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High energy asymptotics of the scattering amplitude for the
Schrödinger equation
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Abstract. We find an explicit function approximating at high energies the kernel of the
scattering matrix with arbitrary accuracy. Moreover, the same function gives all diagonal
singularities of the kernel of the scattering matrix in the angular variables.
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1. Introduction

High energy asymptotics of the scattering matrixS(λ) : L2(S
d−1) → L2(S

d−1) for the
Schr̈odinger operatorH = −1 + V in the spaceL2(R

d) with a short-range potential
(bounded and satisfying the conditionV (x) = O(|x|−ρ), ρ > 1, as|x| → ∞) is given
by the Born approximation. To describe it, let us introduce the operator00(λ),

(00(λ)f )(ω) = 2−1/2k(d−2)/2f̂ (kω), λ = k2 ∈ R+ = (0,∞), ω ∈ S
d−1, (1.1)

of the restriction (up to the numerical factor) of the Fourier transformf̂ of f to the sphere
of radiusk. SetR0(z) = (−1 − z)−1. By the Sobolev trace theorem and the limiting
absorption principle the operators00(λ)〈x〉−r and 〈x〉−rR0(λ + i0)〈x〉−r are correctly
defined as bounded operators for anyr > 1/2 and their norms are estimated byλ−1/4

andλ−1/2, respectively. Therefore it is easy to deduce (see, e.g. [7, 13]) from the usual
stationary representation for the scattering matrix that

S(λ) = I − 2πi
N∑
n=0

(−1)n00(λ)V (R0(λ+ i0)V )n0∗
0(λ)+ σN(λ), (1.2)

where||σN(λ)|| = O(λ−(N+2)/2) asλ → ∞. Moreover, the operatorσN belongs to a
suitable Schatten–von Neumann classSα(N) andα(N) → 0 asN → ∞. Nevertheless
the Born expansion (1.2) is not very convenient because the structure of thenth term is
extremely complicated already for relatively smalln.

We suppose that the potentialV (x) of the Schr̈odinger operatorH = −1+V satisfies
the estimates

|∂αV (x)| ≤ Cα(1 + |x|)−ρ−|α|, ρ > 1, (1.3)

for all multi-indicesα. Our goal is to find an explicit functions0(ω, ω′; λ) approximating
the kernels(ω, ω′; λ) of the scattering matrixS(λ)with arbitrary accuracy at high energies
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(asλ → ∞). It turns out that the same functions0(ω, ω′; λ) gives all diagonal singularities
of the kernels(ω, ω′; λ) in the angular variablesω,ω′ ∈ S

d−1.
Let us formulate our main result. The answer is given in terms of approximate solutions

of the Schr̈odinger equation. To be more precise, we denote byu(x, ξ) = u(N)(x, ξ)

explicit functions (see §2, for their construction)

u(x, ξ) = ei〈x,ξ〉a(x, ξ), ξ = |ξ |ξ̂ ∈ R
d , (1.4)

such that

r(N)(x, ξ) = e−i〈x,ξ〉(−1+ V (x)− |ξ |2)u(N)(x, ξ) (1.5)

tends to zero faster than|x|−p as|x| → ∞ wherep = p(N) → ∞ asN → ∞ and
faster than|ξ |−N as|ξ | → ∞ off any conical neighborhood of the directionx̂ = ξ̂ . The
amplitudea(x, ξ) is obtained as a solution of the corresponding transport equation.

We note that, off the diagonalω = ω′ (see [1]),s(ω, ω′; λ) is aC∞-function ofω,ω′ ∈
S
d−1, and it tends to zero faster than any power ofλ−1 asλ → ∞. Thus, it suffices

to describe the structure ofs(ω, ω′; λ) in a neighborhood of the diagonalω = ω′. Let
ω0 ∈ S

d−1 be an arbitrary point,5ω0 be the plane orthogonal toω0 and�±(ω0, δ) ⊂ S
d−1

be determined by the condition±〈ω,ω0〉 > δ > 0. Set

x = ω0z+ y, y ∈ 5ω0,

and

s0(ω, ω
′; λ) = ±2−1λ(d−1)/2(2π)−d+1 ×

∫
5ω0

eiλ
1/2〈y,ω′−ω〉

×
[
〈ω + ω′, ω0〉a(y,−λ1/2ω)a(y, λ1/2ω′)+ iλ−1/2

×
(
a(y, λ1/2ω′)(∂za)(y,−λ1/2ω)− a(y,−λ1/2ω)(∂za)(y, λ

1/2ω′)
)]

dy

(1.6)

for ω,ω′ ∈ �± = �±(ω0, δ). Then the kernel

s(ω, ω′; λ)− s0(ω, ω
′; λ), s0 = s

(N)
0 , (1.7)

belongs to the classCp(�×�) where� = �+ ∪�− andp = p(N) → ∞ asN → ∞.
Moreover, theCp-norm of this kernel isO(λ−p) asλ → ∞. Thus, all singularities of
s(ω, ω′; λ) both for high energies and in smoothness are described by the explicit formula
(1.6). Formula (1.6) shows that we actually consider the singular parts0(ω, ω

′; λ) of the
scattering matrix as a pseudo-differential operator (on the unit sphere) determined by its
amplitude. Note that the functions0(ω, ω′; λ) satisfies the same symmetry relation

s(ω, ω′; λ) = s(−ω′,−ω; λ)
as kernel of the scattering matrix itself. We emphasize that formula (1.6) gives the singular
part of the scattering amplitude off any neighborhood of the hyperplane5ω0. Sinceω0 ∈
S
d−1 is arbitrary, this determines the singular part ofs(ω, ω′; λ) for all ω,ω′ ∈ S

d−1.
A similar procedure of the one described above was used, probably for the first time,

in [2] for potentialsV from the Schwartz class. The problem is getting substantially more
difficult already for short-range potentialsV satisfying condition (1.3). In this case the
formula for the singular part of the scattering matrix that is similar to (1.6) was given
(without proof) in [11]. Our method allows us to also consider long-range electric as well
as magnetic potentials. These results will be presented elsewhere.
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2. The transport equation

In this section we give a standard construction of an approximate but explicit solution
of the Schr̈odinger equation. This construction relies on a solution of the corresponding
transport equation by iterations.

Comparing formulas (1.4) and (1.5), we see that

r(x, ξ) = −2i〈ξ,∇a(x, ξ)〉 −1a(x, ξ)+ V (x)a(x, ξ), ∇ = ∇x. (2.1)

Let us seek the functiona in the form

a(x, ξ) = a(N)(x, ξ) =
N∑
n=0

(2i|ξ |)−nbn(x, ξ̂ ), b0(x, ξ̂ ) = 1. (2.2)

Plugging this expression into (2.1) and equating coefficients at the same powers of
(2i|ξ |)−n, we obtain recurrent equations for the functionsbn:

〈ξ̂ ,∇xbn+1(x, ξ̂ )〉 = −1bn(x, ξ̂ )+ V (x)bn(x, ξ̂ ). (2.3)

Then

r(N)(x, ξ) = (2i|ξ |)−N(−1bN(x, ξ̂ )+ V (x)bN(x, ξ̂ )) = (2i|ξ |)−N 〈ξ̂ ,∇bN+1(x, ξ̂ )〉.

Let the domain0±(ε, R) ⊂ R
d×R

d be distinguished by the condition:(x, ξ) ∈ 0±(ε, R)
if either |x| ≤ R or ±〈x̂, ξ̂〉 ≥ −1 + ε for someε > 0. We set0 = 0−. The following
assertion is almost obvious.

PROPOSITION 2.1

Let assumption1.3hold. Then the functions

bn+1(x, ξ̂ ) =
∫ 0

−∞

(
−1bn(x + t ξ̂ , ξ̂ )+ V (x + t ξ̂ )bn(x + t ξ̂ , ξ̂ )

)
dt

satisfy equations(2.3) and for(x, ξ) ∈ 0(ε, R) (and ρ ≤ 2)

|∂αx ∂βξ bn(x, ξ̂ )| ≤ Cα,β(1 + |x|)−(ρ−1)n−|α| |ξ |−β. (2.4)

In particular, the function(2.2) and the remainder(1.5) satisfy the estimates

|∂αx ∂βξ a(x, ξ)| ≤ Cα,β(1 + |x|)−|α| |ξ |−|β| (2.5)

and

|∂αx ∂βξ r(N)(x, ξ)| ≤ Cα,β(1 + |x|)−1−(ρ−1)(N+1)−|α| |ξ |−N−|β|. (2.6)

Let us write down explicit expressions for the first two functionsbn:

b1(x, ξ̂ ) =
∫ 0

−∞
V (x + t ξ̂ )dt,

b2(x, ξ̂ ) =
∫ 0

−∞
t (1V )(x + t ξ̂ )dt + 1

2

(∫ 0

−∞
V (x + t ξ̂ )dt

)2

.
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We put

a−(x, ξ) = a(x, ξ), a+(x, ξ) = a(x,−ξ)
and

r−(x, ξ) = r(x, ξ), r+(x, ξ) = r(x,−ξ).
Clearly, the functionsa+(x, ξ) andr+(x, ξ) satisfy the same assertion as that of Proposi-
tion 2.1 but with the region0−(ε, R) replaced by0+(ε, R).

3. Wave operators and the scattering matrix

1. If V (x) is a bounded function andV (x) = O(|x|−ρ), ρ > 1, as|x| → ∞, then, for the
pairH0 = −1,H = −1+ V (x) in the spaceH = L2(R

d), the wave operators

W±(H,H0) = s − lim
t→±∞ eiH te−iH0t

exist andW±(H,H0)H0 = HW±(H,H0). Moreover, the wave operators are isometric
and complete (see, e.g., [10, 13]). Therefore the scattering operator

S = W ∗
+(H,H0)W−(H,H0)

commutes with the operatorH0 and is unitary in the spaceH.
Let N = L2(S

d−1), let the operator00(λ) : S(Rd) → N be defined by formula (1.1)
and let(Uf )(λ) = 00(λ)f . ThenU : H → Ĥ = L2(R+; N) is a unitary operator,
andUH0U

∗ acts in the spacêH as multiplication by the independent variableλ. Since
SH0 = H0S, the operatorUSU∗ acts in the spacêH as multiplication by the operator
functionS(λ) : N → N known as the scattering matrix.

However our study of the scattering matrix relies on introduction of wave operators with
special identificationsJ± which will be constructed as pseudo-differential operators.

2. Let us recall briefly some basic facts about pseudo-differential operators. Let

(Tf )(x) = (2π)−d/2
∫

R
d

ei〈x,ξ〉t (x, ξ)f̂ (ξ)dξ,

wheref̂ is the Fourier transform off , the symbolt ∈ C∞(Rd × R
d) and, for somen and

m and for all multi-indicesα, β,

|(∂αx ∂βξ t)(x, ξ)| ≤ Cα,β〈x〉n−|α|〈ξ〉m−|β|.

The class of operators or symbols satisfying this condition will be denoted bySn,m. The
operators from these classes send the Schwartz spaceS(Rd) into itself. The proof of the
following assertion can be found in [3], ch. 18.

PROPOSITION 3.1

Let t ∈ Sn,m wheren ≤ 0 andm ≤ 0. Then the operatorT 〈x〉−n is bounded inL2(R
d).

We also need a more special classSn,m± ⊂ Sn,m of symbols satisfying the additional
property

t (x, ξ) = 0 if ∓ 〈x̂, ξ̂〉 ≤ ε
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for someε > 0. Moreover, we assume that for symbols from this classt (x, ξ) = 0 if
|x| ≤ ε0 or if |ξ | ≤ ε0 for someε0 > 0.

3. Now we are able to define the identificationsJ±. Letσ+ ∈ C∞(−γ, γ ), γ > 1, be such
thatσ+(τ ) = 1 if τ ∈ (−ε, 1] for someε ∈ (0, 1), σ+(τ ) = 0 in a neighborhood of the
point−1 andσ−(τ ) = σ+(−τ). Letη ∈ C∞(Rd) be such thatη(x) = 0 in a neighborhood
of zero andη(x) = 1 for large|x|. We denote byθ aC∞(R+)-function which equals to
zero in a neighborhood of 0 andθ(λ) = 1 for, say,λ ≥ λ0 (for someλ0 > 0). Set

ζ±(x, ξ) = σ±(η(x)〈x̂, ξ̂〉)θ(|ξ |2).

We constructJ± as a pseudo-differential operator (cf. [4]),

(J±f )(x) = (2π)−d/2
∫

R
d

ei〈x,ξ〉a±(x, ξ)ζ±(x, ξ)f̂ (ξ)dξ, (3.1)

wherea± is the function (it depends onN ) defined in the previous section. Due to the
cut-off functionsζ± the symbolsa±ζ± ∈ S0,0, so that, by Proposition 3.1, the operators
J± are bounded.

It is easy to see that

s − lim
t→±∞(J± − θ(H0))e

−iH0t = 0.

Therefore the wave operators

W±(H,H0; J±) = s − lim
t→±∞ eiH tJ±e−iH0t

also exist and

W±(H,H0)θ(H0) = W±(H,H0; J±).

It follows that

Sθ2(H0) = W ∗
+(H,H0; J+)W−(H,H0; J−). (3.2)

We need a stationary formula (see [4,12,13]) for the scattering matrixS(λ) in the case
where identificationsJ+ andJ− for t → +∞ andt → −∞ are different. Let us set

T± = HJ± − J±H0. (3.3)

Since auxiliary wave operators

s − lim
t→±∞ eiH0t J ∗

+J−e−iH0t = 0,

it can be deduced from (3.2) that the scattering matrix admits forλ ≥ λ0 the representation

S(λ) = S0(λ)+ S1(λ), (3.4)

where, at least formally,

S0(λ) = −2πi00(λ)J
∗
+T−0∗

0(λ) (3.5)
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and

S1(λ) = 2πi00(λ)T
∗
+R(λ+ i0)T−0∗

0(λ). (3.6)

Of course, to give a precise sense to expressions (3.5) and (3.6), we need to discuss
restrictions of integral or pseudo-differential operators to the spheres|ξ |2 = λ, but we do
not dwell upon it here.

Let us choose a functionψ ∈ C∞
0 (R+) such thatψ(λ) = 1 in a neighborhood of the

point λ = 1. Then formulas (3.5) and (3.6) remain true if the operatorsJ± andT± are
replaced by the operatorsJ±(λ) = J±ψ(H0/λ) andT±(λ) = T±ψ(H0/λ), respectively.

4. According to (3.4), our proof of formula (1.6) for the singular part of the scattering
matrix splits up into two steps. The first is to show thatS1(λ) is negligible. To be more
precise, we will prove the following.

Theorem 3.2. The kernels1(ω, ω′; λ) of the operator(3.6) belongs to the class
Cp(Sd−1 × S

d−1) wherep = p(N) → ∞ asN → ∞. Moreover, theCp-norm of this
kernel isO(λ−q) asλ → ∞ for someq = q(N) → ∞.

Setu0(x, ω, λ) = exp(iλ1/2〈ω, x〉). Taking into account (1.1), we see that

s1(ω, ω
′; λ) = πiλ(d−2)/2(2π)−d(T ∗

+(λ)R(λ+ i0)T−(λ)u0(ω
′, λ), u0(ω, λ)).

Thus, for the proof of Theorem 3.2, it suffices to check the following:

PROPOSITION 3.3

Letu± = u
(N)
± be the functions constructed in Proposition2.1. Then, for the operatorsJ±

andT± defined by(3.1) and(3.3), respectively,

||〈x〉pψ(H0/λ)T
∗
+R(λ+ i0)T−ψ(H0/λ)〈x〉p|| = O(λ−q)

wherep(N) → ∞ andq(N) → ∞ asN → ∞.

We use the following elementary:

Lemma3.4. For anyp andq

||〈x〉−p〈ξ〉−qψ(H0/λ)〈x〉p|| = O(λ−q/2), λ → ∞.

Therefore for the proof of Proposition 3.3 it suffices to verify the following:

PROPOSITION 3.5

Under the assumptions of Proposition3.3, the operators

〈x〉p〈ξ〉qT ∗
+R(λ+ i0)T−〈ξ〉q〈x〉p

are bounded uniformly inλ ≥ λ0 > 0.

This result will be verified in § 4. The second step of the proof is to show that, up to
negligible terms, kernel of the operatorS0(λ) is given by formula (1.6). This is postponed
until § 5.
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5. Let us calculate the perturbation (3.3). According to (1.5), we have that

g±(x, ξ) := (−1+ V (x)− |ξ |2)(u±(x, ξ)ζ±(x, ξ))=ei〈x,ξ〉r±(x, ξ)ζ±(x, ξ)
− 2〈∇u±(x, ξ),∇ζ±(x, ξ)〉 − u±(x, ξ)1ζ±(x, ξ). (3.7)

Set alsot±(x, ξ) = e−i〈x,ξ〉g±(x, ξ). Now it follows from (3.1) that

(T±f )(x) = (2π)−d/2
∫

R
d

ei〈x,ξ〉t±(x, ξ)f̂ (ξ)dξ

= (2π)−d/2
∫

R
d

ei〈x,ξ〉
(
t
(r)
± (x, ξ)+ t

(s)
± (x, ξ)

)
f̂ (ξ)dξ

=: (T (r)± f )(x)+ (T
(s)
± f )(x), (3.8)

where

t
(r)
± = r±ζ± and t

(s)
± = −2〈ia±ξ + ∇a±,∇ζ±〉 − a±1ζ±.

Due to the cut-off functionsζ±, ∇ζ± and1ζ± the next result follows directly from
Proposition 2.1.

PROPOSITION 3.6

Let assumption1.3hold. Then

t
(r)
± ∈ S−1−(ρ−1)(N+1),−N and t

(s)
± ∈ S−1,1

± .

4. Pseudo-differential operators and resolvent estimates

1. We need some results on the boundedness of combinations of operators from the classes
Sn,m± (see subsection 2 of § 3) with functions of the generator of dilations

A = 1

2

d∑
j=1

(xjDj +Djxj ).

We denote byP± = EA(R±) the spectral projection of the operatorA.
The following two assertions are motivated by the results of [5].

PROPOSITION 4.1

Let t ∈ S0,0
± for one of the signs, and letq > 0 be an arbitrary number. Then the operator

〈A〉−qT 〈ξ〉q〈x〉q

is bounded.

PROPOSITION 4.2

Let t ∈ Sn,m± for somen andm. Then the operator

〈A〉pP±T 〈ξ〉p〈x〉p

is bounded for allp.
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2. The following resolvent estimates were deduced for boundedz in [9, 6] from the famous
Mourre estimate [9]. Moreover, making the dilation transformationx 7→ λ−1/2x and taking
into account that the functionsλ−1V (λ−1/2x) satisfy the assumptions of [6] uniformly in
λ, we can obtain estimates for high energies.

PROPOSITION 4.3

Let assumption1.3hold. Then forRez > 0, Im z ≥ 0 the operator-functions

〈A〉−pR(z)〈A〉−p, p > 1/2, (4.1)

〈A〉−1+p2P−R(z)〈A〉−p1, 〈A〉−p1R(z)P+〈A〉−1+p2 (4.2)

for eachp1 > 1/2, p2 < p1 and

〈A〉pP−R(z)P+〈A〉p (4.3)

for arbitrary p are continuous in norm with respect toz. Moreover, the norms of the
operators(4.1)–(4.3) at z = λ+ i0 areO(λ−1) asλ → ∞.

3. Now we are able to check Proposition 3.5. Let us first show that the operator

〈x〉p〈ξ〉q(T (r)+ )∗R(λ+ i0)T (r)− 〈ξ〉q〈x〉p

is uniformly bounded. Note that the operators〈x〉σ T (r)± 〈ξ〉q〈x〉p are bounded by Proposi-
tions 3.1 and 3.6 if(N + 1)(ρ − 1) ≥ σ + p − 1 andN ≥ q. Thus, it suffices to use that

||〈x〉−σR(λ+ i0)〈x〉−σ || = O(λ−1/2), σ > 1/2,

which follows, for example, from the first result of Proposition 4.3.
Let us further consider the singular partT (s)± of T±. Recall that, according to Proposi-

tion 3.6,T (s)± ∈ S−1,1
± . We need to prove the boundedness of four operators

〈x〉p〈ξ〉q(T (s)+ )∗P−R(λ+ i0)P+T (s)− 〈ξ〉q〈x〉p, (4.4)

〈x〉p〈ξ〉q(T (s)+ )∗P+R(λ+ i0)P−T (s)− 〈ξ〉q〈x〉p (4.5)

and

〈x〉p〈ξ〉q(T (s)+ )∗P±R(λ+ i0)P±T (s)− 〈ξ〉q〈x〉p. (4.6)

The result about the operator (4.4) is a combination of Proposition 4.1 and the result of
Proposition 4.3 about the operator (4.3). Similarly, the result about the operator (4.5) is a
combination of Proposition 4.2 and the result of Proposition 4.3 about the operator (4.1).
Finally, to consider the operator (4.6) we have to combine Propositions 4.1 and 4.2 with
the result of Proposition 4.3 about the operator (4.2).

The cross-terms containing

(T
(r)
+ )∗R(λ+ i0)T (s)− , (T

(s)
+ )∗R(λ+ i0)T (r)−

can be considered quite similarly. This concludes our sketch of the proof of Proposition 3.5
and hence of Theorem 3.2.
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5. Main theorem

According to Theorem 3.2 the operator (3.5) contains all power terms of the high-energy
expansion of the scattering matrix as well as its diagonal singularity. The obvious drawback
of the expression (3.5) is that it depends on the cut-off functionsζ±. So our goal is to show
that, up to negligible terms, it can be transformed to the invariant expression (1.6).

Let us consider first the operatorJ ∗+T−. We setζ = ζ−, u = u−, thenζ+(x, ξ) =
ζ(x,−ξ) andu+(x, ξ) = u(x,−ξ). It follows from (3.1), (3.7) and (3.8) thatJ ∗+T− is the
integral operator with kernel(2π)−dG(ξ, ξ ′) where

G(ξ, ξ ′) =
∫

R
d
u(x,−ξ)ζ(x,−ξ)g−(x, ξ ′)dx. (5.1)

By (1.1), kernel of the singular part (3.5) of the scattering matrix is given by the formal
relation

s0(ω, ω
′; λ) = −πiλ(d−2)/2(2π)−dG(λ1/2ω, λ1/2ω′). (5.2)

Let us plug (3.7) into (5.1) and denote byGj , j = 1, 2, 3, the integrals corresponding to
the three functions in the right-hand side of (3.7):

G1(ξ, ξ
′) =

∫
R
d

ei〈x,ξ
′−ξ〉a(x,−ξ)ζ(x,−ξ)r(x, ξ ′)ζ(x, ξ ′)dx,

G2(ξ, ξ
′) = −2

∫
R
d
u(x,−ξ)ζ(x,−ξ)〈(∇u)(x, ξ ′), (∇ζ )(x, ξ ′)〉dx,

G3(ξ, ξ
′) = −

∫
R
d
u(x,−ξ)ζ(x,−ξ)u(x, ξ ′)(1ζ)(x, ξ ′)dx.

ThenG = G1 +G2 +G3.
By virtue of Proposition 2.1 the functiona(x,−ξ)ζ(x,−ξ) satisfies estimates (2.5) for

all x, ξ ∈ R
d and the functionr(x, ξ ′)ζ(x, ξ ′) satisfies estimates (2.6) for allx, ξ ′ ∈ R

d .
It follows that∣∣∣∂αx ∂βξ ∂β ′

ξ ′
(
a(x,−ξ)ζ(x,−ξ)r(x, ξ ′)ζ(x, ξ ′)

)∣∣∣
≤ Cα,β,β ′(1 + |x|)−1−(ρ−1)N−|α| |ξ |−|β| |ξ ′|−N−|β ′|,

and henceG1(ξ, ξ
′) is a smooth function ofξ, ξ ′ rapidly decreasing as|ξ | = |ξ ′| → ∞.

Letω andω′ belong to some conical neighborhood of a pointω1 ∈ S
d−1. Then

ζ(x,−ξ)(∇ζ )(x, ξ ′) = (∇ζ )(x, ξ ′)

so that the functionζ(x,−ξ) in the integralsGj(ξ, ξ ′),j = 2, 3, can be omitted. Integrating
in the integralG3(ξ, ξ

′) by parts, we find that

G2(ξ, ξ
′)+G3(ξ, ξ

′) =
∫

R
d
〈(∇u)(x,−ξ)u(x, ξ ′)

− u(x,−ξ)(∇u)(x, ξ ′), (∇ζ )(x, ξ ′)〉dx. (5.3)

If, for example,〈ω1, ω0〉 > 0, then due to the function(∇ζ )(x, ξ ′), the integral (5.3) is
actually taken over the half-spacez ≥ 0 only. Therefore integrating once more by parts,
we obtain that
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G2(ξ, ξ
′)+G3(ξ, ξ

′) = −
∫
z≥0

(
(1u)(x,−ξ)u(x, ξ ′)

−u(x,−ξ)(1u)(x, ξ ′)
)
ζ(x, ξ ′)dx

+
∫
5ω0

(
u(y,−ξ)(∂zu)(y, ξ ′)− u(y, ξ ′)(∂zu)(y,−ξ)

)
dy.

(5.4)

Substituting the integral (5.4) over5ω0 into (5.2), we obtain the expression (1.6).
It remains to show that the first integral over the half-spacez ≥ 0 in (5.4) is negligible.

Let us take into account relation (1.5). Then

−(1u)(x,−ξ)u(x, ξ ′)+ u(x,−ξ)(1u)(x, ξ ′) = ei〈x,ξ
′−ξ〉 (r(x,−ξ)a(x, ξ ′)

−r(x, ξ ′)a(x,−ξ) +(|ξ |2 − |ξ ′|2)a(x,−ξ)a(x, ξ ′)
)

(5.5)

To consider the integral∫
z≥0

ei〈x,ξ
′−ξ〉 (r(x,−ξ)a(x, ξ ′)− r(x, ξ ′)a(x,−ξ)) ζ(x, ξ ′)dx (5.6)

we use again that, by Proposition 2.1, the functions

a(x, ξ ′)ζ(x, ξ ′) and r(x, ξ ′)ζ(x, ξ ′)

satisfy estimates (2.5) and (2.6), respectively, for allx, ξ ′ ∈ R
d . The same result for the

functionsa(x,−ξ) andr(x,−ξ) holds true in the half-spacez ≥ 0 which does not contain
the ‘bad’ directionx̂ = −ξ̂ . Therefore, similarly to the functionG1(ξ, ξ

′), the integral
(5.6) is a smooth function ofξ, ξ ′ rapidly decreasing as|ξ | = |ξ ′| → ∞.

Let us, finally, consider the integral

K(µ, ν;ω,ω′) =
∫
z≥0

ei〈x,ξ
′−ξ〉a(x,−ξ)a(x, ξ ′)ζ(x, ξ ′)dx, (5.7)

whereξ = µ1/2ω, ξ ′ = ν1/2ω′. We regard (5.7) as kernel of the operatorK(µ, ν) acting
in the spaceL2(S

d−1). According to the results of [8,14] the familyK(µ, ν) is continuous
in µ, ν > 0 in a suitable topology of operators. Actually in [8,14] only the integrals taken
over the whole space (that is pseudo-differential operators defined by their amplitudes)
were considered but the restrictionz ≥ 0 is inessential. The crucial point of the proof is
that due to the functionζ(x, ξ ′) the integrand in (5.7) equals zero in a neighborhood of
the directionx̂ = ξ̂ ′. Therefore the operator(µ− ν)K(µ, ν) equals zero on the diagonal
µ = ν.

Now we can formulate our main result.

Theorem 5.1. Let assumption(1.3)hold. Letp be an arbitrary number andN = N(p)

be sufficiently large. Let functionsa(x, ξ) = a(N)(x, ξ) be constructed in Proposition2.1.
Define, for ω,ω′ ∈ �, the singular parts0(λ) of the scattering amplitudes(λ) by formula
(1.6). Then the remainder(1.7) belongs to the classCp(�×�) and theCp-norm of this
kernel isO(λ−p) asλ → ∞.
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