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Abstract.  In this article, we study the homogenization of the family of parabolic
equations over periodically perforated domains

ab(g,mg-—dwa(g,M,vMQ::j(xJ)in Q. x (0,T),

a (g Uy, Vug) v, =0o0n2adS, x (0, 7),

u, =0 o0naQ x (0, 7),
u.(x,0) = up(x) in ,.

Here, Q. = @\ S. is a periodically perforated domain. We obtain the homoge-
nized equation and corrector results. The homogenization of the equations on a fixed
domain was studied by the authors [15]. The homogenization for a fixed domain and
b (%, u.) = b(u.) has been done by Jian [11].

Keywords. Homogenization; perforated domain; two-scale convergence; correctors.

1. Introduction

Let Q be a bounded domain iR" with smooth boundary. Let T > O be a constant
and lete > 0 be a small parameter which eventually tends to zeroYLet (0, 1)* and
S(closed)c Y. We define a periodically perforated dom&?p as follows: First define

I ={k € Z": e(k+ S) C Q} and, (1.1)
Se=Jetk+s). (1.2)
kel
Set
Q. = Q\ S.. (1.3)

We assume that, (92, is smooth and, (iix2. is connected. Note that in the definition

of the holesS, we have taken them to have no intersection with the external boundary
0. This is only done to avoid technicalities and the results of our paper will remain valid
without this assumption (cf. [2] for a refinement of our arguments).
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196 A K Nandakumaran and M Rajesh

We consider the following family of equations with Neumann conditions on the boundary
of the holes

b (E ug) — diva (EMS vug) — f(o, 1) in Q x (0,T),

a (f, Ug, Vu5> 2ve=0o0n0S, x (0, 7),
I3

u, =0 on a2 x (0, 7),
ug(x,0) = ug(x) in g, (1.4)

whereug is a given function orf2 and f is a given function o2 x (0, T'). For given
¢, the Cauchy problem (1.4) will also be denoted IBy)( It is known that under suitable
assumptions oa andb (cf. assumptions (A1)—(A4) below), that the problem) has a
solutionu,. Our aim in this paper is to study the homogenization of the equatiBns (
ase — 0 i.e. to study the limiting behaviour of. ase — 0 and obtain the limiting
equation satisfied by the limit. The theory of homogenization is a well-developed area
of research [5,12] and we are not going into the details of this theory. The casebwhen
is linear (i.e.b(y, s) = s) has been studied quite widely [4, 6-8, 10,16]. Wlkeis not
linear, the homogenization of the equation in a fixed domain was studied by Jian [11] for
b(y, s) = b(s) and in the general case, by the authors [15].

Assuming thatz, area priori bounded inL*°(Q2 x (0, T)) (where denotes the
extension of«, by zero in the holes), we show that converges, for a subsequence, to a
solution of the homogenized problem

0;b*(u) —divA(u, Vu) =m* f(x,1) inQ x (0, 7T),
u=0 onaoQx (0, 7),
u(x,00=0 inQ, (1.5)

whereb* andA have been identified (cf. eqs (2.13)—(2.15)};denotes the volume fraction

of Y\ SinY,ie.m* = |Y\ S|, the Lebesgue measure Bf, S. We also improve the
weak convergence @f, by obtaining correctors. Such results are very useful in obtaining
numerical approximations and they form an important aspect of homogenization.

The layout of the paper is as follows: In §2, we give the weak formulation for the problem
(P.;). Then we state our main results viz. Theorems 2.4 and 2.6. In 83, we sketch some
preliminary results and recall facts about the two-scale convergence method. Finally, in
84, we prove our main results in the framework of two-scale convergence.

2. Assumptions and main results
For p > 1, p* will denote the conjugate exponemt(p — 1). Define the spac¥&, = {v €
wir(Q,) : v =00naQ}; V. is its dual ande, = L7 (0, T; V,). We defineu, € E, to
be a weak solution ofP,) if it satisfies:

b (f, ug) € L=, T: LX), b (f, us) e L7 (0, T; V), 2.1)

& &

that is

[ o (Zoe) o) ar [0 p(Ew) b (Fowo)

0 & & 0 Q. & &

pEdxdr =0  (2.2)
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forallé € E. n W10, T; L®(2,)) with £(T) = 0; and,

T T
/O <a,b (z,u5>,§(x,t)>€ dt+/o /Qea(g,ug,vug) VE(x, 1) dx df
T
:/ / FaDEx ndedr (2.3)
0 Qe

forall &£ € E.. Here(., .), denotes the duality bracket with respecttb, E..
Note: Foranyé € LP(0, T; Wé”’ (R2)), its restriction ta2, can be used as a test function
in (2.3) for the problem#g,). [

We make the following assumptions erandb:

(A1) Thefunctiomb(y, s)iscontinuousiry ands, Y-periodic iny and nhon-decreasing
ins andb(y,0) = 0.

(A2) There exists a constafit> 0 such that for every andR with 0 < § < R, there
existsC (8, R) > 0 such that

b(y, s1) — b(y, s2)| > C(8, R)|s1 — 52|’ (2.9)
forall y € Y andss, s2 € [—R, R] with § < [s1].

Remark2.1. The prototype fdsis a function of the forna(y)|s|*sgn(s) for some positive
real numbek and continuous an#-periodic functiong(.), which is positive ort. m

(A3) The mapping(y, i, A) — a(y, u,2) defined fromR” x R x R" to R" is
measurable an#-periodic iny and continuous itiu, A). Further, it is assumed
that there exists positive constants- such that

a(y, u, ). A > alrl?, (2.5)
(a(y,m,21) —a(y, , 22)) (A1 — A2) >0, VAir#2x2 (2.6)
la(y, M| < @ A+ [ul?t + AP, 2.7)
la(y, p1. 2) — a(y, p2, M| < @ Hug — pal L+ |pa P77
P AP, (2.8)

(A4) We assume that the datA,e L°°(2 x T). Under the above assumptions, it is
known that ;) admits a solutiom, (cf. [3]).

Remark2.2. From hereon, we make the following simplifying assumption to reduce
the technicalities in the proof of the homogenization, viz. that, «, A) is of the form
a(y, A). The same results can be carried over for gener@f. see [11,15] for suitable
modifications).

(A5) The strong monotonicity condition;

(a(y, 21) —a(y,r2)). (A1 — A2) > a|r1 — A2|P. (2.9)
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Remark2.3. We use the condition (A5) only for obtaining the corrector result. It will not
be required for identifying the homogenized problem.

We now state our main theorems.

Theorem 2.4. Letu, be a family of solutions ofP,). Assume that there is a constant
C > 0, such that

suplluellL> (. x©,1) = C. (2.10)
&€

Thenthere exists a subsequence, sfill denoted by, such that for ally with0 < ¢ < oo,
we have
ity — u strongly in LY (Qr) (2.11)
andu solves
0;b*(u) —div A(Vu) =m™ f in Qr,
u=0o0n Q2 x (0,7),

u(x,0 =ug in <, (2.12)
whereb* and A are defined below b§2.13)—(2.15)m* = |Y\ S| and 27 denotes the set
Qx (0, 7). [

The function$* and A are defined through,
b= [ by (2.13)
Y\ S
AL = / a(y, A+ V&, (y))dy, (2.14)
Y\ S
wherei € R" and®;, ¢ Wéé’r’(Y) solves the periodic boundary value problem
fy\sa(y, A+ VO, ().Vé(y)dy =0 (2.15)

forall¢ e Wplé’r’(Y). See [9] for further details about eq. (2.15) and for the propertids of

Remark2.5. The assumption (2.10) is true in special cases (see [13]) and it is reasonable
on physical grounds (see [11]). [

We see that by extending. by zero in the holes we do not get functions in
LP?O,T, W(}”’(Q)). However,ﬂg can be shown to be a bounded sequende’i(f2r))
and has a weak limit. We will improve the weak convergence through a corrector result.
For this, we consider the solutida (x, 7, y) € LP (2 x (0, T); W&éf’(Y)) of

T
/ // a(y, Veu(x,t) + VyUi(x, t,y)).Vy®(x,t, y)dydxdr = 0
o JalJr\s

forall ® € LP(Q2 x (0, T); Wplé’r’(Y)) (we will see that such &1 exists). Lety be the
characteristic function of\ S defined onY and extended -periodically toR". Then,
x (x/¢) is the characteristic function ¢t,. The corrector result is as follows:
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Theorem 2.6. Let the functions:., u, Uy be as above. Assume further ti{a6) holds
and u, U, are sufficiently smooth.e. that they belong t€(€2 x (0, 7)) and C(2 x
(0, T); Cped(Y)) respectively. Then

Uy —u —elUs (x, t, )—C) — 0 strongly in LP(Qr) and,
£
VFIS — X (g) (qu +V,U (x, t, g)) — 0 strongly in L?(Qr). [

Remark2.7. Note that, in particular, thé.” weak limit of Vﬁfg is m*Vu(x,t) +
Jos A x, 1, y) do (), .

3. Some preliminary results

As we closely follow the treatment in [15], many results will only be sketched and we refer
the reader to [15] for more details as and when necessary.

We first obtaire priori bounds under the assumption (2.10). From nowowijll denote
a generic positive constant which is independent. of

Lemma3.1. Letu, be afamily of solutions afP,) and assume thd2.10)holds. Then

supl|VuellLr(@.x0,1)) < C, (3.1)
&
X
a (. vu) <c, (3.2)
3 LP* (2 x(0,T))
sup| d:b (f, u£> <C. (3.3)
e & E}

Proof. Define the functiomB(.,.) : R” x R — R by

B(y,s) =b(y,s)s — /S b(y, t)dr. (3.4)
0

As in [15] we deduce that

/ (— ue(x, T) dx—i—/ / wg Vugdxdt
=/ B(f,uo)dx+f f £ ug dx dr
Qe & 0 JQ

and from this we obtain
/ (— ug(x, T) dx—i—/ / Vug Nu.dxdr < C (3.5)

by (2.10) and the assumptions banda. Then, (3.1) follows from (3.5) and (2.5), &sis
non-negative, while (3.2) follows from (3.1) and (2.7). The estimate (3.3) may be obtained
from (3.1), (3.2) and (2.3). Thus the lemma. L]

We now show that;, — u a.e.Q x (0, T), for a subsequence and for som& his is the
crucial part of the present analysis. This result is to be seen in the context of the estimate
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(3.1) where there is no time gradient estimate. Hence, we cannot use any ready-made
compact imbedding theorem to get the strong convergenag tif u in someL’ (7).
However, we are able to achieve this by adapting a technique found in [3]. This is given
in the following lemma.

Lemma3.2. Letu. be as above. Thethe sequencéi,}.-o is relatively compact in
L% (Q27), whered is as in(A2). As a resultthere is a subsequencewnf such that

e — ua.e.inQr. (3.6)

Proof. Analogous to Step 1, Lemma 3.3 in [15], we can derive the following estimate

h—lfOTh/Q (b (E,us(t+h)) —b(g,ug(t))) (ue(t + h)

—ug(®)dxdr <C

for some constant’ which is independent of andi. Thus, as we have assumed in (Al)
thatb(y, 0) = 0, we get

T—h
-1 X B i N B
h /0 /Q<b (;,ug(t+h)) b (8,u8(t))> (Tt + h)
— g (1)) dx dr < C.
Proceeding as in [15] we obtain the desired result. .

From Lemma 3.2 above, the continuity ofand the assumption (2.10) we derive the
following corollary.

COROLLARY 3.3

We haveb (£, i) — b(£,u) — Ostrongly inL4(Qr) V¢, 0 < g < o0.

P
Proof. By thea priori bound (2.10), itis enough to consider the functhamY x[—M, M]
for a largeM > 0. As b is continuous, it is uniformly continuous on x [—M, M].
Therefore, giverkg > 0, there exists & > 0 such that,

|b(y, s) —b(y',s")| < ho,

whenevelly — y'| + |s — 5| < 8.

Now, sincez, — u a.e inQr, by Egoroff's theorem, giveh; > 0, there exist& C Qr
such that its Lebesgue measur€E) < k1 andu, converges uniformly ta on (Qr \ E),
which we denote by’. Therefore, we can fingy > 0 such that

e — ulloo 7 < 8 Ve < £1. 3.7)
Therefore, fore < ¢1 we have

G = (G ava
:[El b(;,@)—b(;,u)’q dx df
L 6C) ) e

< h{m(Qr) + 2% sup(|b|?) m(E)
< h{ m(Qr) + 27 sup(|b|?) h1.
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This completes the proof &g andhiy can be chosen arbitrarily small. ]

As a consequence, we have the following corollary.
COROLLARY 3.4

We have the following convergences
X —
b(—,ug) — b(u) weakly in LY(Qp),
&

X (;—C) b (g IZ;) — b*(u) weakly in L1(Qr)

for ¢ > 1. Further, b(u) = b*(u).

Proof. We note that

D(55) = (6 (5.7) 0 (0)) 0 (2

— 04 D(u)

by Corollary 3.3 and the averaging principle for periodic functions mentioned below.
Similarly,

()0 Gm) =2 () ()= (Cn) +x (D) 0 (o)

— 04+ b*(u).

From x (£) b (£.4:) = b (%, d:), we readily obtain the last of the conclusions in the
corollary. [

The homogenization will be done in the framework of two-scale convergence. So to
conclude this section, we recall an averaging principle which is at the basis of this method,
the definition of two-scale convergence and a few related results which we will use in the
sequel. For an exposition of this method and its main features, see [14,1,15].

For f(x,y) € LL.(R"; Cpe(Y)), the oscillatory functionf (x,%) converges
weakly in L (R") to fY f(x,y)dy, for all ¢ > 1. A similar result holds for

loc

f(x,y) € Li.(R"; Cper(Y)), with weak convergence replaced by weak-* convergence.

DEFINITION 3.5

Let1 < g < oco. A sequence of functions. € L9(Q2r) is said to two-scale converge to a
functionv € L1(Qr x Y) if

/ vew(x,t, f) dx dr 530/ fv(x,t,y)tlf(x,t,y)dydxdt
Qr 2 Qr Jy

for all ¥ € L9°(27; Cper(Y)). We writev, = v.

Theorem 3.6. Letl < g < oo and letv, be a bounded sequencelifi(Q27). Then there
exists a function € L2(Q7 x Y) such thatup to a subsequenge. g v(x,1,y).
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The following theorem [1] is useful in obtaining the limit of the product of two two-scale
convergent sequences. Leklg < oo.

Theorem 3.7. Letg > 1. Letv, be a sequence in?(Q2r) and w, be a sequence in
L7 (Q7) such that, 2—3‘? v andw, 2—_>S w. Further, assume that the sequeneg satisfies

/ mm%mnmwff/ /mmjymkwmm. (3.8)
QT QT Y
Then
/ vew, dx dr 830/ / v(x, t, y)w(x,t,y)dydx dr. (3.9
Qr Qr JY

Remark3.8. A sequence, which two-scale converges and satisfies (3.8) is said to be
strongly two-scale convergent. Examples of strongly two-scale convergent sequences are
W (x. 1, )} foranyy € LiedY: C(Qr)). =

We now state a result for perforated domains the proof of which may be found in [1].

Theorem 3.9. Letg > 1. Letv, € L9(Q2, x (0, T)) and letVv, € L9(2. x (0, T)) be
such that

supllvellLa @, x©0,1) < C,
&
supl|VuellLa(@. x©0,1)) < C. (3.10)
£

Then there exist € L(0, T; W4(Q)) and V; € LY(Qr; W&é‘{(Y)) such thatup to a
subsequence

~ 2—s
Vg i v(x,t),

Voe 55 4 5)(Vyv(x. 1) + VyVa(x, 1, ). (3.11)

4. Proofs of the main Theorems

We first obtain the two-scale homogenized equation. From the estimates (3.1) and (3.2)

and Theorems 3.8 and 3.5, there exigise L?(Qr; Wplé’r’(Y)) andag € L? (Qr x Y)
such that, up to a subsequence,

~ 2_
Vue = x0) (Veu(x, 1) + VyUi(x, £, y)), (4.2)
X X -~ 2—s
X (g) a (g, Vus) — ao(x,t,y). (4.2)
Theorem 4.1. The limitsu, ag satisfy the following two-scale homogenized problem

T
/ (3,[9*(1/[), ¢> dt+/ / ao(x’tv Y)-(Vx¢+qu>(x,f7 )’))dyd-th
0 Qr Jr\ S
= | fodrd (4.3)

Qr
forall ¢ € C3°(Q2r) and® € C3°(QRr; ngr(Y)).
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Proof. We pass to the limit in (2.3) in the presence of appropriate test functions. Let
¢ € C¥(Qr) andd € CF(Qr; CoaY)). Set,

be = d(x, 1) + £d (x, ‘, g) .

We may use these as test functions in (2.3) as the restrictiohstof2, are inE, and we
note

[ (o) o as [ (2)a(E00)

x (vx¢+vyc1> (x,t, g))olxdt+0(1) / / f(x N (x, 1) dx di +o(L).
(4.4)

Now we pass to the limit in the above identity. We may handle the first term as follows.
Observing that. (., T) = 0= ¢.(., 0), we have from (2.2),

T
/(a,b(f,us ¢>g // —ug 3y be cx ol
0 &
// )8,¢dxdt+0(1)
—>—/ /b*(u)atqﬁdxdt
0 JQ

T
:/ (0;b™ (u), ¢)dxdr,
0

where the convergence in the above follows from Corollary 3.4.
For passing to the limit in the other two terms in (4.4) we observe that

/ / =V, .(vx¢+qu>(x,t,§))dxdz
f f ws) (Vx¢+Vy<D<x,t, ))dxdt

—>/ //ao(x,t,y).(Vx¢+Vy<I>(x,t,y))dydxdt,
o Jaly

where the convergence in the last step follows from Theorem 3.6. For this, one observes
from Remark 3.7 thaV,¢ + V,® (x, 1, £) is strongly two-scale convergent ¥.¢ +
Vy®(x, 1, ). Further, observe that singe(%) a (%, ﬂ;) is zero in the holes, we have
ao(x, t, y) to be zero inS and the integral oveY can be replaced by that ovEi S.

Finally, note that

/ / f(x Ho(x, t)dxdt—)/ f/x(y)f(x ¢ (x,t)dydx dr

=/ /m*f¢dxdt.
0 Q

Thus, from the above we deduce that the limit of the equations (2.3pwih test functions
is nothing but (4.3). This is referred to as the two-scale homogenized problem. =
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Remark4.2. We note from the two-scale homogenized problem (4.3), by sebtiag0
that

9;b*(u) — div (/ ao(x, t, y)dy) =m*finQ x (0, T) (4.5)
Y\ S

and by settingy = 0 we get

T
/ / / ap(x,t,y).Vy®(x,t,y)dydrdr =0 (4.6)
0o JaJrns

for all & € C3°(Qr; Coe(Y)). In view of (4.5) and (4.6), it is enough to show that
ao(x,t,y) =a(y, Viu(x, 1) + VyUi(x, t, )) to conclude Theorem 2.4. ]

Proof of Theoren2.4. Note that (2.11) follows from the convergence (3.6) and the
assumption (2.10). We now justify (2.12), for which it is enough to showdbét, ¢, y)
equalsa(y, Veu(x,t) + V,Ui(x, t, y)), by the preceding remark.

Leté € LP(O, T: W(}”’(sz)) U Wi, T; L®°(Q)) with £(., T) = 0 = £(., 0). This
may be used as a test function in (2.2) and we have

[ oo (R o) w1 () agora -

This can be rewritten as
/ <R 3b ( dt+// —ug) 3, dx dr =
0

Observe that SU| R} ;b (£, ue) ||+ o.1:w-1r4@) < C by (3.3) wherer, is the restric-

tion operator from.? (0, T’; Wé”’(Q)) to E,. Thus for somew € L?* (0, T; W17 (Q))
and for a subsequence

4.7)

R*a,b (% ua) —w weakly *in LP" (0, T; W17 ()).

Thus, passing to the limit in (4.7) we get

T T
/ (w,§)+/ /b*(u)atfdxdtzo
0 0o Ja

for all £ as above. S, b* (1) = w in the sense of distributions.
We now show thatig(x, ¢, y) = a(y, Viu(x,t) + V,Ui(x, t, y)). Letp, ® be as in the
proof of Theorem 4.1. Let > 0 andy € C3°(Qr: Cper(Y))". Set

N6, 1) = Vi (x, 1) + Vo (1, —)+Mﬁ<x ‘, _)

By (2.6) we note that

/ / Vug —a (E, 178)> .(Vug — ne)dxdr > 0. (4.8)
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We have

T
f/ wg__f <at< ,tis dt—l—/ / 7 up dr dr
— / (0,b™ (), u) / /mfudxdt
=/ // ao(x, t,y).Vyu dy dx dt,
o JaJr\s

where the last step follows from (4.5).
Also, sincen. anda(z, n.) are strongly two-scale convergent, Theorem 3.6 gives

// ,175 Vugdxdt // ,ns Vugdxdt

_>/ // a(y, Ve + Vy® 4+ Ap).(Veu + V,Uy) dy dx dr.
QJY\ S

Similarly,

// —na e dx dr = f/ —m) g dx dr

_>/ // a(y, Ve + Vy® + A).(Ved + Vy & + Ay dy dx i
o JaJr\ s

and,

// Vug r]gdxdt // Vu€> .Me dx dt

—>/ // ap(x,t,y).(Vi¢p + V, & + Ay) dydx dr
o JalJr\s

T
=/ // ao(x, t, y).(Vx¢ + Ar) dy dx dr.
o JaJr\s

The equality in the last step follows from (4.6). Thus

Ofs"Lno/ / Vus —a< ,ns)) (Vua—ns)—/ //Y\Sao(xty)

X(Vx(u—4>)—k1/f)—/ // a(y, Vi + Vy® + 19)
0 JaJr\s
X (Vx(u — @)+ Vy(Ur— @) — Ay).

Letting¢p — u and® — U1 in the above and using the continuityofve get

T
/ / f (a(y, Vxu + VyUr + A) —ao(x, t, y)).Ay dydxdr > 0
QJy\s
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for all » andvy . Dividing the above inequality by and letting. — 0 we get,
T
0 JaJr\s

for all 1. From this we conclude thay(x, 7, y) = a(y, Viu + V,U1). ]

Proof of Theoren2.6. Set
. X
ne(x, 1) = Vyu(x,t) + VyUs (x, t, Z> .

From (2.9) it follows that
[ (e (Evu) a(En)) - o o
za/T [Vue — nel? dx dt,
0 Je,
that is,
/oT /g <a <)EC VI‘) 4 (% ’7)) ~ (Vl — X (%) ns) dx dr

s [ [ ]9 (5) [Veutr0 4 9,01 (v )] e

As we have assumed that U1 are smooth, we may proceed as in the proof of Theorem
2.4 to obtain

timsup [ [ [0~ ¢ (5) (Ve + 9,01 (1)) e
Q

e—0
< F!iino/(;r/gg (a (E,VAI;@) —a (E» 778))- (VA’;a - X (g) 778) dx dr
=0.
This completes the proof. [

Remark4.3. A weaker form of the corrector result with no smoothness assumptions can
also be obtained. See [15] for the corresponding formulation. [
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