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High energy asymptotics of the scattering amplitude for the
Schrodinger equation
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Abstract. We find an explicit function approximating at high energies the kernel of the
scattering matrix with arbitrary accuracy. Moreover, the same function gives all diagonal
singularities of the kernel of the scattering matrix in the angular variables.
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1. Introduction

High energy asymptotics of the scattering masi®) : Lo(S?™Y — Lo(S?1) for the
Schibdinger operatold = —A + V in the spacelL>(R?) with a short-range potential
(bounded and satisfying the conditidf(x) = O(|x|™*), p > 1, as|x| — o0) is given
by the Born approximation. To describe it, let us introduce the operatan,

(To(M) f)(w) = 27 Y2,k @=2/2 f(kw), » =k? € Ry = (0, 00), w € S¥71, (1.1)

of the restriction (up to the numerical factor) of the Fourier transfg?mi f to the sphere

of radiusk. SetRo(z) = (—A — z)~L. By the Sobolev trace theorem and the limiting
absorption principle the operatoFg (1) (x)~" and (x) " Ro(x + i0){x)~" are correctly
defined as bounded operators for any 1/2 and their norms are estimated by/4
andx~Y2, respectively. Therefore it is easy to deduce (see, e.g. [7, 13]) from the usual
stationary representation for the scattering matrix that

N
SOy =1=2mi Y (=1)"To()V(Ro(: +iOV)'Tg(M) +on(),  (1.2)
n=0

where|loy (V)] = O(A~N+2/2) as) — oo. Moreover, the operatary belongs to a
suitable Schatten—von Neumann cl&sgy) anda(N) — 0asN — oo. Nevertheless
the Born expansion (1.2) is not very convenient because the structure rahtherm is
extremely complicated already for relatively small

We suppose that the potent#él(x) of the Schodinger operatoH = —A + V satisfies
the estimates

19V (x)] < CoL+ |x~P7 p> 1, (1.3)

for all multi-indicesa. Our goal is to find an explicit functiosy(w, «’; 1) approximating
the kernek (w, o’; 1) of the scattering matrif (1) with arbitrary accuracy at high energies
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(asr — o0). Itturns out that the same functiem(w, »’; 1) gives all diagonal singularities
of the kernek (v, '; 1) in the angular variables, ' € S¢~1.

Let us formulate our main result. The answer is given in terms of approximate solutions
of the Schédinger equation. To be more precise, we denoteioy £) = u™)(x, &)
explicit functions (see 82, for their construction)

u(x, &) =€%a(x,8), & =6 e RY, (1.4)
such that
rM(x,8) = e (A + V(x) — [E[DuN(x, &) (1.5)

tends to zero faster thgm|~” as|x| — oo wherep = p(N) — ooasN — oo and
faster tharig| =V as|&| — oo off any conical neighborhood of the directidn= £.The
amplitudea(x, &) is obtained as a solution of the corresponding transport equation.

We note that, off the diagonal = ' (see [1])s(w, o’; A) is aC*-function ofw, v’ €
S?-1, and it tends to zero faster than any powenof asi — oo. Thus, it suffices
to describe the structure ofw, o’; A) in a neighborhood of the diagonal = «’. Let
wo € S?~1 be an arbitrary point],,, be the plane orthogonal éay and2+ (wo, §) ¢ S9~1
be determined by the conditieh(w, wg) > § > 0. Set

x=woz+y, Yy €Iy,
and

so(@, o'; &) = 22712 @7D/22) 4+ / M2y —w)

Hog

x [(@+ @', wojaly, ~2V2w)a(y, 120y + 13717

x (a(y, AY20) @.0) (v, =320) — a(y, =220 (0.0) (v, 1% ) | dy
(1.6)

forw, o’ € Q4+ = Q4 (wo, §). Then the kernel
s(@, @5 1) — so(@, @’ 1), s0=s5", (1.7)

belongs to the clags? (2 x Q) whereQ2 = Q, UQ_andp = p(N) — oo asN — oo.
Moreover, theC?-norm of this kernel isO (A~P) asA — oo. Thus, all singularities of

s(w, o'; 1) both for high energies and in smoothness are described by the explicit formula
(1.6). Formula (1.6) shows that we actually consider the singularsg@st «’; o) of the
scattering matrix as a pseudo-differential operator (on the unit sphere) determined by its
amplitude. Note that the functio(w, o'; A) satisfies the same symmetry relation

s, 0 A) =s(—o, —w; 1)

as kernel of the scattering matrix itself. We emphasize that formula (1.6) gives the singular
part of the scattering amplitude off any neighborhood of the hyperglage Sincewg
S?~1is arbitrary, this determines the singular parsab, «'; 1) for all w, ' € S92,

A similar procedure of the one described above was used, probably for the first time,
in [2] for potentialsV from the Schwartz class. The problem is getting substantially more
difficult already for short-range potentials satisfying condition (1.3). In this case the
formula for the singular part of the scattering matrix that is similar to (1.6) was given
(without proof) in [11]. Our method allows us to also consider long-range electric as well
as magnetic potentials. These results will be presented elsewhere.
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2. The transport equation

In this section we give a standard construction of an approximate but explicit solution
of the Schédinger equation. This construction relies on a solution of the corresponding
transport equation by iterations.

Comparing formulas (1.4) and (1.5), we see that

r(x, &) = —2i(¢§,Va(x,&)) — Aa(x, &)+ V(x)a(x,&), V=V,. (2.1)
Let us seek the functiomin the form
N
a(x, &) =a™(x, &) =) (EN"bu(x, §), box,E) =1 (2.2)
n=0
Plugging this expression into (2.1) and equating coefficients at the same powers of
(2i1€])™", we obtain recurrent equations for the functiéns
(€, Vibpia(x, §)) = —Aby(x, &) + V(0)bu(x, §). (2.3)
Then

r™M(x, £) = (2i1E]) N (=Aby(x, &) + V(x)by (x, §)) = (2i|E]) N (€, Vby1a(x, £)).

Let the domair'+ (e, R) C R x R? be distinguished by the conditiofx, £) € I'+ (e, R)
if either |x| < R or £(x,&) > —1+ ¢ for somee > 0. We sefl” = I'_. The following
assertion is almost obvious.

PROPOSITION 2.1

Let assumptiord.3hold. Then the functions

buia(x. &) = /(; (—8baGr +1E.8) + Vx + D)bax +1£.8)) d
satisfy equation$2.3) and for(x, &) € I'(¢, R) (and p < 2)

10997 by (x, )| < Cap(d+ [x) =7Vl g =F, (2.4)
In particular, the function(2.2) and the remainde(l1.5) satisfy the estimates

020Fa(x, )] < Cap(L+ |x) 71 g 71F) (2.5)
and

19508 ™ (. §)] < Cap (L ]y 71 DO HD e V1A, (2.6)

Let us write down explicit expressions for the first two functiéps

0
b1<x,§>=f Ve by,

—00
0

0 2
bz(x,é)zf t(AV)(x—i—té)dt—i—%(/ V(x+r§)dt> )

—00 —0o0
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We put
a-(x,§) =a(x, 8, ay(x.§) =alx,~§)
and
ro(,§) =r(x,§), ri(x,§ =r, —8).
Clearly, the functiona (x, &) andr (x, &) satisfy the same assertion as that of Proposi-
tion 2.1 but with the regiol'_ (¢, R) replaced by', (¢, R).
3. Wave operators and the scattering matrix

1. If V(x) is a bounded function and(x) = O(|x|™?), p > 1, as|x| — oo, then, for the
pair Hp = —A, H = —A 4+ V(x) in the spacé{ = Lo(R%), the wave operators

Wi(H, Hp) =s — lim &Hlg ito!
t—=+00
exist andW.. (H, Ho) Hy = HW.(H, Hp). Moreover, the wave operators are isometric
and complete (see, e.g., [10, 13]). Therefore the scattering operator
S= W} (H, Ho)W_(H, Ho)
commutes with the operat@fy and is unitary in the spade.

Let9t = Lo(S?™Y), let the operatoFg(}) : Sng) — 91 be defined by formula (1.1)
and let(Uf)(A) = To(\) f. ThenU : H — H = L2(R; D7) is a unitary operator,
andU HoU™ acts in the spacé{ as multiplication by the independent variatleSince
SHo = HoS, the operatoilU SU* acts in the spacél as multiplication by the operator
functionS(1) : 91 — 91 known as the scattering matrix.

However our study of the scattering matrix relies on introduction of wave operators with
special identificationd. which will be constructed as pseudo-differential operators.

2. Let us recall briefly some basic facts about pseudo-differential operators. Let

(T = @2 [ @9, s

where is the Fourier transform of , the symbol € C*°(R? x R¢) and, for some and
m and for all multi-indices, 8,

|(3g3§t)(x, &) < Ca’ﬁ(x)nfla\(;g)mf\m.

The class of operators or symbols satisfying this condition will be denotetf iy The
operators from these classes send the Schwartz si@&% into itself. The proof of the
following assertion can be found in [3], ch. 18.

PROPOSITION 3.1

Letr € S™™ wheren < 0andm < 0. Then the operatof (x) " is bounded inL»(R?).

We also need a more special cla&s” c S"™ of symbols satisfying the additional
property

t(x,£) =0if F(£,&) <e



High energy asymptotics of the scattering amplitude 249

for somee > 0. Moreover, we assume that for symbols from this clqssé) = O if
|x] < egorif |&] < g for somegg > 0.

3. Now we are able to define the identificatiohs Leto, € C*(—y, ), y > 1, be such

thatoy () = 1if t € (—¢, 1] for somee € (0, 1), o (r) = 0 in a neighborhood of the
point—1 ando_(t) = o4 (—1). Letn € C*(RY) be suchthaf(x) = 0in a neighborhood
of zero andy(x) = 1 for large|x|. We denote by a C*° (R, )-function which equals to
zero in a neighborhood of 0 amdi) = 1 for, say,. > g (for someig > 0). Set

Ce(x, £) = ox(n(x) (%, £)O(IE]?).

We construct/. as a pseudo-differential operator (cf. [4]),

(e = @02 [ &5y ocstr, 6 ferck (3.)

wherea is the function (it depends oN) defined in the previous section. Due to the
cut-off functions¢. the symbolsi+zy € S°0, so that, by Proposition 3.1, the operators
J+ are bounded.

Itis easy to see that

s— lim (Jo — 6(Hp))e Hot = 0,
t—+00

Therefore the wave operators

Wi(H, Ho; J1+) =s — lim &ty e iHo
t—+o00

also exist and
W+(H, Ho)0 (Ho) = W+(H, Ho; J+).
It follows that
S9%(Ho) = W}(H, Ho; J1)W—(H, Ho; J-). (3.2)

We need a stationary formula (see [4,12,13]) for the scattering m&gkix in the case
where identificationd; andJ_ for t — +o0 andr — —oo are different. Let us set

T+ = HJL — JLHp. (3.3)
Since auxiliary wave operators

s— lim gHogrg e Hot — g,
t—=+00

it can be deduced from (3.2) that the scattering matrix admits for.g the representation
S(A) = So(A) + S1(1), (3.4)
where, at least formally,

So(h) = —27iTo(M)JET_TH(.) (3.5)
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and
S1(A) = 27xiTo(W)TFR(A +i0)T_T§(R). (3.6)

Of course, to give a precise sense to expressions (3.5) and (3.6), we need to discuss
restrictions of integral or pseudo-differential operators to the sphgfes- 1, but we do
not dwell upon it here.

Let us choose a functior € C3°(R;) such thaty (1) = 1 in a neighborhood of the
point A = 1. Then formulas (3.5) and (3.6) remain true if the operafarand 7. are
replaced by the operators. (1) = Jy(Hp/A) andT+ (L) = Ty (Hg/A), respectively.

4. According to (3.4), our proof of formula (1.6) for the singular part of the scattering
matrix splits up into two steps. The first is to show tl§a}) is negligible. To be more
precise, we will prove the following.

Theorem 3.2. The kernelsi(w, »’; 1) of the operator(3.6) belongs to the class
Ccr(S% 1 x s4 1) wherep = p(N) — oo asN — oo. Moreover the C”-norm of this
kernel isO(A7%) asi — oo for someg = g(N) — oo.

Setuo(x, w, A) = expiAY/?(w, x)). Taking into account (1.1), we see that
s1(w, @'; 1) = win @22y~ (TF Q)R A i0) T (Mug(e', 1), uo(w, 1)).
Thus, for the proof of Theorem 3.2, it suffices to check the following:

PROPOSITICN 3.3

Letuy = u;N) be the functions constructed in Propositidd. Then for the operators/..
and 7. defined by3.1) and (3.3), respectively,

[[{(x)?y (Ho/M TR+ i0) T (Ho/A) (x)?|| = O™ %)
wherep(N) — oo andg(N) — coasN — oo.
We use the following elementary:
Lemma3.4. Foranyp andg
1(x) P (&) 19 (Ho/M)(x)P|| = O(A™97%), & — oo.
Therefore for the proof of Proposition 3.3 it suffices to verify the following:

PROPOSITICN 3.5

Under the assumptions of Propositi8i8, the operators
()P EVITER(O +i0)T-(§)7 (x)P
are bounded uniformly in > Ag > 0.

This result will be verified in 8§ 4. The second step of the proof is to show that, up to
negligible terms, kernel of the operatgy(1) is given by formula (1.6). This is postponed
until § 5.
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5. Let us calculate the perturbation (3.3). According to (1.5), we have that

ge(x, &) 1= (A + V() — [E) (s (x, £)ca(x, £) =€ ry (x, £)La(x, )
— 2(Vus(x, €), Vir(x, £)) — ur(x, &) ALe(x, &). 3.7)

Setalsa(x, £) = e ™8 g (x, &). Now it follows from (3.1) that
(=) = @12 [ e 6 (6rck

=@ [ & (s o) Feods
Rd
= (1 ))0) + (T i), (3.8)

where
[:(tr) =ryle and t:(‘:) = —2(iaré +Vay,Viy) —ar AL,

Due to the cut-off functiong., V¢r and A¢4 the next result follows directly from
Proposition 2.1.

PROPOSITICN 3.6
Let assumptior.3hold. Then

1) e ST DNHDN  gpg ) ¢ g7L

I +

4. Pseudo-differential operators and resolvent estimates

1. We need some results on the boundedness of combinations of operators from the classes
SP™ (see subsection 2 of § 3) with functions of the generator of dilations

1 d
A= E;(le)j + Djx;).

We denote byP, = Ea(R4) the spectral projection of the operator
The following two assertions are motivated by the results of [5].

PROPOSITION 4.1

Letr € Sio for one of the signsand letg > 0 be an arbitrary number. Then the operator
(M) 1T (€)1 (x)?
is bounded.

PROPOSITION 4.2

Letr € S¢™ for somen andm. Then the operator
(AYPPLT (§)7(x)P

is bounded for allp.
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2. The following resolvent estimates were deduced for boundef®, 6] from the famous
Mourre estimate [9]. Moreover, making the dilation transformaties 1~Y2x and taking
into account that the functions 1V (A~1/2x) satisfy the assumptions of [6] uniformly in
A, we can obtain estimates for high energies.

PROPOSITION 4.3

Let assumptiorl.3hold. Then foRez > 0, Im z > 0 the operator-functions

(AY"PR@(A)P, p>1/2, (4.1)

(A)ITP2P_R(2)(A)PL,  (A)TPLR(z)Py(A)1TP2 (4.2)
for eachp1 > 1/2, p» < p1 and
(A)”P,R(Z)P+(A)1’ (4.3)

for arbitrary p are continuous in norm with respect to Moreover the norms of the
operators(4.1)—(4.3) atz = » +i0are O(A~1) asir — oo.

3. Now we are able to check Proposition 3.5. Let us first show that the operator
()P EVTVROATOTY () (x)P

is uniformly bounded. Note that the operatars® Ti(r)@)‘f {(x)? are bounded by Proposi-
tions3.1and 3.6 ifN + 1)(p — 1) > o + p — L andN > ¢q. Thus, it suffices to use that

1) RO +i0)(x) || = 02, o >1/2,

which follows, for example, from the first result of Proposition 4.3.
Let us further consider the singular pﬁff) of T+. Recall that, according to Proposi-
tion 3.6,Tf) € S;l’l. We need to prove the boundedness of four operators

()P (E) (T VPR A+ i0PL TS (£)7(x)P, (4.4)

@) (EITO)PLRO + i0P_TY ()7 (x)? (4.5)
and

(X)P(E)(TEYVPLRO 4 i0PLTS (£)7 (x)P. (4.6)

The result about the operator (4.4) is a combination of Proposition 4.1 and the result of
Proposition 4.3 about the operator (4.3). Similarly, the result about the operator (4.5) is a
combination of Proposition 4.2 and the result of Proposition 4.3 about the operator (4.1).
Finally, to consider the operator (4.6) we have to combine Propositions 4.1 and 4.2 with

the result of Proposition 4.3 about the operator (4.2).
The cross-terms containing

TYROA+iOTS, (T RO +i0)T"

can be considered quite similarly. This concludes our sketch of the proof of Proposition 3.5

and hence of Theorem 3.2.
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5. Main theorem

According to Theorem 3.2 the operator (3.5) contains all power terms of the high-energy
expansion of the scattering matrix as well as its diagonal singularity. The obvious drawback
of the expression (3.5) is that it depends on the cut-off functfens§o our goal is to show
that, up to negligible terms, it can be transformed to the invariant expression (1.6).

Let us consider first the operatdif 7. We set¢ = ¢, u = u_, theng, (x,§) =

¢(x, —&) anduy (x, &) = u(x, —£&). It follows from (3.1), (3.7) and (3.8) thatt} T_ is the
integral operator with kerngRz) =G (£, £') where

G&.§) = fR [, —)¢(x, —§)g-(x, £)dx. (5.2)

By (1.1), kernel of the singular part (3.5) of the scattering matrix is given by the formal
relation

so(w, @' A) = —win 4222~ G (02w, AY?w). (5.2)

Let us plug (3.7) into (5.1) and denote by;, j = 1, 2, 3, the integrals corresponding to
the three functions in the right-hand side of (3.7):

G1(¢.&) = fR L€ a0, =50 (x, =) (x, £ (x, §dx,
Ga(§.§) = 2 /R U =6, —E)((Vu)(x. €, (VO (. £))dr,

G35, &) =~ /]Rd u(x, =E)S(x, —§)u(x, &) (AL)(x, §)dx.

ThenG = G1+ G2 + G3s.

By virtue of Proposition 2.1 the functian(x, —&)¢ (x, —&) satisfies estimates (2.5) for
all x, £ € R? and the function (x, £')¢ (x, £') satisfies estimates (2.6) for all ¢’ € R?.
It follows that

3?3535 (a(x, =&)¢(x, =&)r(x, )¢ (x, g’))‘
< Cypp (L4 |x|)~1 = DN=lal g =18l £/ =N=1F]

and henceé51(&, §') is a smooth function of, ¢’ rapidly decreasing a§| = |&'| — oc.
Letw ande’ belong to some conical neighborhood of a paiate SY~1. Then

£, =6 (VO (x, §) = (VO (x, &N

sothatthe function(x, —&) intheintegral€s (¢, '), j = 2, 3, can be omitted. Integrating
in the integralGs(&, £') by parts, we find that

Ga(5,£") + G35, 8" = /Rd((Vu)(x, —&)u(x, £
—u(x, =§)(Vu)(x, &), (V) (x, &) dx. (5.3)

If, for example,{w1, wp) > 0, then due to the functiotV¢)(x, &'), the integral (5.3) is
actually taken over the half-spage> 0 only. Therefore integrating once more by parts,
we obtain that
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Go(t, &) + Ga(e. £) = — f ((Au)r, —Eu(x, )

z>0

(e, —)(Au)(x, E1) ¢ (x, )l
+ / (u(y. —6) @) (72 £ — uly, E)3e0) (v —E)) dly.

0

(5.4)

Substituting the integral (5.4) ovét,,, into (5.2), we obtain the expression (1.6).
It remains to show that the first integral over the half-spaee0 in (5.4) is negligible.
Let us take into account relation (1.5). Then

—(Aw)(x, —E)u(x, &) + ulx, &) (Au)(x, &) = €558 (r(x, —§)a(x, &)

—r(x,€)a(, —€) +(EP — 1§ Pat, -ax, §)) (5.5)

To consider the integral
f Oe*'<*‘f’—f> (r(x, =&)alx, &) = r(x, &alx, —£)) ¢ (x, £ (5.6)
=
we use again that, by Proposition 2.1, the functions

a(x,£N¢(x, N and r(x,§)¢(x, &)

satisfy estimates (2.5) and (2.6), respectively, forcall’ € R?. The same result for the
functionsa(x, —&) andr (x, —£) holds true in the half-space> 0 which does not contain
the ‘bad’ directionx = —é‘. Therefore, similarly to the functior; (&, £), the integral
(5.6) is a smooth function df, ¢’ rapidly decreasing a§| = |£§'| — oc.

Let us, finally, consider the integral

K, v; o, ') = / & O (x, —E)alx, £)¢ (x, £)dr, (5.7)
z>0

wheret = ul2w, &' = v/2w'. We regard (5.7) as kernel of the operakbiu, v) acting
in the spacé.»(S?1). According to the results of [8,14] the famil/(x, v) is continuous
in , v > 0in a suitable topology of operators. Actually in [8,14] only the integrals taken
over the whole space (that is pseudo-differential operators defined by their amplitudes)
were considered but the restriction> 0 is inessential. The crucial point of the proof is
that due to the functiog(x, §’) the integrand in (5.7) equals zero in a neighborhood of
the directiont = &’. Therefore the operat@p — v)K (i, v) equals zero on the diagonal
n=v.

Now we can formulate our main result.

Theorem 5.1. Letassumptiofl.3)hold. Letp be an arbitrary number and/ = N(p)
be sufficiently large. Let functiomagx, £) = a™) (x, &) be constructed in Propositich 1.
Define for w, " € €2, the singular partso()) of the scattering amplituds(x) by formula
(1.6). Then the remaindg(l.7) belongs to the clas§” (2 x ) and theC”-norm of this
kernel isO(A~?) asA — .
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