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Abstract. In this article, we study the homogenization of the family of parabolic
equations over periodically perforated domains
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)
= f (x, t) in �ε × (0, T ),

a
(x
ε
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)
.νε = 0 on ∂Sε × (0, T ),

uε = 0 on ∂�× (0, T ),

uε(x, 0) = u0(x) in �ε.

Here,�ε = � \ Sε is a periodically perforated domain. We obtain the homoge-
nized equation and corrector results. The homogenization of the equations on a fixed
domain was studied by the authors [15]. The homogenization for a fixed domain and
b

(
x

ε
, uε

) ≡ b(uε) has been done by Jian [11].
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1. Introduction

Let � be a bounded domain inRn with smooth boundary∂�. Let T > 0 be a constant
and letε > 0 be a small parameter which eventually tends to zero. LetY = (0, 1)n and
S(closed)⊂ Y . We define a periodically perforated domain�ε as follows: First define

Iε = {k ∈ Z
n : ε(k + S) ⊂ �} and, (1.1)

Sε =
⋃
k∈Iε

ε(k + S). (1.2)

Set

�ε = �\ Sε. (1.3)

We assume that, (i)∂�ε is smooth and, (ii)�ε is connected. Note that in the definition
of the holesSε we have taken them to have no intersection with the external boundary
∂�. This is only done to avoid technicalities and the results of our paper will remain valid
without this assumption (cf. [2] for a refinement of our arguments).
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We consider the following family of equations with Neumann conditions on the boundary
of the holes

∂tb
(x
ε
, uε

)
− diva

(x
ε
, uε,∇uε

)
= f (x, t) in �ε × (0, T ),

a
(x
ε
, uε,∇uε

)
.νε = 0 on ∂Sε × (0, T ),

uε = 0 on ∂�× (0, T ),

uε(x, 0) = u0(x) in �ε, (1.4)

whereu0 is a given function on� andf is a given function on� × (0, T ). For given
ε, the Cauchy problem (1.4) will also be denoted by (Pε). It is known that under suitable
assumptions ona andb (cf. assumptions (A1)–(A4) below), that the problem (Pε) has a
solutionuε. Our aim in this paper is to study the homogenization of the equations (Pε)
asε → 0 i.e. to study the limiting behaviour ofuε asε → 0 and obtain the limiting
equation satisfied by the limit. The theory of homogenization is a well-developed area
of research [5,12] and we are not going into the details of this theory. The case whenb

is linear (i.e.b(y, s) = s) has been studied quite widely [4, 6–8, 10,16]. Whenb is not
linear, the homogenization of the equation in a fixed domain was studied by Jian [11] for
b(y, s) ≡ b(s) and in the general case, by the authors [15].

Assuming thatũε area priori bounded inL∞(� × (0, T )) (where ˜ denotes the
extension ofuε by zero in the holes), we show that̃uε converges, for a subsequence, to a
solution of the homogenized problem

∂tb
∗(u)− divA(u,∇u) = m∗f (x, t) in �× (0, T ),

u = 0 on ∂�× (0, T ),

u(x, 0) = 0 in�, (1.5)

whereb∗ andAhave been identified (cf. eqs (2.13)–(2.15));m∗ denotes the volume fraction
of Y\ S in Y , i.e.m∗ = |Y\ S|, the Lebesgue measure ofY\ S. We also improve the
weak convergence of̃uε by obtaining correctors. Such results are very useful in obtaining
numerical approximations and they form an important aspect of homogenization.

The layout of the paper is as follows: In §2, we give the weak formulation for the problem
(Pε). Then we state our main results viz. Theorems 2.4 and 2.6. In §3, we sketch some
preliminary results and recall facts about the two-scale convergence method. Finally, in
§4, we prove our main results in the framework of two-scale convergence.

2. Assumptions and main results

Forp > 1,p∗ will denote the conjugate exponentp/(p− 1). Define the spaceVε
.= {v ∈

W1,p(�ε) : v = 0 on∂�}; V ∗
ε is its dual andEε

.= Lp(0, T ;Vε). We defineuε ∈ Eε to
be a weak solution of(Pε) if it satisfies:

b
(x
ε
, uε

)
∈ L∞(0, T ;L1(�ε)), ∂tb

(x
ε
, uε

)
∈ Lp∗

(0, T ;V ∗
ε ), (2.1)

that is ∫ T

0

〈
∂tb

(x
ε
, uε

)
, ξ(x, t)

〉
ε

dt +
∫ T

0

∫
�ε

〈
b

(x
ε
, uε

)
− b

(x
ε
, u0

)〉
∂t ξ dx dt = 0 (2.2)
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for all ξ ∈ Eε ∩W1,1(0, T ;L∞(�ε)) with ξ(T ) = 0; and,∫ T

0

〈
∂tb

(x
ε
, uε

)
, ξ(x, t)

〉
ε

dt +
∫ T

0

∫
�ε

a
(x
ε
, uε,∇uε

)
.∇ξ(x, t)dx dt

=
∫ T

0

∫
�ε

f (x, t)ξ(x, t)dx dt (2.3)

for all ξ ∈ Eε. Here〈 . , . 〉ε denotes the duality bracket with respect toE∗
ε , Eε.

Note: For anyξ ∈ Lp(0, T ;W1,p
0 (�)), its restriction to�ε can be used as a test function

in (2.3) for the problem (Pε).

We make the following assumptions ona andb:

(A1) The functionb(y, s) is continuous iny ands,Y -periodic iny and non-decreasing
in s andb(y, 0) = 0.

(A2) There exists a constantθ > 0 such that for everyδ andR with 0< δ < R, there
existsC(δ, R) > 0 such that

|b(y, s1)− b(y, s2)| > C(δ, R)|s1 − s2|θ (2.4)

for all y ∈ Y ands1, s2 ∈ [−R,R] with δ < |s1|.

Remark2.1. The prototype forb is a function of the formc(y)|s|ksgn(s) for some positive
real numberk and continuous andY -periodic function,c(.), which is positive onY .

(A3) The mapping(y, µ, λ) 7→ a(y, µ, λ) defined fromR
n × R × R

n to R
n is

measurable andY -periodic iny and continuous in(µ, λ). Further, it is assumed
that there exists positive constantsα, r such that

a(y, µ, λ) . λ ≥ α|λ|p, (2.5)

(a(y, µ, λ1)− a(y, µ, λ2))(λ1 − λ2) > 0, ∀ λ1 6= λ2 (2.6)

|a(y, µ, λ)| ≤ α−1(1 + |µ|p−1 + |λ|p−1), (2.7)

|a(y, µ1, λ)− a(y, µ2, λ)| ≤ α−1|µ1 − µ2|r (1 + |µ1|p−1−r

+|µ2|p−1−r + |λ|p−1−r ). (2.8)

(A4) We assume that the data,f ∈ L∞(�× T ). Under the above assumptions, it is
known that (Pε) admits a solutionuε (cf. [3]).

Remark2.2. From hereon, we make the following simplifying assumption to reduce
the technicalities in the proof of the homogenization, viz. thata(y, µ, λ) is of the form
a(y, λ). The same results can be carried over for generala (cf. see [11,15] for suitable
modifications).

(A5) The strong monotonicity condition;

(a(y, λ1)− a(y, λ2)) . (λ1 − λ2) ≥ α|λ1 − λ2|p. (2.9)
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Remark2.3. We use the condition (A5) only for obtaining the corrector result. It will not
be required for identifying the homogenized problem.

We now state our main theorems.

Theorem 2.4. Let uε be a family of solutions of(Pε). Assume that there is a constant
C > 0, such that

sup
ε

‖uε‖L∞(�ε×(0,T )) ≤ C. (2.10)

Then there exists a subsequence ofε, still denoted byε, such that for allq with0< q < ∞,
we have

ũε → u strongly in Lq(�T ) (2.11)

andu solves,

∂tb
∗(u)− div A(∇u) = m∗f in �T ,

u = 0 on ∂�× (0, T ),

u(x, 0) = u0 in �, (2.12)

whereb∗ andA are defined below by(2.13)–(2.15),m∗ = |Y\ S| and�T denotes the set
�× (0, T ).

The functionsb∗ andA are defined through,

b∗(s) =
∫
Y\ S

b(y, s)dy, (2.13)

A(λ) =
∫
Y\ S

a(y, λ+ ∇8λ(y)) dy, (2.14)

whereλ ∈ R
n and8λ ∈ W1,p

per (Y ) solves the periodic boundary value problem∫
Y\S

a(y, λ+ ∇8λ(y)).∇φ(y) dy = 0 (2.15)

for all φ ∈ W1,p
per (Y ). See [9] for further details about eq. (2.15) and for the properties ofA.

Remark2.5. The assumption (2.10) is true in special cases (see [13]) and it is reasonable
on physical grounds (see [11]).

We see that by extendinguε by zero in the holes we do not get functions in
Lp(0, T ;W1,p

0 (�)). However,∇̃uε can be shown to be a bounded sequence inLp(�T ))

and has a weak limit. We will improve the weak convergence through a corrector result.
For this, we consider the solutionU1(x, t, y) ∈ Lp(�× (0, T );W1,p

per (Y )) of∫ T

0

∫
�

∫
Y\ S

a(y,∇xu(x, t)+ ∇yU1(x, t, y)).∇y8(x, t, y)dy dx dt = 0

for all 8 ∈ Lp(� × (0, T );W1,p
per (Y )) (we will see that such aU1 exists). Letχ be the

characteristic function ofY\ S defined onY and extendedY -periodically toR
n. Then,

χ(x/ε) is the characteristic function of�ε. The corrector result is as follows:
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Theorem 2.6. Let the functionsuε, u, U1 be as above. Assume further that(A5) holds
and u,U1 are sufficiently smooth, i.e. that they belong toC1(� × (0, T )) andC(� ×
(0, T );C1

per(Y )) respectively. Then

ũε − u− εU1

(
x, t,

x

ε

)
→ 0 strongly in Lp(�T ) and,

∇̃uε − χ
(x
ε

) (
∇xu+ ∇yU1

(
x, t,

x

ε

))
→ 0 strongly in Lp(�T ).

Remark2.7. Note that, in particular, theLp weak limit of ∇̃uε is m∗∇u(x, t) +∫
∂S

∂U1
∂ν
(x, t, y)dσ(y).

3. Some preliminary results

As we closely follow the treatment in [15], many results will only be sketched and we refer
the reader to [15] for more details as and when necessary.

We first obtaina priori bounds under the assumption (2.10). From now on,C will denote
a generic positive constant which is independent ofε.

Lemma3.1. Letuε be a family of solutions of(Pε) and assume that(2.10)holds. Then,

sup
ε

‖∇uε‖Lp(�ε×(0,T )) ≤ C, (3.1)

sup
ε

∥∥∥a (x
ε
,∇uε

)∥∥∥
Lp

∗
(�ε×(0,T ))

≤ C, (3.2)

sup
ε

∥∥∥∂tb (x
ε
, uε

)∥∥∥
E∗
ε

≤ C. (3.3)

Proof. Define the functionB(., .) : R
n × R → R by

B(y, s) = b(y, s)s −
∫ s

0
b(y, τ )dτ. (3.4)

As in [15] we deduce that∫
�ε

B
(x
ε
, uε(x, T )

)
dx +

∫ T

0

∫
�ε

a
(x
ε
,∇uε

)
.∇uε dx dt

=
∫
�ε

B
(x
ε
, u0

)
dx +

∫ T

0

∫
�ε

f uε dx dt

and from this we obtain∫
�

B
(x
ε
, uε(x, T )

)
dx +

∫ T

0

∫
�ε

a
(x
ε
,∇uε

)
.∇uε dx dt ≤ C (3.5)

by (2.10) and the assumptions onb anda. Then, (3.1) follows from (3.5) and (2.5), asB is
non-negative, while (3.2) follows from (3.1) and (2.7). The estimate (3.3) may be obtained
from (3.1), (3.2) and (2.3). Thus the lemma.

We now show that̃uε → u a.e.�×(0, T ), for a subsequence and for someu. This is the
crucial part of the present analysis. This result is to be seen in the context of the estimate
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(3.1) where there is no time gradient estimate. Hence, we cannot use any ready-made
compact imbedding theorem to get the strong convergence ofuε to u in someLr(�T ).
However, we are able to achieve this by adapting a technique found in [3]. This is given
in the following lemma.

Lemma3.2. Let uε be as above. Then, the sequence{ũε}ε>0 is relatively compact in
Lθ(�T ), whereθ is as in(A2). As a result, there is a subsequence ofuε such that,

ũε → u a. e. in �T . (3.6)

Proof. Analogous to Step 1, Lemma 3.3 in [15], we can derive the following estimate

h−1
∫ T−h

0

∫
�ε

(
b

(x
ε
, uε(t + h)

)
− b

( x
ε
, uε(t)

))
(uε(t + h)

− uε(t)) dx dt ≤ C

for some constantC which is independent ofε andh. Thus, as we have assumed in (A1)
thatb(y, 0) = 0, we get

h−1
∫ T−h

0

∫
�

(
b

(x
ε
, ũε(t + h)

)
− b

(x
ε
, ũε(t)

))
(ũε(t + h)

− ũε(t)) dx dt ≤ C.

Proceeding as in [15] we obtain the desired result.

From Lemma 3.2 above, the continuity ofb and the assumption (2.10) we derive the
following corollary.

COROLLARY 3.3

We have, b
(
x
ε
, ũε

) − b(x
ε
, u) → 0 strongly inLq(�T ) ∀ q, 0< q < ∞.

Proof. By thea priori bound (2.10), it is enough to consider the functionb onY×[−M,M]
for a largeM > 0. As b is continuous, it is uniformly continuous onY × [−M,M].
Therefore, givenh0 > 0, there exists aδ > 0 such that,

|b(y, s)− b(y′, s′)| < h0,

whenever|y − y′| + |s − s′| < δ.
Now, sincẽuε → u a.e in�T , by Egoroff’s theorem, givenh1 > 0, there existsE ⊂ �T

such that its Lebesgue measurem(E) < h1 andũε converges uniformly tou on(�T \E),
which we denote byE′. Therefore, we can findε1 > 0 such that

‖ũε − u‖∞,E′ < δ ∀ε < ε1. (3.7)

Therefore, forε < ε1 we have∫
�T

∣∣∣b (x
ε
, ũε

)
− b

(x
ε
, u

)∣∣∣q dx dt

=
∫
E′

∣∣∣b (x
ε
, ũε

)
− b

(x
ε
, u

)∣∣∣q dx dt

+
∫
E

∣∣∣(b (x
ε
, ũε

)
− b

(x
ε
, u

))∣∣∣q dx dt

≤ h
q

0m(�T )+ 2q sup(|b|q)m(E)
≤ h

q

0m(�T )+ 2q sup(|b|q) h1.
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This completes the proof ash0 andh1 can be chosen arbitrarily small.

As a consequence, we have the following corollary.

COROLLARY 3.4

We have the following convergences:

b
(x
ε
, ũε

)
⇀ b(u) weakly in Lq(�T ),

χ
(x
ε

)
b

(x
ε
, ũε

)
⇀ b∗(u) weakly in Lq(�T )

for q > 1. Further, b(u) = b∗(u).

Proof. We note that

b
(x
ε
, ũε

)
=

(
b

(x
ε
, ũε

)
− b

(x
ε
, u

))
+ b

(x
ε
, u

)
→ 0 + b(u)

by Corollary 3.3 and the averaging principle for periodic functions mentioned below.
Similarly,

χ
(x
ε

)
b

(x
ε
, ũε

)
= χ

(x
ε

) (
b

(x
ε
, ũε

)
− b

(x
ε
, u

))
+ χ

(x
ε

)
b

(x
ε
, u

)
→ 0 + b∗(u).

Fromχ
(
x
ε

)
b

(
x
ε
, ũε

) = b
(
x
ε
, ũε

)
, we readily obtain the last of the conclusions in the

corollary.

The homogenization will be done in the framework of two-scale convergence. So to
conclude this section, we recall an averaging principle which is at the basis of this method,
the definition of two-scale convergence and a few related results which we will use in the
sequel. For an exposition of this method and its main features, see [14,1,15].

For f (x, y) ∈ L
q

loc(R
n;Cper(Y )), the oscillatory functionf

(
x, x

ε

)
converges

weakly in L
q

loc(R
n) to

∫
Y
f (x, y)dy, for all q > 1. A similar result holds for

f (x, y) ∈ L∞
loc(R

n;Cper(Y )), with weak convergence replaced by weak-* convergence.

DEFINITION 3.5

Let 1< q < ∞. A sequence of functionsvε ∈ Lq(�T ) is said to two-scale converge to a
functionv ∈ Lq(�T × Y ) if∫

�T

vε ψ
(
x, t,

x

ε

)
dx dt

ε→0→
∫
�T

∫
Y

v(x, t, y) ψ(x, t, y)dy dx dt

for all ψ ∈ Lq∗
(�T ;Cper(Y )). We writevε

2−s→ v.

Theorem 3.6. Let1< q < ∞ and letvε be a bounded sequence inLq(�T ). Then there

exists a functionv ∈ Lq(�T × Y ) such that, up to a subsequence, vε
2−s→ v(x, t, y).
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The following theorem [1] is useful in obtaining the limit of the product of two two-scale
convergent sequences. Let 1< q < ∞.

Theorem 3.7. Let q > 1. Let vε be a sequence inLq(�T ) andwε be a sequence in

Lq
∗
(�T ) such thatvε

2−s→ v andwε
2−s→ w. Further, assume that the sequencewε satisfies∫

�T

|wε|q∗
(x, t)dx dt

ε→0→
∫
�T

∫
Y

|w(x, t, y)|q∗
dy dx dt. (3.8)

Then, ∫
�T

vεwε dx dt
ε→0→

∫
�T

∫
Y

v(x, t, y)w(x, t, y)dy dx dt. (3.9)

Remark3.8. A sequencewε which two-scale converges and satisfies (3.8) is said to be
strongly two-scale convergent. Examples of strongly two-scale convergent sequences are
{ψ(x, t, x

ε
)}ε for anyψ ∈ Lqper(Y ;C(�T )).

We now state a result for perforated domains the proof of which may be found in [1].

Theorem 3.9. Letq > 1. Letvε ∈ Lq(�ε × (0, T )) and let∇vε ∈ Lq(�ε × (0, T )) be
such that

sup
ε

‖vε‖Lq(�ε×(0,T )) ≤ C,

sup
ε

‖∇vε‖Lq(�ε×(0,T )) ≤ C. (3.10)

Then there existv ∈ Lq(0, T ;W1,q(�)) andV1 ∈ Lq(�T ;W1,q
per (Y )) such that, up to a

subsequence

ṽε
2−s→ v(x, t),

∇̃vε 2−s→ χ(y)(∇xv(x, t)+ ∇yV1(x, t, y)). (3.11)

4. Proofs of the main Theorems

We first obtain the two-scale homogenized equation. From the estimates (3.1) and (3.2)
and Theorems 3.8 and 3.5, there existsU1 ∈ Lp(�T ;W1,p

per (Y )) anda0 ∈ Lp∗
(�T × Y )

such that, up to a subsequence,

∇̃uε 2−s→ χ(y) (∇xu(x, t)+ ∇yU1(x, t, y)), (4.1)

χ
(x
ε

)
a

(x
ε
, ∇̃uε

)
2−s→ a0(x, t, y). (4.2)

Theorem 4.1. The limitsu, a0 satisfy the following two-scale homogenized problem∫ T

0
〈∂tb∗(u), φ〉 dt +

∫
�T

∫
Y\ S

a0(x, t, y).(∇xφ + ∇y8(x, t, y))dy dx dt

=
∫
�T

f φ dx dt (4.3)

for all φ ∈ C∞
0 (�T ) and8 ∈ C∞

0 (�T ;C∞
per(Y )).
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Proof. We pass to the limit in (2.3) in the presence of appropriate test functions. Let
φ ∈ C∞

0 (�T ) and8 ∈ C∞
0 (�T ;C∞

per(Y )). Set,

φε = φ(x, t)+ ε8
(
x, t,

x

ε

)
.

We may use these as test functions in (2.3) as the restrictions ofφε to�ε are inEε and we
note∫ T

0

〈
∂tb

(x
ε
, uε

)
, φε

〉
ε

dt +
∫ T

0

∫
�

χ
(x
ε

)
a

(x
ε
, ∇̃uε

)

×
(
∇xφ+∇y8

(
x, t,

x

ε

))
dx dt + o(1)=

∫ T

0

∫
�

χ
(x
ε

)
f (x, t)φ(x, t)dx dt+o(1).

(4.4)

Now we pass to the limit in the above identity. We may handle the first term as follows.
Observing thatφε(. , T ) = 0 = φε(. , 0), we have from (2.2),∫ T

0

〈
∂tb

(x
ε
, uε

)
, φε

〉
ε

dt = −
∫ T

0

∫
�ε

b
(x
ε
, uε

)
∂tφε dx dt

= −
∫ T

0

∫
�

χ
(x
ε

)
b

(x
ε
, ũε

)
∂tφ dx dt + o(1)

→ −
∫ T

0

∫
�

b∗(u) ∂tφ dx dt

=
∫ T

0
〈∂tb∗(u) , φ〉 dx dt,

where the convergence in the above follows from Corollary 3.4.
For passing to the limit in the other two terms in (4.4) we observe that∫ T

0

∫
�ε

a
(x
ε
,∇uε

)
.
(
∇xφ + ∇y8

(
x, t,

x

ε

))
dx dt

=
∫ T

0

∫
�

χ
(x
ε

)
a

(x
ε
, ∇̃uε

)
.
(
∇xφ + ∇y8

(
x, t,

x

ε

))
dx dt

→
∫ T

0

∫
�

∫
Y

a0(x, t, y).(∇xφ + ∇y8(x, t, y))dy dx dt,

where the convergence in the last step follows from Theorem 3.6. For this, one observes
from Remark 3.7 that∇xφ + ∇y8

(
x, t, x

ε

)
is strongly two-scale convergent to∇xφ +

∇y8(x, t, y). Further, observe that sinceχ
(
x
ε

)
a

(
x
ε
, ∇̃uε

)
is zero in the holes, we have

a0(x, t, y) to be zero inS and the integral overY can be replaced by that overY\ S.
Finally, note that∫ T

0

∫
�

χ
(x
ε

)
f (x, t)φ(x, t)dx dt →

∫ T

0

∫
�

∫
Y

χ(y)f (x, t)φ(x, t)dy dx dt

=
∫ T

0

∫
�

m∗f φ dx dt.

Thus, from the above we deduce that the limit of the equations (2.3) withφε as test functions
is nothing but (4.3). This is referred to as the two-scale homogenized problem.
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Remark4.2. We note from the two-scale homogenized problem (4.3), by setting8 ≡ 0
that

∂tb
∗(u)− div

(∫
Y\ S

a0(x, t, y)dy

)
= m∗f in �× (0, T ) (4.5)

and by settingφ ≡ 0 we get∫ T

0

∫
�

∫
Y\S

a0(x, t, y).∇y8(x, t, y)dy dx dt = 0 (4.6)

for all 8 ∈ C∞
0 (�T ;C∞

per(Y )). In view of (4.5) and (4.6), it is enough to show that
a0(x, t, y) = a(y,∇xu(x, t)+ ∇yU1(x, t, y)) to conclude Theorem 2.4.

Proof of Theorem2.4. Note that (2.11) follows from the convergence (3.6) and the
assumption (2.10). We now justify (2.12), for which it is enough to show thata0(x, t, y)

equalsa(y,∇xu(x, t)+ ∇yU1(x, t, y)), by the preceding remark.

Let ξ ∈ Lp(0, T ;W1,p
0 (�)) ∪W1,1(0, T ;L∞(�)) with ξ(. , T ) = 0 = ξ(. , 0). This

may be used as a test function in (2.2) and we have∫ T

0

〈
∂tb

(x
ε
, uε

)
, ξ(x, t)

〉
ε

dt +
∫ T

0

∫
�ε

b
(x
ε
, uε

)
∂t ξ dx dt = 0.

This can be rewritten as∫ T

0

〈
R∗
ε ∂tb

(x
ε
, uε

)
, ξ

〉
dt +

∫ T

0

∫
�

χ
(x
ε

)
b

(x
ε
, ũε

)
∂t ξ dx dt = 0.

(4.7)

Observe that supε ‖R∗
ε ∂tb

(
x
ε
, uε

) ‖Lp∗
(0,T ;W−1,p∗(�)) ≤ C by (3.3) whereRε is the restric-

tion operator fromLp(0, T ;W1,p
0 (�)) toEε. Thus for somew ∈ Lp∗

(0, T ;W−1,p∗
(�))

and for a subsequence

R∗
ε ∂tb

(x
ε
, uε

)
⇀ w weakly * in Lp

∗
(0, T ;W−1,p∗

(�)).

Thus, passing to the limit in (4.7) we get∫ T

0
〈w, ξ〉 +

∫ T

0

∫
�

b∗(u) ∂t ξ dx dt = 0

for all ξ as above. So,∂tb∗(u) = w in the sense of distributions.
We now show thata0(x, t, y) = a(y,∇xu(x, t)+ ∇yU1(x, t, y)). Letφ,8 be as in the

proof of Theorem 4.1. Letλ > 0 andψ ∈ C∞
0 (�T ;C∞

per(Y ))
n. Set

ηε(x, t)
.= ∇xφ(x, t)+ ∇y8

(
x, t,

x

ε

)
+ λψ

(
x, t,

x

ε

)
.

By (2.6) we note that∫ T

0

∫
�ε

(
a

(x
ε
,∇uε

)
− a

(x
ε
, ηε

))
.(∇uε − ηε) dx dt ≥ 0. (4.8)
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We have∫ T

0

∫
�ε

a
(x
ε
,∇uε

)
.∇uε = −

∫ T

0

〈
∂tb

(x
ε
, uε

)
, uε

〉
dt +

∫ T

0

∫
�ε

f uε dx dt

→ −
∫ T

0
〈∂tb∗(u), u〉 +

∫ T

0

∫
�

m∗f udx dt

=
∫ T

0

∫
�

∫
Y\ S

a0(x, t, y).∇xu dy dx dt,

where the last step follows from (4.5).
Also, sinceηε anda(x

ε
, ηε) are strongly two-scale convergent, Theorem 3.6 gives

∫ T

0

∫
�ε

a
(x
ε
, ηε

)
.∇uε dx dt =

∫ T

0

∫
�

a
(x
ε
, ηε

)
.∇̃uε dx dt

→
∫ T

0

∫
�

∫
Y\ S

a(y,∇xφ + ∇y8+ λψ).(∇xu+ ∇yU1) dy dx dt.

Similarly, ∫ T

0

∫
�ε

a
(x
ε
, ηε

)
.ηε dx dt =

∫ T

0

∫
�

χ
(x
ε

)
a

(x
ε
, ηε

)
.ηε dx dt

→
∫ T

0

∫
�

∫
Y\ S

a(y,∇xφ + ∇y8+ λψ).(∇xφ + ∇y8+ λψ) dy dx dt

and, ∫ T

0

∫
�ε

a
(x
ε
,∇uε

)
.ηε dx dt =

∫ T

0

∫
�

χ
(x
ε

)
a

(x
ε
, ∇̃uε

)
.ηε dx dt

→
∫ T

0

∫
�

∫
Y\ S

a0(x, t, y).(∇xφ + ∇y8+ λψ) dy dx dt

=
∫ T

0

∫
�

∫
Y\ S

a0(x, t, y).(∇xφ + λψ) dy dx dt.

The equality in the last step follows from (4.6). Thus

0 ≤ lim
ε→0

∫ T

0

∫
�ε

(
a

(x
ε
,∇uε

)
− a

(x
ε
, ηε

))
.(∇uε − ηε) =

∫ T

0

∫
�

∫
Y\ S

a0(x, t, y)

× (∇x(u− φ)− λψ)−
∫ T

0

∫
�

∫
Y\S

a(y,∇xφ + ∇y8+ λψ)

× (∇x(u− φ)+ ∇y(U1 −8)− λψ).

Lettingφ → u and8 → U1 in the above and using the continuity ofa we get∫ T

0

∫
�

∫
Y\S
(a(y,∇xu+ ∇yU1 + λψ)− a0(x, t, y)).λψ dy dx dt ≥ 0
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for all λ andψ . Dividing the above inequality byλ and lettingλ → 0 we get,

∫ T

0

∫
�

∫
Y\S
(a(y,∇xu+ ∇yU1)− a0(x, t, y)).ψ dy dx dt ≥ 0

for all ψ . From this we conclude thata0(x, t, y) = a(y,∇xu+ ∇yU1).

Proof of Theorem2.6. Set

ηε(x, t)
.= ∇xu(x, t)+ ∇yU1

(
x, t,

x

ε

)
.

From (2.9) it follows that

∫ T

0

∫
�ε

(
a

(x
ε
,∇uε

)
−a

(x
ε
, ηε

))
.(∇uε − ηε) dx, dt

≥ α

∫ T

0

∫
�ε

|∇uε − ηε|p dx dt,

that is,

∫ T

0

∫
�ε

(
a

(x
ε
, ∇̃uε

)
− a

(x
ε
, ηε

))
.
(
∇̃uε − χ

(x
ε

)
ηε

)
dx dt

≥ α

∫ T

0

∫
�

∣∣∣∇ũε − χ
(x
ε

) [
∇xu(x, t)+ ∇yU1

(
x, t,

x

ε

)]∣∣∣p dx dt.

As we have assumed thatu,U1 are smooth, we may proceed as in the proof of Theorem
2.4 to obtain

α lim sup
ε→0

∫ T

0

∫
�

∣∣∣∇ũε − χ
(x
ε

) (
∇xu(x, t)+ ∇yU1

(
x, t,

x

ε

))∣∣∣p dx dt

≤ lim
ε→0

∫ T

0

∫
�ε

(
a

(x
ε
, ∇̃uε

)
− a

(x
ε
, ηε

))
.
(
∇̃uε − χ

(x
ε

)
ηε

)
dx dt

= 0.

This completes the proof.

Remark4.3. A weaker form of the corrector result with no smoothness assumptions can
also be obtained. See [15] for the corresponding formulation.
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