krein trace formula (2.20). We now use the spectral theorem for
H (s) to write the integrand on the second line of (2.23) as

Tr{f'(H(s)) H(s)} = /Rf/(E) dus (E), (2.24)

where di, (E) is the measure oR with the formal density given by TE (E) H (s)}, with
E,(-) the spectral family ofd (s). We integrate the identity (2.24) ovérto obtain

f, Tr{f'(H(s)) H(s)} ds = /R f(E) [J ds dus(E). (2.25)
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Comparing the formula on the right in (2.25) with the one on the third line of (2.23), we
obtain

EE;HOY), HA ) dE = / ds dus(E). (2.26)
J
Integrating this identity over an intervalc R, we obtain

[g(E; HO), HO ) dE :/Tr{ES(I)H(s)} ds, (2.27)
1 J

proving the proposition.

Let us note that if we formally tak¢ so thatf’(x) = x;(x), then the result (2.27)
follows from the second and third lines of (2.23). O

2.2 The integrated density of states

The integrated density of states (IDS) is defined as follows: We consider the Hamiltonian
H, restricted to a cuba with Dirichlet boundary conditions ofiA, the boundary of the
cube. This operator, denoted B°, has discrete spectrum. LMZI\)(A) be the number of
eigenvalues of P, including multiplicity, less than or equal ta If the following limit

exists

NP _
|A|IT00 Al = N(A), (2.28)

and it is called the IDS. It is known for the models discussed hereNtiaj exists, is
nonrandom, and a monotone increasing function.afe refer to [19] for a proof of this
result.

There is an interesting connection between the ID&) and the SSF for the pair
(Hp, Hp), with Hy = Hp + V,, that involves thespectral shift densityntroduced by
Kostrykin and Schrader [23,24]. For apye C&(R), they prove that the following limit

im /g(A) &(X; Ho+ Va, Ho) q

N 7 (2.29)

|A|—>o00
exists and is nonrandom.

Theorem 2.8 [24]. For the models discussed hetiee integrated density of statd& E)

exists and belongs t<L|’{)c(R), foranyq > 1. Furthermoregif Ng(A) is the IDS forHp, we

have the following identityfor any g € C3(R),

im /g(x) 50 H°|I|VA’H°)dA = /g(,\)(No(x) ~ NG dr. (2.30)

We remark that the proof a¥ (A) € L} .(R), for anyg > 1, uses the estimate (2.9).

q
loc

3. Proof of Wegner's estimate

We first formulate Wegner's estimate in general terms for a family of random operators
satisfying some assumptions. We then show that these assumptions are verified for some
Anderson-type models.
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3.1 An abstract Wegner’s estimate

We give a rather general proof of a Wegner estimate under the following assumptions:

(A1) The operatorH, depends oV = O(]A|) random variablegiy, ..., Ay},
distributed according to the distributidry(1)dx with hg € L ((A~, AT)), for
finite A=, AT e R.

(A2) For a bounded interval c R, the following identity holds for some finite
Co > 0:

TEI<CTN3HAEI 3.1
r{Ea(I))} < of;<m> A (3.1)

(A3) Let wjt = {(Ag,..., A} = AT, ..., A} be the set of all configurations for
which the random variablg; is fixed at the minimum, respectively, maximum
value. Forany > 1, letg(x) = (x + Mo) ¥, for somek > (pd/2) + 2. Then,
there is a finite constarit = C(p, d, Mg) > 0 so that

sup (SUP lg(H,+) — g(wa)Ill/p> <C <oo. (3.2)
j=1,....N \k#j J J

These assumptions can be modified for the multiplicatively perturbed model (1.1), but we
do not do this here, and concentrate on the additively perturbed model (1.2).

Theorem 3.1. Assume thatthe random family of Hamiltonians satisfy assum#dns
(A3). Then for any g > 1, there exists a finite constaiity = Cw(q, d, Co, C1, k,
dist (I, Mp)) > 0, so that

E{Tr (Ea(I))} < CwllhollsolII*7]Al. 3.3)
Proof. 1. Due to hypothesis (A2), we have

N /(9H
E{Tr (Ex(I))} = Cok [Tr {Z (WA) EA<I>H
J

j=1
N

< Gy, E{Tr (ﬂ) EA(I)}. (3.4)
= 0A;

As usual, we select one random variable, sayand integrate with respect to it, using
positivity,

E{Tr (EA(D)}

N
oH
< CoY. / Myt o) dik / ho(j)dA; Tr{(—A) EA<1)}
=171 AT 0Aj
< COnhonooE’[/
27

dH
- da; Tr [(ﬁ) EA(I)”, (3.5)

7
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whereE’ denotes the expectation with respect to the other random varighlésr k £
j={1,..., N}

2. We use the spectral averaging formula, Proposition 2.6, to evaluate the integral on the
right side of (3.5). This gives

/ da; Tr [(ﬂ) EA(I)} =f dE &(E; Hy+, H,-). (3.6)
a1 oAj 7 ] ;

At this stage, we use the?-estimate on the SSF andlder’s inequality. Lety; be the
characteristic function on the energy interyaFor anyg > 1, let p > 1 be the conjugate
index so tha(1/p) + (1/g) = 1. We then have

f X (E)E(E; Hy e, Hy ) dE- < VA HE H, o Hy Lo (3.7)

3. The SSF appearing in (3.7) is defined through the invariance principle due to the fact
that the Hamiltonians are unbounded. k€E) = (E + Mg) ¥, for someMy >> 0, the
existence of which is guaranteed by (H1), and for s@ame (2d/p) + 2, wherep > 1.

Note that sgg’ = —1, for E > —Mpy. We recall, as in (2.12), that the SSF is defined by

§(E; Hk/f, Hklf) = —§(E; g(HAf), g(HAlf))- (3.8)
Using Theorem 2.1, after changing variables in the integral, we find

— 1
1§C: Hyr HyllLray < Ca(Eo— 111/2+ Mo)™ VP lg (Hy4) — g (Hy ) ). (3.9)

By Proposition 3.2 ahead, the trace ideal functional is bounded independenaly. of
Hence, from (3.5)—(3.7), we obtain

E(Tr (Ea(I)} < ColI[Ylhollocl Al (3.10)
proving the theorem. O
The trace estimate used above is the following: WeHgbe the Schidinger operator
Ho= (—iV — A2+ W, (3.11)
whereA is a vector potential witl e L%C(Rd), andW = W, — W_ is a background
potential withW_ e K,(R?Y) and Wy e K!°°(RY). We denote by = Ho + V, for

suitable real-valued functioris. We are interested in a bounded potentiakith compact
support. The proof of the following proposition is given in [9].

PROPOSITICN 3.2

Let Hy be as aboveand letV; be a Kato-class potential such thijivy| g, < M;. Let
Hy = Hp + V1, and letM > 0 be a sufficiently large constant given in the proof. Ket
be a Kato-class function supported B(R), the ball of radiusR > 0 with center at the
origin. Then for any p > 0, we have

Vet = (HL+V + M) ™" — (HL+ M) e Ty, (3.12)

providedk > dp/2 + 2. Under these conditionshere exists a constaidty, depending
onp,k, Hy, M1, ||V, andR, so that

| Vettlli/p < Co. (3.13)
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We remark that for the case of a locally perturbed 8dhrger operatoHy, with H =
Hop + V4, Kostrykin and Schrader [25] showed that the constanin (3.13) is bounded
above byC1|A|?, for a constanC; independent ofA|.

3.2 Application to Anderson-type models

We indicate how to verify the assumptions (A1)—(A3) for the Anderson-type additive
models described in section one. This provides a simpler proof than the one presented in
[9] provided we add hypothesis (H3[A)o simplify the notationwve will drop the notation

H§ and H}}, and write Hp and H,, respectivelyfor the additive case.

As with the proof in [9], we note that this proof of the Wegner estimate does not require
spectral averaging [7]. It does, however, rely upon some monotonicity of the eigenvalues
with respect to the random variables (for comparison, see the work [5] in one dimension).
Furthermore, the comparison theorem of Kirsch, Stollmann, and Stolz [21], used in [9] is
not needed for this version of the proof. In the next section, we present a technique that
removes the positivity assumption.

PROPOSITION 3.3

Let us suppose thadi, satisfies hypotheséBl1) or (H1a), (H2), (H3b)and(H4). Then
the additively-perturbed Anderson model satisfies assumptid)s-(A3).

Proof. Assumption (Al) is obviously satisfied by the Anderson-type potentials with
N = |A|, the number of lattice points in. We turn to the proof of (A2). Hypothesis
(H3b) implies that the single-site potentials satisfy; = &;;u;. Let Eg € G, where

G C p(Hp) is a subset of an unperturbed spectral gapHerand choose > 0 so that

the intervall of (A2)isI = I,, = [Eo — n, Eo + n] C G. Since the perturbatioWi, is
relatively Hy compact, we know that (Hp) N G is discrete. Let < EA(I,?)LZ(R") be a
normalized eigenfunction aff, with eigenvalueE € I,,. Using the eigenvalue equation,
we easily verify that

[(Ho — E)¢ll = [IVadll. (3.14)
Furthermore, we can expand the right side as

IVagII? = (¢, V2g)
=Y 3. u50)

jeA
= |(Ho — E)$|I?
> [dist (o (Ho). )], (3.15)

using hypothesis (H3b). Now, we know that

0Hxr  9Va

_ i), 3.16
3?»1‘ 8)\1' Mj( ]) ( )

sothat, as; (- — j) > Cou;(- — j)?, we have
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oH
Z<¢ (WA) ¢> > ) Colduj¢-— %)
jeA jeA
> CoW) g, Vi)
> Co(M)?[dist (o (Ho), 1214112, (3.17)

where we assume, without loss of generality, that > |A~|. This inequality immediately
implies (A2) since

> Co( )~ [dist (o (Ho), 1)]* > ligxl®
k

v

Co(x M) ~?[dist (o (Ho), I,))? Tr E(I). (3.18)

Finally, we verify (A3). We note tha(LHA HA )=t —A7)u;(- — j). Itis proved
in [9] that given anyp > 1, for anyk > (pd/2) + 2, if we setg(E) = (E + Mp)~*, then

lg(H" -8 (HA M1y < Cr < o0, (3.19)

where the constant is independent of the indek, and it is independent gfA| and
depends only ofsuppu;|. O

The verification of assumption (A2) is more difficult in the general case. In the absence
of hypothesis (H3b), there are two possibilities: (1) #hesatisfies hypothesis (H3a), i.e.
uj > Coxa(0),Or (2) theu ; satisfies hypothesis (H3), i.; is nonnegative and the support
of u; is compact. In the first case, assumption (H3a), the single-site potentials satisfy

> ujx—j) = Coxa. (3.20)
jeA

which is a strong monotonicity condition. Under this condition, we have the following
global result.

PROPOSITICN 3.3

We define the local HamiltoniaH, by Hy = (Hp + V,,)|A, with Dirichlet boundary
conditions ord A. Suppose that the local Hamiltonidfy, satisfie{H1), (H2), (H3a)and
(H4). Then for any Eq € R, and any intervall, = [Eq — 5, Eo + ] C R, there exists a
finite constanCy > 0, depending orid, n, Ep), so that we have

E{Tr(Ea(Iy)} = CwnlAl (3.21)

Consequentlythe IDS is Lipschitz continuous at all energies.
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Sketch of the ProofThe proof of this proposition follows the lines of the proof given in
[6]. We suppose thah is a cube, and work on the Hilbert spaté(A). SinceV,, is
bounded, there is a finite, positive constafgtso that—Vy < Vu, Hy > Hé‘ — Vo,
WhereHé‘ = Hy|A, with Dirichlet boundary conditions. This lower bound and Jensen'’s
inequality lead to the bound

Tr Ex(I) < eEo) Trie s g, (1))
< eEotrtVo) Tr(eHo' £, (1)) (3.22)

We decompose the cubpeinto unit cubes\ ;, so thatA = Int U; A ;. Dirichlet-Neumann
bracketing and the diamagnetic inequality imply that

AN AN
e_Hé\ < eeB!AA./ = Z Xje Aj Xj» (323)
jeA
where x; is the characteristic function on; and —AY is the nonnegative Neumann
Laplacian onA ;. Substituting this into (3.22), we obtain
N
TrEA(I,) < eFornthor 3~ Tre™ x Ex (L) x;)- (3.24)
jehA
We now expand the trace in the eigenfunctiona&cﬁfj and use spectral averaging. The
. AN

result follows by noting that Te */} is bounded. O

The general case of hypothesis (H3), was treated in [9] using a result of Kirsch, Stoll-
mann, and Stolz [21] on the localization of the eigenfunctions of the local Hamiltonian
H, . This theorem provides precise information about the eigenfunctions in the r&gion
The proof of this theorem is simple and we refer the reader to [21,9].

PROPOSITICN 3.4

Let Ho and V, be as above andl,¢ = E¢ with E € G and¢ € L?(R?). Suppose that
the following two conditions are satisfied:

1. There exists a potentidlg such thatwith HY = Hg + Vo, we haveE ¢ ,o(HX);
2. There exists asubsétc A and a constant > 0so thatdist (FUAS, {x | Vo (x) #
Vo(x)}) > 6 > 0.

We then have

ol < A+ II(HS — )y TwalDI X — xp)oll, (3.25)

whereW; = [Ho, x1], with x1 is defined in the prooind x ¢ is the characteristic function
of F.

4. The nonsign-definite case

Although the proof presented in 83 is elementary, it does require that the single-site poten-
tials u; have a definite sign. The case of nonsign definite single-site potentials is more
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delicate since the eigenvalues are no longer monotonic functions of the random variables.
We have two main results in the nonsign-definite case. The first, and more general result
applies to energies below the bottom of the spectrum of the background opigaiidre

second result concerns the Wegner estimate at energies in an internal gap of the spectrum
of Hp. This requires the disorder to be small. The basic idea of the proofs is to combine
the vector field method of Klopp [18] with the techniques of §3.

The single-site potentialg; must satisfy hypothesis (H3c), that is weaker than the
other hypotheses (H3), (H3a), or (H3b). Basically, we need ihat continuous and
nonvanishing on some bounded, open set. As we mention in the proof below, we need a
slightly stronger hypothesis on the common distribufigrof the random variables. This
is given in hypothesis (H4a).

4.1 Below the infimum of the spectrumle)g‘

Forenergie€ < info(Hg') = X, the operato(Ho — E) is strictly positive. This allows

us to reformulate the Wegner estimate as a statement concerning a Birman—Schwinger-
type operator. The main result, under hypotheses (H1a), (H2), (H3c), and (H4a) on the
unperturbed operatcHé‘ and the local perturbatiory , is the following theorem. We recall

that for multiplicative perturbations, we ha¥®! = inf =¥ = 0, whereZX = o (H )

almost surely, so these results apply only to additive perturbations.

Theorem 4.1. Assume(H1a), (H2), (H3c),and (H4a). For any ¢ > 1, and for
any Eg € (—o0, 26‘), there exists a finitepositive constanCg,, depending only on
[dist (o (H}), Eg)] 1, the dimensiow, andg > 1,so that for anyy < dist (o (Hg'), Eo),
we have

P {dist(Eo, o(HY)) < n] < Ceon™1 A . (4.1)

As an immediate corollary of Theorem 4.1, and of the definition of the density of states,
we obtain

COROLLARY 4.2

AssuméH1a), (H2), (H3c)and(H4a),and that the mode## is ergodic. The integrated
density of states is locally Holder continuous of ordg¢y, for anyg > 1, on the interval

Following [18], we formulate the Wegner estimate in terms of the resolvaﬁ;{‘aﬁsing
the fact that ifEq < inf o (Hg'), we have thatHg' — Eq) > 0. So, for an energy in
the resolvent set off !, we have

Ra(Eo) = (H — Eo) ™Y = (H§' — Eo) Y2(1 4 A (Eo; w) " Y(HE — Eo)™ V2. (4.2)
The Birman—Schwinger-type operafio (Eg; w) is defined by

TA(Eo; @) = (HE — Eo) Y2Va(HE' — Eo)~Y/?

=Y () (HE — Eo) Y?u;(Hg — Eo)~Y/2. (4.3)
je[\
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Since suppu; is compact and the sum ovgre A is finite, the operatoF (Eo; w,) is
compact, self-adjoint, and uniformly bounded. Let us wéifer dist(Eo, inf o(Hé*)). It
follows from (4.2) that

IRA(EQ)ll < {dist(o(HE), Eo)} ™ II(1 + Ta(Eg; @) |
< Y@+ TA(Eg o). 4.9
It follows from (4.4) that
P{lIRA(Eo)|l < 1/n} = P{|(1 + Ta(Eo: @) 2| < §/n}. (4.5)

Consequently, Wegner's estimate can be reformulated as

P{dist (0 (HY), Eo) < n} = P{|[Ra(E0)ll > 1/}

< P+ Ta(Eg: o) M > 8/n)
= P{dist(c(Ta(Eo; ®), —1) < n/8}. (4.6)
Hence, it suffices to compute
P{ dist (6 (I'a (Ep; w)), —1) < n/8}. 4.7)

The key observation of [18] that takes the place of monotonicity and the eigenfunction
localization theorem of Kirsch, Stollmann, and Stolz [21], Proposition 3.4, is the following.

We define a vector field » on L2([m, M]%, I, aho(x)) dij) by
0
Ap = Ailw)———. 4.8
A Z ke (4.8)
JEA

Then, the operatdr , (Eo; w) is an eigenvector ofl 5 in that
AAT A (Eo; w) = T’z (Eo; w). (4.9)

Itis this relationship that replaces the positivity used in [9] sincB,ifEo; w) is restricted
to the spectral subspace where the operator is smaller(than 3k /2), we have that
—TI'A (Ep; w) is strictly positive, and hence invertible. We will use this below.

Sketch of the Proof of Theorem 4.1.

1. It follows from the reduction given above that we need to estimate the probability in
(4.7). LetG = (—o0, info(Hé“)) be the unperturbed spectral gap. Since the local potential
Va is a relatively compact perturbation Hfé‘, the operator™ 5 (Eg; w) has only discrete
spectrum with zero the only possible accumulation point. Let us wiriten /8. We choose

n > 0 small enough so thakp — n, Eo +n] C G, and that -1 — 2, -1+ 2] C R™.

We denote byl the interval 1 — «, —1 + «]. The probability in (4.7) is expressible

in terms of the finite-rank spectral projector for the interfaandr" 5 (Ep; w), which we
write asE (I ). Like "o (Eg; w), this projection is a random variable, but we will suppress
any reference ta in the notation. We now apply Chebyshev’s inequality to the random
variable Tr(E A (I,)) and obtain

P{ dist (0 (TA(Eo)), —1) <k} = P{Tr(Ex(l,)) > 1}
< E{Tr(EA(l)}. (4.10)
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2. We now proceed to estimate the expectation of the trace in (4.10), following the original
argument of Wegner [35] as modified by Kirsch [20]. Leebe a nonnegative, smooth
function such thap(x) = 1, for—M; < x < —«/2, andp(x) = 0, forx > «/2 and

for x < —Mj3, for someM; > 0. We can assume thM; < oo, so thato has compact
support, sincd 5 (Ep) is lower semibounded and independentAofWe further assume
that p is monotone decreasing for> —Mj. As in [9], we have

EA{Tr (EA(I))}

IA

Ea{Tr[o(Ca(E0) + 1 —3k/2) — p(Ta(Eo) + 1+ 3x/2)]}

3k /2 d
Ea {Tr [/ —p(TaA(EQ) +1—1) dt“. (4.11)
—3¢/2 dr

In order to evaluate thg’ term, we use the fact thait, (Ep) is an eigenfunction for the
vector fieldA 5, as expressed in (4.9). We wripé as

IA

Aap(TA(Eo) +1—1) = p'(Ta(E0) + 1~ 1) AaTa(E0)
= p'(CA(Eo) +1— 1) a(Eo). (4.12)

We now note thap’ < 0 (in the region of interest), and that on sygp the operator
C'A(Eo) < (=14 2«), so we obtain

5
—p(TA(EQ) +1—1) < — 3 % (Ta(Eo) +1—1). (4.13)

(1 o ZK) keA

With this estimate, and the fact that @ + 1 —r)/dr = —p’(x + 1 — 1), the right side of
(4.11) can be bounded above by

1 3k /2 9
Ta-20 g;\ /_3K/z E{Kk FY Tr [p(I'A(E0) +1—t)]} dr.  (4.14)

As in the proof of Theorem 3.1, we select one random variable,sayith k € A, and first
integrate with respect to this variable using hypothesis (H4a). The local absolute continuity
property is necessary here because a single term in the sum of (4.14) is not necessarily
positive. Let us suppose that there is a decompositioi[l0= UlN:Bl(Ml, M;41) so that

ho is absolutely continuous on each subinterval. We denotighifie functiong(r) =
Aho()). As ho is locally absolutely continuous, we can integrate by parts and obtain

M - 9
/O disliolh) 1 THOACED +1=1) = p(Ta(E0)® +1-1)
N-1
< ho(M)| Tr {p(Ca(EQ)™* +1— 1) — p(Ta(E0)*F +1—1)}|

+ llhgloe SUP | Tr {p(TA(EQ)** +1—1) — p(Ta(E0)*F + 1 — 1)},
M

r€[0,M]

Mt 5 9
/ driio () ——Tr{p () — plik = 0))
M, Ak

(4.15)

wherel 5 (Eg)* ¥ is the operatoF  (Eo) with the coupling constant at thekth-site fixed
at the value\, = A. Similarly, the value 0 oM denotes the coupling constantfixed at
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those values. Consequently, we are left with the task of estimating

max ||yl oc, ho(M)) /W
11— 2x)

M
dr /O Mz ho(h) d Ay | Tr{D(k, Eo, 0, A;)}I,

ked Y 3¢/?
(4.16)
whereD (k, Eg, 0, A,j) denotes the operator
D(k, E. 0. 1) = p(TA(E))®* + 1 — 1) — p(Ta(Eo)* * +1—1), (4.17)

and)»,jr € [0, M] denotes the value of the coupling constaptwhere the maximum in
(4.15) is obtained. We remark that each term in (4.16) is easily seen to be trace-class
since the operatdr , (Eg) has discrete spectrum with zero the only accumulation point,
and the functionp(x + 1 — ¢) is supported inx in a compact interval away from 0 for

t € [-3k/2, 3k /2].

3. The trace in (4.16) can be rewritten in terms of a spectral shift function as follows: We
let H; = 'z (Eo)%F be the unperturbed operator, and write

+ _ _
CA(Eg) k= Hy + 3 (H — Eo) Y 2ur(H§ — Eo)~/?
=H +V. (4.18)

Although the differenc& is not trace class, the single-site potentiagloes have compact
support. A result similar to Proposition 3.2 holds in this case, and the difference of suffi-
ciently large powers of the bounded operatbiis= I' s (Eo)®* andH1+V = T’y (Eo)*?’k

is not only in the trace class, but is in the super-trace dags for all p > 1. Specifically,

let us define the functiop(1) = A¥. We prove that fok > pd/2+ 1, andp > 1,

g(H1+ V) — g(H1) € I1/p. (4.19)

The spectral shift functiod() ; Hy + V, Hi) is defined for the paitHy, Hy + V) by the
invariance principle (2.12). Recall that bgthand o’ have compact support. Because of
this, and the fact that the differen¢ge(H, + V) — g(H1)} is super-trace class, we can
apply the Birman—Krein identity [4] to the trace in (4.16). This gives

Tr {p(Ca(Eo)* % +1—1) — p(CA(E0)®* +1—1))

- —/R%p(xu—r) £ Hy 4+ V. Hy) dh
d
- /R S PO+ 1= 1) E(5(0); g(Hy+ V), g(H). (4.20)

We estimate the integral using thélder inequality and thé?-theory of § 2. Le€ (1) =
&(g(A); g(Hy1+ V), g(Hy)), for notational convenience. Let(x) be the characteristic
function for the support op’(x) for x > 0, and we writeg (x) = x (A + 1 — 1), so that
the support ofy is contained in 1 — 2«, —1 + 2«]. For anyp > 1, andg such that
(1/p) + (1/q) = 1, the right side of (4.20) can be bounded above by

1/q B 1/p .
{ / W} { f |s<x>;m)|”} < Coc ™/ |E7 |10 (4.21)
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Here, we integrated one power gf, using the fact that-p’ > 0 in the region of interest,
and used the fact thg’| = Ok 1), to obtain

1/q 1/q
{/|p’|q—1 lp’l} < -0/ {—/p’} < Cox -9/, (4.22)

By a simple change of variables, we find
. 1/p
X1, = {/ 1E(g(); g(H1+ V), g(H))I” X(M) dk}

1/p
o { /R G g(Hy + V), g(HL)IP dx}

=
< Cilig(Hi+ V) = g(Hpl3/". (4.23)
We recall that
V =3 (Hg' — Eo)”Y?ur(Hg — Eo) /2. (4.24)

In particular, the volume of the support ®f has order one, and is independent &f.
As in 8 3, one can prove that the constmtH1 + V) — g(H1) ||5£ depends only on the
single-site potential; and distEo, inf a(Hé‘)), and is independent oA\ |. Consequently,
the right side of (4.23) is bounded abovedik 1~7/4, independent ofA |. This estimate,
egs (4.16) and (4.20), lead us to the result

P{dist (=1, 0 (T4 (E0))) < k} < CwxY¥| gl Al, (4.25)

foranyq > 1. O

4.2 The case of a general band edge and small disorder

Suppose now that the background operdigrhas an open, internal spectral gap, as in
hypothesis (H1). In the case of nonsign-definite single-site potentials, the behavior of the
eigenvalues created B , as a coupling constant (w) varies, may be very complicated.

In order to compensate for this, we must work in the weak disorder regime. The main
result is the following.

Theorem 4.3. We assume thalvg( andV,, satisfy(H1), (H2), (H3c),and(H4a),and let
H{() = H+aVa,andHY (0) = A+aVA) "Y2HM (14+2VA) Y2 LetEg € (B—, By)
be any energy in the unperturbed spectral gapipf and defineé. (Eg) = dist (Eg, B+).
We define a constant

(By—B_) 1 (5+(E0)5—(E0)>l/2>

A(Eg) = min ,
( AIVall 4Vl 2

Then for anyq > 1, there exists a finite constantg,, depending orko, the dimension
d, the indexg > 1, and [dist(o (Hp), 1)]~%, so that for all|A»| < A(Ep), and for all
n < min (6_(Ep), 8+(Ep))/32,we have

P{ dist (o (HX (M), Eo) < n} < Cegn™4|Al. (4.26)

Consequentlyfor ergodic modelsthe IDS is Hlder continuous in a neighborhood £§.
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We give some ideas concerning the proof. Formula (4.2) is no longer valid so we replace
it with the Feshbach projection formula. L&t denote the spectral projectors faly
corresponding to the components of the spectrBm, po) and (—oo, B_], respectively,
so thatPy + P_ = 1, andP; P_ = 0. The Feshbach method permits us to decompose
the problem relative to these two orthogonal projectors.ﬂlét = Py Hp, and denote
by HL()) = ng + APV Py. We need the various projections of the potential between
the subspaceB. L2(R?), and we denote them by = PLV Py, andV,_ = P,V P_,
with V_, = Vi = P_VP,. Letz € C, with Imz # 0. We can write the resolvent
Rx(z) = (Hy (M) — 2)~1in terms of the resolvents of the projected operafég). In
order to write a formula valid for eithe?, or P_, weletP = PL, Q = 1— P, and write
Rp(z) = (PHo + APV, P — zP)~ 1. We then have

RA(z) = PRp(2)P +{Q —APRp(2)PVAQ}G(){Q — AQVAPRp(2)*P}, (4.27)
where the operatd¥(z) is given by
G(z) = {QHo++QVAQ — 20 — A*QVAPRp(2)PVA Q). (4.28)

We notice that ifEg € G, then(Hy — Eg) > 0, so that we can use the same ideas as in
the previous subsection to treat this operator. For example, let us suppoBg thatose

to the upper gap edge, . We then apply formula (4.27) wit® = P, andP = P_. With

this choice, we see th&tp (Eq) = (P_Ho+AP_V, P_—zP_)~1is bounded providef|

is small enough. This implies that the singularity of the resolvent comes from the operator
G(2), for z nearEy. Following the general proof of Theorem 4.1, we reduce the statement
of the Wegner estimate to a statement concerning the norm of the op@¢&isr:

P{dist (o (Ha), Eo) < n} = P{ [[RA(E0)|l > 1/n}
<P{IG(EDI > 1/@Bn)}. (4.29)
Looking closely at the operater(Ep) in (4.28), we see that it can be written as
G(Eo) = R (E0)"/*(1+ I'+(E0) 'R (Eo)"/?, (4.30)
where we definé", (Eq) by
[ (Eo) = AR{ (E0)Y?V, R§ (Eo)*?
+ A2R§ (E0)Y?Vy_(EoP- — H-(A\)"*V_ R§ (E0)Y?. (4.31)

This operatof™ | (Ep) is the analog of the operatbi ( Eo; w) appearing in (4.3). Equations
(4.29) and (4.30) show that we can, as in subsection 4.1, reduce the Wegner estimate as
follows:

P{ dist (o (Ha, Eo) < n} = P{[|[RA(E0)|l > 1/n}
<P{ |1+ T4 (Eo) M > 8+(E0)/(Bn)}
= P{dist (o (I'(E0)), —1) < 8n/8.(Eo)}. (4.32)

We can now proceed as in subsection 4.1. The final difficulty is that the op&raté)
is no longer an eigenvector of the operatgr defined in (4.8). Instead, a calculation yields
the relation

AAT 4 (Eo) = [y (Eo) + A®W (Eq). (4.33)
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The second constraint pf| originates with this expression. We waht small enough so
that the leading term in (4.33) dominates. With this, the proof continues as in the proof of
Theorem 4.1.

We conclude by mentioning the model studied by Ve&si@8]. LetI" c Z¢, be a finite
subset containing the origin= 0, and consider a finite set of real numbers: {o; | k €
I'}. We assume thafy = 1, and that the remaining termg, k # 0, satisfka;,éO lax| < 1.
In the simplest case, lefy be the characteristic function on the unit cell centered at the
origin in Z<. We define a compactly-supported, single-site potentta

ulx) = ZakXO(X —k). (4.34)

kel

This potential has no fixed sign if some of the termsk # 0, are negative. Veseéli
considers the Anderson-type potentials (1.5) constructed with this single-site potential

V,(x) = Z A (@u(x — i), (4.35)

ieZd

with the coupling constants (w) being independent and identically distributed with com-
mon densityig, as considered in this paper. Vesalbserves that the potentig), can be
written as

Vo(¥) = ) i) {Z a xo(x —k — i)}

ieZd kel
= Z Vm (@) xo(x —m), (4.36)
meZd

where the new family of random variablés, (w) | m € Z%} is defined by

V(@) = Y Ak (@)atg. (4.37)

kel

The Anderson-type potenti&, in (4.36) is constructed from a sign-definite, single site
potentialyg, but the coupling constants, (w) are not necessarily independent and have a
different distribution that no longer has a product form. Note thigt if m | is sufficiently
large, depending upon, then the random variables, (w) and v, (w) are independent.
That is, the correlation is of finite range. The distribution of the farhily(w) | m € Z9}
can be easily calculated. Ldtbe the infinite Toeplitz matrix with entrie$;; = o;_;. It
follows from (4.37) thab = AX. Formally, the probability distribution for the familyis
given by

P{v € B} :/ | det(A™1)| Tz £ (A7 1)) dug, (4.38)
B

for any measurable subsetc A[suppho]Zd. These comments can be restricted to a finite
cube. It follows that the conditional probability distribution of one random variaple
conditioned on the others in a cube, is absolutely continuous. Consequently, the results of
[8] apply, and, because hypothesis (H3a) is satisfied, one can prove a Wegner estimate at
any energy (cf. Proposition 3.3).
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