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Abstract. The orthonormal basis generated by a wavelet ofL2(R) has poor fre-
quency localization. To overcome this disadvantage Coifman, Meyer, and Wicker-
hauser constructed wavelet packets. We extend this concept to the higher dimensions
where we consider arbitrary dilation matrices. The resulting basis ofL2(Rd) is called
the multiwavelet packet basis. The concept of wavelet frame packet is also general-
ized to this setting. Further, we show how to construct various orthonormal bases of
L2(Rd) from the multiwavelet packets.
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1. Introduction

Consider an orthonormal wavelet ofL2(R). At the j th resolution level, the orthonormal
basis{ψjk : j, k ∈ Z} generated by the wavelet has a frequency localization proportional
to 2j . For example, if the waveletψ is band-limited (i.e.,ψ̂ is compactly supported), then
the measure of the support of(ψjk)∧ is 2j times the measure of the support ofψ̂ , since

(ψjk)
∧(ξ) = 2−j/2ψ̂(2−j ξ)e−i2−j kξ , j, k ∈ Z,

where

ψjk = 2j/2ψ(2j · −k), j, k ∈ Z.

So whenj is large, the wavelet bases have poor frequency localization. Better frequency
localization can be achieved by a suitable construction starting from an MRA wavelet basis.

Let {Vj : j ∈ Z} be an MRA ofL2(R) with corresponding scaling functionϕ and
waveletψ . LetWj be the corresponding wavelet subspaces:Wj = sp{ψjk : k ∈ Z}. In
the construction of a wavelet from an MRA, essentially the spaceV1 was split into two
orthogonal componentsV0 andW0. Note thatV1 is the closure of the linear span of the

functions{21
2ϕ(2 · −k) : k ∈ Z}, whereasV0 andW0 are respectively the closure of the

span of{ϕ(· − k) : k} and{ψ(· − k) : k}. Sinceϕ(2 · −k) = ϕ
(
2(· − k

2)
)
, we see that

the above procedure splits the half-integer translates of a function into integer translates of
two functions.

In fact, the splitting is not confined toV1 alone: we can choose to splitWj , which is the

span of{ψ(2j · −k) : k} = {ψ
(
2j (· − k

2j
)
)

: k}, to get two functions whose 2−(j−1)k

translates will span the same spaceWj . Repeating the splitting procedurej times, we get
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2j functions whose integer translates alone span the spaceWj . If we apply this to each
Wj , then the resulting basis ofL2(R), which will consist of integer translates of a count-
able number of functions (instead of all dilations and translations of the waveletψ), will
give us a better frequency localization. This basis is called ‘wavelet packet basis’. The
concept of wavelet packet was introduced by Coifman, Meyer and Wickerhauser [6, 7].
For a nice exposition of wavelet packets ofL2(R) with dilation 2, see [11].

The concept of wavelet packet was subsequently generalized toRd by taking tensor prod-
ucts [5]. The non-tensor product version is due to Shen [16]. Other notable generalizations
are the biorthogonal wavelet packets [4], non-orthogonal version of wavelet packets [3],
the wavelet frame packets [2] onR for dilation 2, and the orthogonal, biorthogonal and
frame packets onRd by Long and Chen [13] for the dyadic dilation.

In this article we generalize these concepts toRd for arbitrary dilation matrices and we
will not restrict ourselves to one scaling function: we consider the case of those MRAs for
which the central space is generated by several scaling functions.

DEFINITION 1.1

A d × d matrixA is said to be a dilation matrix forRd if

(i) A(Zd) ⊂ Zd and

(ii) all eigenvaluesλ of A satisfy|λ| > 1.

Property (i) implies thatA has integer entries and hence| detA| is an integer, and (ii) says
that| detA| is greater than 1. LetB = At, the transpose ofA anda = | detA| = | detB|.

ConsideringZd as an additive group, we see thatAZd is a normal subgroup ofZd . So
we can form the cosets ofAZd in Zd . It is a well-known fact that the number of distinct
cosets ofAZd in Zd is equal toa = | detA| ([10, 17]). A subset ofZd which consists of
exactly one element from each of thea cosets ofAZd in Zd will be called aset of digits
for the dilation matrixA. Therefore, ifKA is a set of digits forA, then we can write

Zd =
⋃
µ∈KA

(AZd + µ),

where{AZd +µ : µ ∈ KA} are pairwise disjoint. A set of digits forA need not be a set of

digits for its transpose. For example, for the dilation matrixM =
(

0 2
1 0

)
of R2, the set{(

0
0

)
,

(
1
0

)}
is a set of digits forM but not forMt . It is easy to see that ifK is a set of

digits forA, then so isK − µ, whereµ ∈ K. Therefore, we can assume, without loss of
generality, that 0∈ K.

The notion of a multiresolution analysis can be extended toL2(Rd) by replacing the
dyadic dilation by a dilation matrix and allowing the resolution spaces to be spanned by
more than one scaling function.

DEFINITION 1.2

A sequence{Vj : j ∈ Z} of closed subspaces ofL2(Rd) will be called a multiresolution
analysis (MRA) ofL2(Rd) of multiplicity L associated with the dilation matrixA if the
following conditions are satisfied:
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(M1) Vj ⊂ Vj+1 for all j ∈ Z

(M2) ∪j∈ZVj is dense inL2(Rd) and∩j∈ZVj = {0}
(M3) f ∈ Vj if and only if f (A·) ∈ Vj+1

(M4) there existL functions{ϕ1, ϕ2, . . . , ϕL} in V0, called thescaling functions, such that
the system of functions{ϕl(·−k) : 1 ≤ l ≤ L, k ∈ Zd} forms an orthonormal basis
for V0.

The concept of multiplicity was introduced by Hervé [12] in his Ph.D. thesis.
Since{ϕl(· − k) : 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis ofV0, it follows from

property (M3) that{aj/2ϕl(Aj · −k) : 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis ofVj .
Observe that iff ∈ L2(Rd), then(

aj/2f (Aj · −k))∧(ξ) = a−j/2e−i〈B−j ξ,k
〉
f̂ (B−j ξ), ξ ∈ Rd , k ∈ Zd .

The Fourier transform of a functionf ∈ L1(Rd) is defined by

Ff (ξ) = f̂ (ξ) =
∫

Rd
f (x)e−i〈ξ, x〉dx, ξ ∈ Rd .

To define the Fourier transform for functions ofL2(Rd), the operatorF is extended from
L1 ∩ L2(Rd), which is dense inL2(Rd) in theL2-norm, to the whole ofL2(Rd). For this
definition of the Fourier transform, Plancherel theorem takes the form

〈f, g〉 = 1

(2π)d
〈
f̂ , ĝ

〉; f, g ∈ L2(Rd).

First of all we will prove a lemma, the splitting lemma (see [8]), which is essential for the
construction of wavelet packets. We need the following facts for the proof of the splitting
lemma.

(a) LetTd = [−π, π ]d andf ∈ L1(Rd). SinceRd = ∪k∈Zd (T
d + 2kπ), we can write∫

Rd
f (x)dx =

∫
Td

{ ∑
k∈Zd

f (x + 2kπ)
}
dx. (1)

(b) Let {sk : k ∈ Zd} ∈ l1(Zd) andKB be a set of digits for the dilation matrixB. As Zd

can be decomposed asZd = ∪µ∈KB (BZd + µ), we can write∑
k∈Zd

sk = ∑
µ∈KB

∑
k∈Zd

sµ+Bk. (2)

(c) LetKB be a set of digits forB. Define

Q0 =
⋃
µ∈KB

B−1(Td + 2µπ).

SinceKB is a set of digits forB, the setQ0 satisfies∪k∈Zd (Q0 + 2kπ) = Rd . This
fact, together with|Q0| = (2π)d , implies that{Q0 + 2kπ : k ∈ Zd} is a pairwise
disjoint collection (see Lemma 1 of [10]). Therefore,∫

Rd
f (x)dx =

∫
Q0

{ ∑
k∈Zd

f (x + 2kπ)
}
dx, for f ∈ L1(Rd). (3)

A function f is said to be 2πZd -periodic if f (x + 2kπ) = f (x) for all k ∈ Zd and for
a.e.x ∈ Rd .
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2. The splitting lemma

Let {ϕl : 1 ≤ l ≤ L} be functions inL2(Rd) such that{ϕl(· − k) : 1 ≤ l ≤ L, k ∈ Zd}
is an orthonormal system. LetV = sp{a1/2ϕl(A · −k) : l, k}. For 1 ≤ l, j ≤ L and
0 ≤ r ≤ a − 1, suppose that there exist sequences{hrljk : k ∈ Zd} ∈ l2(Zd). Define

f rl (x) =
L∑
j=1

∑
k∈Zd

hrljka
1/2ϕj (Ax − k). (4)

Taking Fourier transform of both sides

f̂ rl (ξ) =
L∑
j=1

∑
k∈Zd

hrljka
−1/2e−i〈B−1ξ,k

〉
ϕ̂j (B

−1ξ)

=
L∑
j=1

hrlj (B
−1ξ)ϕ̂j (B

−1ξ), (5)

where

hrlj (ξ) = ∑
k∈Zd

a−1/2hrljke
−i〈ξ, k〉, 1 ≤ l, j ≤ L, 0 ≤ r ≤ a − 1, (6)

andhrlj is 2πZd -periodic and is inL2(Td). Now, for 0≤ r ≤ a − 1, define theL × L

matrices

Hr(ξ) =
(
hrlj (ξ)

)
1≤l,j≤L

. (7)

By denoting

8(x) = (ϕ1(x), . . . , ϕL(x))
t (8)

8̂(ξ) = (
ϕ̂1(ξ), . . . , ϕ̂L(ξ)

)t
, (9)

we can write (5) as

F̂r (ξ) = Hr(B
−1ξ)8̂(B−1ξ), 0 ≤ r ≤ a − 1, (10)

whereFr(x) = (f r1 (x), f
r
2 (x), . . . , f

r
L(x))

t andF̂r (ξ) = (f̂ r1 (ξ), f̂
r
2 (ξ), . . . , f̂

r
L(ξ))

t .
The following well-known lemma characterizes the orthonormality of the system

{ϕl(· − k) : 1 ≤ l ≤ L, k ∈ Zd}. We give a proof for the sake of completeness.

Lemma2.1. The system{ϕl(· − k): 1 ≤ l ≤ L, k ∈ Zd} is orthonormal if and only if∑
k∈Zd

ϕ̂j (ξ + 2kπ)ϕ̂l(ξ + 2kπ) = δjl, 1 ≤ j, l ≤ L.

Proof. Suppose that the system{ϕl(· − k) : 1 ≤ l ≤ L, k ∈ Zd} is orthonormal. Note that〈
ϕj (· − p), ϕl(· − q)

〉 = 〈
ϕj , ϕl(· − (q − p))

〉
for 1 ≤ j, l ≤ L andp, q ∈ Zd . Now

δjlδ0p = 〈
ϕj , ϕl(· − p)

〉 = 1

(2π)d
〈
ϕ̂j , (ϕl(· − p))∧

〉
= 1

(2π)d

∫
Rd
ϕ̂j (ξ)ϕ̂l(ξ)e

i〈p, ξ〉dξ

= 1

(2π)d

∫
Td

{ ∑
k∈Zd

ϕ̂j (ξ + 2kπ)ϕ̂l(ξ + 2kπ)
}
ei〈p, ξ〉dξ, by (1).
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Therefore, the 2πZd -periodic functionGjl(ξ) = ∑
k∈Zd

ϕ̂j (ξ + 2kπ)ϕ̂l(ξ + 2kπ) has Four-

ier coefficientsĜjl(−p) = δjlδ0p, p ∈ Zd which implies thatGjl = δjl a.e. By reversing
the above steps we can prove the converse. 2

Let M∗(ξ) be the conjugate transpose of the matrixM(ξ) andIL denote the identity
matrix of orderL.

Lemma2.2. (The splitting lemma) Let {ϕl : 1 ≤ l ≤ L} be functions inL2(Rd) such that
the system{a1/2ϕj (A · −k) : 1 ≤ j ≤ L, k ∈ Zd} is orthonormal. LetV be its closed
linear span. LetK be a set of digits forB. Also letf rl , Hr be as above. Then

{f rl (· − k) : 0 ≤ r ≤ a − 1, 1 ≤ l ≤ L, k ∈ Zd}
is an orthonormal system if and only if∑

µ∈K
Hr(ξ + 2B−1µπ)H ∗

s (ξ + 2B−1µπ) = δrsIL, 0 ≤ r, s ≤ a − 1. (11)

Moreover,{f rl (· − k) : 0 ≤ r ≤ a − 1, 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis ofV
whenever it is orthonormal.

Proof. For 1≤ l, j ≤ L, 0 ≤ r, s ≤ a − 1 andp ∈ Zd , we have〈
f rj , f

s
l (· − p)

〉
= 1

(2π)d

〈
(f rj )

∧, (f sl (· − p))∧
〉

= 1

(2π)d

∫
Rd
(f rj )

∧(ξ)(f sl )∧(ξ)e−i〈p,ξ〉dξ

= 1

(2π)d

∫
Rd

L∑
m=1

L∑
n=1

hrjm(B
−1ξ)hsln(B

−1ξ)ϕ̂m(B
−1ξ)ϕ̂n(B

−1ξ)ei〈p,ξ〉dξ

(by (5))

= 1

(2π)d

∫
Td

∑
k∈Zd

L∑
m=1

L∑
n=1

{
hrjm(B

−1(ξ + 2kπ))hsln(B
−1(ξ + 2kπ))

·ϕ̂m(B−1(ξ + 2kπ))ϕ̂n(B−1(ξ + 2kπ))
}

ei〈p, ξ+2kπ〉dξ (by (1))

= 1

(2π)d

∫
Td

∑
µ∈K

L∑
m=1

L∑
n=1

hrjm(B
−1ξ + 2B−1µπ)hsln(B

−1ξ + 2B−1µπ)

·
{ ∑
k∈Zd

ϕ̂m(B
−1(ξ + 2µπ)+ 2kπ)ϕ̂n(B−1(ξ + 2µπ)+ 2kπ)

}
ei〈p, ξ〉dξ

(by (2))

= 1

(2π)d

∫
Td

∑
µ∈K

L∑
m=1

L∑
n=1

hrjm(B
−1ξ + 2B−1µπ)hsln(B

−1ξ + 2B−1µπ)

·δmnei〈p, ξ〉dξ (by Lemma 2.1)

= 1

(2π)d

∫
Td

{ ∑
µ∈K

L∑
m=1

hrjm(B
−1ξ + 2B−1µπ)hslm(B

−1ξ + 2B−1µπ)

}
ei〈p, ξ〉dξ.



444 Biswaranjan Behera

Therefore, 〈
f rj , f

s
l (· − p)

〉
= δrsδjlδ0p

⇔ ∑
µ∈K

L∑
m=1

hrjm(B
−1ξ + 2B−1µπ)hslm(B

−1ξ + 2B−1µπ) = δrsδjl for a.e. ξ ∈ Rd

⇔ ∑
µ∈K

L∑
m=1

hrjm(ξ + 2B−1µπ)hslm(ξ + 2B−1µπ) = δrsδjl for a.e. ξ ∈ Rd

⇔ ∑
µ∈K

Hr(ξ + 2B−1µπ)H ∗
s (ξ + 2B−1µπ) = δrsIL for a.e. ξ ∈ Rd .

We have proved the first part of the lemma.
Now assume that{f rl (· − k) : 0 ≤ r ≤ a − 1, 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal

system. We want to show that this is an orthonormal basis ofV . Let f ∈ V . So there
exists{cjp : p ∈ Zd} ∈ l2(Zd), 1 ≤ j ≤ L such that

f (x) =
L∑
j=1

∑
p∈Zd

cjpa
1/2ϕj (Ax − p).

Assume thatf ⊥ f rl (· − k) for all r, l, k.

Claim. f = 0.
For all r, l, k such that 0≤ r ≤ a − 1, 1≤ l ≤ L, k ∈ Zd , we have

0 = 〈
f rl (· − k), f

〉 = 〈
f rl (· − k),

L∑
j=1

∑
p∈Zd

cjpa
1/2ϕj (A · −p)

〉
= 1

(2π)d

〈(
f rl (· − k)

)∧
,
( L∑
j=1

∑
p∈Zd

cjpa
1/2ϕj (A · −p)

)∧〉
= 1

(2π)d

∫
Rd
(f rl )

∧(ξ)e−i〈k,ξ〉 L∑
j=1

∑
p∈Zd

cjpa
−1/2ei

〈
B−1ξ,p

〉
ϕ̂j (B

−1ξ)dξ

= a−1/2

(2π)d

∫
Rd

L∑
m=1

hrlm(B
−1ξ)ϕ̂m(B

−1ξ)e−i〈k,ξ〉 L∑
j=1

∑
p∈Zd

cjpei
〈
B−1ξ,p

〉
ϕ̂j (B

−1ξ)dξ

(by (5))

= a1/2

(2π)d

∫
Rd

L∑
m=1

hrlm(ξ)ϕ̂m(ξ)
L∑
j=1

∑
p∈Zd

cjpϕ̂j (ξ)e
−i〈k,Bξ〉ei〈p, ξ〉dξ (ξ → Bξ)

= a1/2

(2π)d

∫
Q0

∑
q∈Zd

L∑
m=1

hrlm(ξ + 2qπ)ϕ̂m(ξ + 2qπ)

·
L∑
j=1

∑
p∈Zd

cjpϕ̂j (ξ + 2qπ)e−i〈k,B(ξ+2qπ)〉ei〈p, ξ+2qπ〉dξ (by (3))

= a1/2

(2π)d

∫
Q0

L∑
m=1

L∑
j=1

∑
p∈Zd

hrlm(ξ)cjp

{ ∑
q∈Zd

ϕ̂m(ξ + 2qπ)ϕ̂j (ξ + 2qπ)

}
·e−i〈k,Bξ〉ei〈p, ξ〉dξ
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= a1/2

(2π)d

∫
Q0

L∑
m=1

∑
p∈Zd

hrlm(ξ)cmpe−i〈k,Bξ〉ei〈p,ξ〉dξ (by Lemma 2.1)

= a1/2

(2π)d
∑
µ∈K

∫
B−1(Td+2µπ)

L∑
m=1

∑
p∈Zd

hrlm(ξ)cmpe−i〈k,Bξ〉ei〈p,ξ〉dξ

= a1/2

(2π)d
∑
µ∈K

∫
B−1Td

L∑
m=1

∑
p∈Zd

hrlm(ξ + 2B−1µπ)cmpe−i〈k,B(ξ+2B−1µπ)
〉

·ei
〈
p,ξ+2B−1µπ

〉
dξ

= a1/2

(2π)d

∫
B−1Td

{ ∑
µ∈K

L∑
m=1

∑
p∈Zd

hrlm(ξ + 2B−1µπ)cmpei
〈
p,ξ+2B−1µπ

〉}
·e−i〈k,Bξ〉dξ.

Since
{
a1/2

(2π)d
e−i〈k,B·〉 : k ∈ Zd

}
is an orthonormal basis forL2(B−1Td), the above equa-

tions give

∑
µ∈K

L∑
m=1

∑
p∈Zd

cmpei
〈
ξ+2B−1µπ,p

〉
hrlm(ξ + 2B−1µπ) = 0 a.e. for all r, l.

Form = 1, 2, . . . , L, define

Cm(ξ) = ∑
p∈Zd

cmpe−i〈ξ,p〉. (12)

So we have

∑
µ∈K

L∑
m=1

Cm(ξ + 2B−1µπ)hrlm(ξ + 2B−1µπ) = 0, 0 ≤ r ≤ a − 1, 1 ≤ l ≤ L. (13)

Equations (11) are equivalent to saying that for 0≤ r ≤ a − 1, 1≤ l ≤ L and for a.e.
ξ ∈ Rd , the vectors(

hrlm(ξ + 2B−1µπ) : 1 ≤ m ≤ L, µ ∈ K
)

are mutually orthogonal and each has norm 1, considered as a vector in theaL-dimensional
spaceCaL, so that they form an orthonormal basis forCaL. Equation (13) says that the
vector (

Cm(ξ + 2B−1µπ) : 1 ≤ m ≤ L, µ ∈ K
)

(14)

is orthogonal to each member of the above orthonormal basis ofCaL. Hence, the vector
in the expression (14) is zero. In particular,Cm(ξ) = 0, for allm, 1 ≤ m ≤ L. That is,
cmp = 0, 1 ≤ m ≤ L, p ∈ Zd . Therefore,f = 0. This ends the proof. 2

The splitting lemma can be used to decompose an arbitrary Hilbert space into mutually
orthogonal subspaces, as in [7]. We will use the following corollary later.
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COROLLARY 2.3

Let
{
Elk : 1 ≤ l ≤ L, k ∈ Zd

}
be an orthonormal basis of a separable Hilbert spaceH.

LetHr, 0 ≤ r ≤ a − 1 be as above and satisfy(11). Define

F rlk =
L∑

m=1

∑
p∈Zd

hrl,m,p−AkEmp; 0 ≤ r ≤ a − 1, 1 ≤ l ≤ L, k ∈ Zd .

Then
{
F rlk : 1 ≤ l ≤ L, k ∈ Zd

}
is an orthonormal basis for its closed linear spanHr and

H = ⊕a−1
r=0Hr .

Proof. Letϕ1, ϕ2, . . . , ϕL be functions inL2(Rd) such that{ϕl(·−k) : 1 ≤ l ≤ L, k ∈ Zd}
is an orthonormal system. LetV = sp{a1/2ϕl(A · −k) : l, k}. Define a linear operatorT
from the Hilbert spaceV to H by T (a1/2ϕl(A · −k)) = El,k. Let f rl are as in (4). Then,
T (f rl (· − k)) = F rl,k. Now the corollary follows from the splitting lemma. 2

3. Construction of multiwavelet packets

Let {Vj : j ∈ Z} be an MRA ofL2(Rd) of multiplicity L associated with the dilation
matrix A. Let {ϕl : 1 ≤ l ≤ L} be the scaling functions. Sinceϕl, 1 ≤ l ≤ L are in
V0 ⊂ V1 and{a1/2ϕj (A · −k) : 1 ≤ j ≤ L, k ∈ Zd} forms an orthonormal basis ofV1,
there exist{hljk : k ∈ Zd} ∈ l2(Zd) for 1 ≤ l, j ≤ L such that

ϕl(x) =
L∑
j=1

∑
k∈Zd

hljka
1/2ϕj (Ax − k).

Taking Fourier transform, we get

ϕ̂l(ξ) =
L∑
j=1

∑
k∈Zd

hljka
−1/2e−i〈B−1ξ,k

〉
ϕ̂j (B

−1ξ)

=
L∑
j=1

hlj (B
−1ξ)ϕ̂j (B

−1ξ), (15)

wherehlj (ξ) = ∑
k∈Zd

a−1/2hljke−i〈ξ,k〉, andhlj is 2πZd -periodic and is inL2(Td). Let
H0(ξ) be theL× L matrix defined by

H0(ξ) =
(
(hlj (ξ)

)
1≤l,j≤L

.

We will call H0 the low-pass filter matrix. Rewriting (15) in the vector notations (8) and
(9), we have

8̂(ξ) = H0(B
−1ξ)8̂(B−1ξ). (16)

LetWj be the wavelet subspaces, the orthogonal complement ofVj in Vj+1:

Wj = Vj+1 	 Vj .

Properties (M1) and (M3) of Definition 1.2 now imply that

Wj ⊥ Wj ′ , j 6= j ′
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and

f ∈ Wj ⇔ f (A−j ·) ∈ W0. (17)

Moreover, by (M2),L2(Rd) can be decomposed into orthogonal direct sums as

L2(Rd) =
⊕
j∈Z

Wj (18)

= V0 ⊕
(⊕
j≥0

Wj

)
. (19)

By Lemma 2.1 and eq. (15), we have (for 1≤ l, j ≤ L)

δjl = ∑
k∈Zd

ϕ̂j (ξ + 2kπ)ϕ̂l(ξ + 2kπ)

= ∑
k∈Zd

{ L∑
m=1

hjm(B
−1(ξ + 2kπ))ϕ̂m(B−1(ξ + 2kπ))

}
·
{ L∑
n=1

hln(B
−1(ξ + 2kπ))ϕ̂n(B−1(ξ + 2kπ))

}
.

Now, using (2), we have

δjl = ∑
µ∈KB

L∑
m=1

L∑
n=1

hjm(B
−1ξ + 2B−1µπ)hln(B

−1ξ + 2B−1µπ)

· ∑
k∈Zd

{
ϕ̂m(B

−1(ξ + 2µπ)+ 2kπ)ϕ̂n(B−1(ξ + 2µπ)+ 2kπ)
}
,

whereKB is a set of digits forB. Using Lemma 2.1 again, we get

δjl = ∑
µ∈KB

L∑
m=1

hjm(B
−1ξ + 2B−1µπ)hlm(B

−1ξ + 2B−1µπ). (20)

This is equivalent to saying that∑
µ∈KB

H0(ξ + 2B−1µπ)H ∗
0 (ξ + 2B−1µπ) = IL for a.e. ξ.

Equation (20) is also equivalent to the orthonormality of the vectors(
hlj (ξ + 2B−1µπ) : 1 ≤ j ≤ L, µ ∈ KB

)
, 1 ≤ l ≤ L, ξ ∈ Td .

TheseL orthonormal vectors in theaL-dimensional spaceCaL can be completed, by
Gram–Schmidt orthonormalization process, to produce an orthonormal basis forCaL. Let
us denote the new vectors by(

hrlj (ξ + 2B−1µπ) : 1 ≤ j ≤ L, µ ∈ KB
)
, 1 ≤ l ≤ L, 1 ≤ r ≤ a − 1, ξ ∈ Td ,

and extend the functionshrlj (1 ≤ r ≤ a − 1, 1 ≤ l, j ≤ L) 2πZd -periodically (see [9]
for the one-dimensional dyadic dilation). Denoting byHr(ξ), 1 ≤ r ≤ a − 1 theL × L

matrix (
hrlj (ξ)

)
1≤l,j≤L

,
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we have ∑
µ∈KB

Hr(ξ + 2B−1µπ)H ∗
s (ξ + 2B−1µπ) = δrsIL for a.e. ξ.

Now, for 1≤ r ≤ a − 1, 1 ≤ l ≤ L, define

f̂ rl (ξ) =
L∑
j=1

hrlj (B
−1ξ)ϕ̂j (B

−1ξ). (21)

Sincehrlj are 2πZd -periodic, there exist{hrljk : k ∈ Zd} ∈ l2(Zd) such that

hrlj (ξ) = ∑
k∈Zd

a−1/2hrljke
−i〈ξ,k〉.

Now, applying the splitting lemma toV1, we see that{f rl (· − k) : 0 ≤ r ≤ a − 1, 1 ≤
l ≤ L, k ∈ Zd} is an orthonormal basis forV1. We use the conventionϕl = f 0

l , 1 ≤ l ≤ L

with hlj = h0
lj andhljk = h0

ljk. The decompositionV1 = V0 ⊕W0, and the fact that

{f 0
l (· − k) : 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis ofV0, imply that

{f rl (· − k) : 1 ≤ r ≤ a − 1, 1 ≤ l ≤ L, k ∈ Zd}
is an orthonormal basis forW0. By (17) and (18), we see that

{aj/2f rl (Aj · −k) : 1 ≤ r ≤ a − 1, 1 ≤ l ≤ L, j ∈ Z, k ∈ Zd}
is an orthonormal basis forL2(Rd). This basis is called themultiwavelet basisand the
functions {f rl : 1 ≤ r ≤ a − 1, 1 ≤ l ≤ L} are themultiwaveletsassociated with
the MRA {Vj : j ∈ Z} of multiplicity L. For 0≤ r ≤ a − 1, by denotingFr(x) =(
f r1 (x), f

r
2 (x), . . . , f

r
L(x)

)t andF̂r (ξ) = (
f̂ r1 (ξ), f̂

r
2 (ξ), . . . , f̂

r
L(ξ)

)t , we can write (16)
and (21) as

F̂r (ξ) = Hr(B
−1ξ)8̂(B−1ξ), 0 ≤ r ≤ a − 1. (22)

This equation is known as thescaling relationsatisfied by the scaling functions (r = 0)
and the multiwavelets (1≤ r ≤ a − 1).

As we observed, applying splitting lemma to the spaceV1 = sp{a1/2ϕl(A · −k) :
1 ≤ l ≤ L, k ∈ Zd}, we get the functionsf rl , 0 ≤ r ≤ a − 1, 1 ≤ l ≤ L. Now, for any
n ∈ N0 = N ∪ {0}, we definef nl , 1 ≤ l ≤ L recursively as follows. Suppose thatf rl ,
r ∈ N0, 1 ≤ l ≤ L are defined already. Then define

f s+arl (x) =
L∑
j=1

∑
k∈Zd

hsljka
1/2f rj (Ax − k); 0 ≤ s ≤ a − 1, 1 ≤ l ≤ L. (23)

Taking Fourier transform

(f s+arl )∧(ξ) =
L∑
j=1

hslj (B
−1ξ)(f rj )

∧(B−1ξ). (24)

In vector notation, (24) can be written as

(Fs+ar )∧(ξ) = Hs(B
−1ξ)F̂r (B

−1ξ). (25)
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Note that (23) definesf nl for every non-negative integern and everyl such that 1≤ l ≤ L.
Observe thatf 0

l = ϕl, 1 ≤ l ≤ L are the scaling functions andf rl , 1 ≤ r ≤ a − 1, 1 ≤
l ≤ L are the multiwavelets. So this definition is consistent with the scaling relation (22)
satisfied by the scaling functions and the multiwavelets.

DEFINITION 3.1

The functions
{
f nl : n ≥ 0, 1 ≤ l ≤ L

}
as defined above will be called thebasic multi-

wavelet packetscorresponding to the MRA{Vj : j ∈ Z} of L2(Rd) of multiplicity L
associated with the dilationA.

The Fourier transforms of the multiwavelet packets

Our aim is to find an expression for the Fourier transform of the basic multiwavelet packets
in terms of the Fourier transform of the scaling functions. For an integern ≥ 1, we consider
the unique‘a-adic expansion’(i.e., expansion in the basea):

n = µ1 + µ2a + µ3a
2 + · · · + µja

j−1, (26)

where 0≤ µi ≤ a − 1 for all i = 1, 2, . . . , j andµj 6= 0.
If n can be expressed as in (26) then we will sayn hasa-adic lengthj . We claim that if

n has lengthj and has expansion (26), then

F̂n(ξ) = Hµ1(B
−1ξ)Hµ2(B

−2ξ) · · ·Hµj (B−j ξ)8̂(B−j ξ), (27)

so that(f nl )
∧(ξ) is thelth component of the column vector in the right hand side of (27).

We will prove the claim by induction.
From (22) we see that the claim is true for alln of length 1. Assume it for lengthj . Then

an integerm of a-adic lengthj + 1 is of the formm = µ+ an, where 0≤ µ ≤ a − 1 and
n has lengthj . Supposen has the expansion (26). Then from (25) and(27), we have

(Fm)
∧(ξ) = (Fµ+an)∧(ξ)

= Hµ(B
−1ξ)F̂n(B

−1ξ)

= Hµ(B
−1ξ)Hµ1(B

−2ξ) · · ·Hµj (B−(j+1)ξ )8̂(B−(j+1)ξ ).

Sincem = µ+ an = µ+µ1a+µ2a
2 + · · · +µjaj , F̂m(ξ) has the desired form. Hence,

the induction is complete.
The first theorem regarding the multiwavelet packets is the following.

Theorem 3.2.Let {f nl : n ≥ 0, 1 ≤ l ≤ L} be the basic multiwavelet packets constructed
above. Then

(i) {f nl (· − k) : aj ≤ n ≤ aj+1 − 1, 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis of
Wj, j ≥ 0.

(ii) {f nl (· − k) : 0 ≤ n ≤ aj − 1, 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis of
Vj , j ≥ 0.

(iii) {f nl (· − k) : n ≥ 0, 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis ofL2(Rd).
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Proof. Since{f nl : 1 ≤ n ≤ a − 1, 1 ≤ l ≤ L} are the multiwavelets, theirZd -translates
form an orthonormal basis forW0. So (i) is verified forj = 0. Assume forj . We
will prove for j + 1. By assumption, the functions{f nl (· − k) : aj ≤ n ≤ aj+1 − 1,
1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis ofWj . Sincef ∈ Wj ⇔ f (A·) ∈ Wj+1,
the system of functions

{a1/2f nl (A · −k) : aj ≤ n ≤ aj+1 − 1, 1 ≤ l ≤ L, k ∈ Zd}
is an orthonormal basis ofWj+1. Let

En = sp{a1/2f nl (A · −k) : 1 ≤ l ≤ L, k ∈ Zd}.
Hence,

Wj+1 =
aj+1−1⊕
n=aj

En. (28)

Applying the splitting lemma toEn, we get the functions

g
n,r
l (x) =

L∑
m=1

∑
k∈Zd

hrlmka
1/2f nm(Ax − k) (0 ≤ r ≤ a − 1, 1 ≤ l ≤ L) (29)

so that{gn,rl (· − k) : 0 ≤ r ≤ a − 1, 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis ofEn.
But by (23), we have

g
n,r
l = f r+anl .

This fact, together with (28), shows that

{f r+anl (· − k) : 0 ≤ r ≤ a − 1, 1 ≤ l ≤ L, k ∈ Zd , aj ≤ n ≤ aj+1 − 1}
= {f nl (· − k) : aj+1 ≤ n ≤ aj+2 − 1, 1 ≤ l ≤ L, k ∈ Zd}

is an orthonormal basis ofWj+1. So (i) is proved. Item (ii) follows from the observation
thatVj = V0 ⊕W0 ⊕ · · · ⊕Wj−1 and (iii) follows from the fact that∪Vj = L2(Rd). 2

4. Construction of orthonormal bases from the multiwavelet packets

We now takeall dilations by the matrixA andall Zd -translations of the basic multiwavelet
packet functions.

DEFINITION 4.1

Let{f nl : n ≥ 0, 1 ≤ l ≤ L}be the basic multiwavelet packets. The collection of functions

P = {aj/2f nl (Aj · −k) : n ≥ 0, 1 ≤ l ≤ L, j ∈ Z, k ∈ Zd}
will be called the ‘general multiwavelet packets’ associated with the MRA{Vj } of L2(Rd)

of multiplicity L.

Remark4.2. Obviously the collectionP is overcomplete inL2(Rd). For example
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(i) The subcollection withj = 0, n ≥ 0, 1 ≤ l ≤ L, k ∈ Zd gives us the basic multi-
wavelet packet basis constructed in the previous section.

(ii) The subcollection withn = 1, 2, . . . , a − 1; 1 ≤ l ≤ L, j ∈ Z, k ∈ Zd is the usual
multiwavelet basis.

So it will be interesting to find out other subcollections ofP which form orthonormal
bases forL2(Rd).

Forn ≥ 0 andj ∈ Z, define the subspaces

Unj = sp{aj/2f nl (Aj · −k) : 1 ≤ l ≤ L, k ∈ Zd}. (30)

Observe that

U0
j = Vj and

a−1⊕
r=1

Urj = Wj, j ∈ Z.

Hence, the orthogonal decompositionVj+1 = Vj ⊕Wj can be written as

U0
j+1 =

a−1⊕
r=0

Urj .

We can generalize this fact to other values ofn.

PROPOSITION 4.3

For n ≥ 0 andj ∈ Z, we have

Unj+1 =
a−1⊕
r=0

Uan+rj . (31)

Proof. By definition

Unj+1 = sp
{
a
j+1

2 f nl (A
j+1 · −k) : 1 ≤ l ≤ L, k ∈ Zd

}
.

Let

El,k(x) = a
j+1

2 f nl (A
j+1 · −k), for 1 ≤ l ≤ L, k ∈ Zd .

Then{El,k : 1 ≤ l ≤ L, k ∈ Zd} is an orthonormal basis of the Hilbert spaceUnj+1. For
0 ≤ r ≤ a − 1, let

F rl,k(x) =
L∑

m=1

∑
β∈Zd

hrl,m,β−AkEm,β(x), 1 ≤ l ≤ L, k ∈ Zd ,

and

Hr = sp{F rl,k : 1 ≤ l ≤ L, k ∈ Zd}.
Then, by Corollary 2.3 we have

Unj+1 =
a−1⊕
r=0

Hr .
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Now

F rl,k(x) =
L∑

m=1

∑
β∈Zd

hrl,m,β−AkEm,β(x)

=
L∑

m=1

∑
α∈Zd

hrl,m,αEm,Ak+α(x)

=
L∑

m=1

∑
α∈Zd

hrl,m,αa
j+1

2 f nm(A
j+1x − Ak − α)

= a
j
2
L∑

m=1

∑
α∈Zd

hrl,m,αa
1
2f nm

(
A(Ajx − k)− α

)
= a

j
2f an+rl (Ajx − k), by (23).

Therefore,

Hr = Uan+rj

and

Unj+1 =
a−1⊕
r=0

Uan+rj .

2

Using Proposition 4.3 we can get various decompositions of the wavelet subspaces
Wj, j ≥ 0, which in turn will give rise to various orthonormal bases ofL2(Rd).

Theorem 4.4.Let j ≥ 0. Then, we have

Wj =
a−1⊕
r=1

Urj

Wj =
a2−1⊕
r=a

Urj−1

...

Wj =
al+1−1⊕
r=al

Urj−l , l ≤ j

Wj =
aj+1−1⊕
r=aj

Ur0, (32)

whereUnj is defined in(30).

Proof. SinceWj = ⊕a−1
r=1 U

r
j , we can apply Proposition 4.3 repeatedly to get (32).2

Theorem 4.4 can be used to construct many orthonormal bases ofL2(Rd). We have the
following orthogonal decomposition (see (19)):

L2(Rd) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ · · · .
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For eachj ≥ 0, we can choose any of the decompositions ofWj described in (32). For
example, if we do not want to decompose anyWj , then we have the usual multiwavelet
decomposition. On the other hand, if we prefer the last decomposition in (32) for each
Wj , then we get the multiwavelet packet decomposition. There are other decompositions
as well. Observe that in (32), the lower index ofUnj ’s are decreased by 1 in each succ-
essive step. If we keep some of these spaces fixed and choose to decompose others by using
(31), then we get decompositions ofWj which do not appear in (32). So there is certain
interplay between the indicesn ∈ N0 andj ∈ Z.

Let S be a subset ofN0 × Z, whereN0 = N ∪ {0}. Our aim is to characterize thoseS
for which the collection

PS =
{
a
j
2f nl (A

j · −k) : 1 ≤ l ≤ L, k ∈ Zd , (n, j) ∈ S
}

will be an orthonormal basis ofL2(Rd). In other words, we want to find out those subsets
S of N0 × Z for which⊕

(n,j)∈S
Unj = L2(Rd). (33)

By using (31) repeatedly, we have

Unj =
a−1⊕
r=0

Uan+rj−1

=
a(n+1)−1⊕
r=an

Urj−1 =
a(n+1)−1⊕
r=an

[
a−1⊕
s=0

Uar+sj−2

]

=
a2(n+1)−1⊕
r=a2n

Urj−2 = · · · =
aj (n+1)−1⊕
r=aj n

Ur0 . (34)

Let In,j = {r ∈ N0 : ajn ≤ r ≤ aj (n+ 1)− 1}. Hence,

Unj =
⊕
r∈In,j

Ur0 . (35)

That is, ⊕
(n,j)∈S

Unj =
⊕
(n,j)∈S

⊕
r∈I(n,j)

Ur0 .

But we have already proved in Theorem 3.2 that

L2(Rd) =
⊕
r∈N0

Ur0 .

Thus, for (33) to be true, it is necessary and sufficient that{In,j : (n, j) ∈ S} is a partition
of N0. We say{Al : l ∈ I } is a partition ofN0 if Al ⊂ N0, Al ’s are pairwise disjoint, and
∪l∈IAl = N0. We summarize the above discussion in the following theorem.

Theorem 4.5. Let {f nl : n ≥ 0, 1 ≤ l ≤ L} be the basic multiwavelet packets and
S ⊂ N0 × Z. Then the collection of functions{

a
j
2f nl (A

j · −k) : 1 ≤ l ≤ L, k ∈ Zd , (n, j) ∈ S
}

is an orthonormal basis ofL2(Rd) if and only if{In,j : (n, j) ∈ S} is a partition ofN0.
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5. Wavelet frame packets

Let H be a separable Hilbert space. A sequence{xk : k ∈ Z} of H is said to be a frame for
H if there exist constantsC1 andC2, 0< C1 ≤ C2 < ∞ such that for allx ∈ H,

C1‖x‖2 ≤ ∑
k∈Z

| 〈x, xk〉 |2 ≤ C2‖x‖2. (36)

The largestC1 and the smallestC2 for which (36) holds are called the frame bounds.
Suppose that8 = {

ϕ1, ϕ2, . . . , ϕN
} ⊂ L2(Rd) such that{ϕl(· − k) : 1 ≤ l ≤ N ,

k ∈ Zd} is a frame for its closed linear spanS(8). Let ψ1, ψ2, . . . , ψN be elements in
S(8) so that eachψj is a linear combination ofϕl(· − k); 1 ≤ l ≤ L, k ∈ Zd . A natural
question to ask is the following: when can we say that{ψj (· − k) : 1 ≤ j ≤ N , k ∈ Zd}
is also a frame forS(8)?

If ψj ∈ S(8), then there exists
{
pjlk : k ∈ Zd

}
in l2(Zd) such that

ψj (x) =
N∑
l=1

∑
k∈Zd

pjlkϕ
l(x − k).

In terms of Fourier transform

ψ̂j (ξ) =
N∑
l=1

∑
k∈Zd

pjlke−i〈k,ξ〉ϕ̂l(ξ)

=
N∑
l=1
Pjl(ξ)ϕ̂

l(ξ) (1 ≤ j ≤ N), (37)

wherePjl(ξ) = ∑
k∈Zd

pjlke−i〈k,ξ〉. LetP(ξ) be theN ×N matrix:

P(ξ) =
(
Pjl(ξ)

)
1≤j, l≤N

.

LetS andT be two positive definite matrices of orderN . We sayS ≤ T if 〈x, Sx〉 ≤ 〈x, T x〉
for all x ∈ RN . The following lemma is the generalization of Lemma 3.1 in [2].

Lemma 5.1. Let ϕl, ψl for 1 ≤ l ≤ N , andP(ξ) be as above. Suppose that there exist
constantsC1 andC2, 0< C1 ≤ C2 < ∞ such that

C1I ≤ P ∗(ξ)P (ξ) ≤ C2I for a.e. ξ ∈ Td . (38)

Then, for allf ∈ L2(Rd), we have

C1

N∑
l=1

∑
k∈Zd

∣∣〈f, ϕl(· − k)
〉∣∣2 ≤

N∑
l=1

∑
k∈Zd

∣∣〈f,ψl(· − k)
〉∣∣2 ≤ C2

N∑
l=1

∑
k∈Zd

∣∣〈f, ϕl(· − k)
〉∣∣2 . (39)

LetA be a dilation matrix,B = At anda = | detA| = | detB|. Let

KA = {α0, α1, . . . , αa−1} (40)

and

KB = {β0, β1, . . . , βa−1} (41)
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be fixed sets of digits forA andB respectively. For 0≤ r, s ≤ a − 1 and 1≤ l, j ≤ L,
define for a.e.ξ ,

E rslj (ξ) = δlj a
− 1

2 e−i〈ξ+2B−1βsπ,αr
〉
. (42)

Let

Ers(ξ) =
(
Erslj (ξ)

)
1≤l,j≤L

(43)

and

E(ξ) =
(
Ers(ξ)

)
0≤r,s≤a−1

. (44)

SoE(ξ) is block matrix witha blocks in each row and each column, and each block is
a square matrix of orderL, so thatE(ξ) is a square matrix of orderaL. We have the
following lemma which will be useful for the splitting trick for frames.

Lemma5.2. (i) If ν ∈ KA, then
∑

µ∈KB
e−i2π 〈B−1µ,ν

〉
= aδ0ν .

(ii) The matrixE(ξ), defined in(44), is unitary.

Proof. Item (i) is the orthogonal relation for the characters of the finite groupZd/BZd (see
[14]). Observe that the mapping

µ+ BZd 7→ e−i2π 〈B−1µ,ν
〉
, ν ∈ KA

is a character of the (finite) coset groupZd/BZd . If ν = 0 (i.e., if ν ∈ AZd ), then
there is nothing to prove. Suppose thatν 6= 0, then there exists aµ′ ∈ KB such that
e−i2π 〈B−1µ′,ν

〉
6= 1. SinceKB is a set of digits forB, so isKB − µ′. Hence,∑

µ∈KB
e−i2π 〈B−1(µ−µ′),ν

〉
= ∑
µ∈KB

e−i2π 〈B−1µ,ν
〉
. (45)

Now ∑
µ∈KB

e−i2π 〈B−1µ,ν
〉

= e−i2π 〈B−1µ′,ν
〉
· ∑
µ∈KB

e−i2π 〈B−1(µ−µ′),ν
〉

= e−i2π 〈B−1µ′,ν
〉
· ∑
µ∈KB

e−i2π 〈B−1µ,ν
〉
, by (45).

Therefore, ∑
µ∈KB

e−i2π 〈B−1µ,ν
〉
= 0, since e−i2π

〈
B−1µ′,ν

〉
6= 1.

To prove (ii), observe that the(r, s)th block of the matrixE(ξ)E∗(ξ) is

a−1∑
t=0
Ert (ξ)

(
Ets(ξ)

)∗
.

The(l, j)th entry in this block is

a−1∑
t=0

L∑
m=1

E rtlm(ξ)
(
E tsmj (ξ)

)∗
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=
a−1∑
t=0

L∑
m=1

δlma
−1/2e−i〈ξ+2B−1βtπ,αr

〉
· δjma−1/2ei

〈
ξ+2B−1βtπ,αs

〉

=
L∑

m=1
δlmδjm

a−1∑
t=0
a−1e−i〈ξ+2B−1βtπ,αr−αs

〉

=
L∑

m=1
δlmδjmδrs, (by (i) of the lemma)

= δlj δrs .

This proves thatE(ξ)E∗(ξ) = I . Similarly,E∗(ξ)E(ξ) = I . Therefore,E(ξ) is a unitary
matrix. 2

6. Splitting lemma for frame packets

Let {ϕl : 1 ≤ l ≤ L} be functions inL2(Rd) such that{ϕl(· − k) : 1 ≤ l ≤ L, k ∈ Zd} is a
frame for its closed linear spanV . For 0≤ r ≤ a − 1 and 1≤ l ≤ L, suppose that there
exist sequences{hrljk : k ∈ Zd} ∈ l2(Zd). Definef rl as in (4) and (5). That is,

f rl (x) =
L∑
j=1

∑
k∈Zd

hrljka
1/2ϕj (Ax − k). (46)

LetHr(ξ) be the matrix defined in (7). LetKA andKB be respectively fixed sets of digits
for A andB as in (40) and (41). LetH(ξ) be the matrix

H(ξ) =
(
Hr(ξ + 2B−1βsπ)

)
0≤r,s≤a−1

. (47)

H(ξ) is a block matrix witha blocks in each row and each column, and each block is of
orderL so thatH(ξ) is a square matrix of orderaL. Assume that there exist constantsC1

andC2, 0< C1 ≤ C2 < ∞ such that

C1I ≤ H ∗(ξ)H(ξ) ≤ C2I for a.e. ξ ∈ Td . (48)

We can writef rl as

f rl (x) =
L∑
j=1

∑
k∈Zd

hrljka
1/2ϕj (Ax − k)

=
L∑
j=1

a−1∑
s=0

∑
k∈Zd

hrl,j,αs+Aka
1/2ϕj (Ax − αs − Ak), by (2)

=
L∑
j=1

a−1∑
s=0

∑
k∈Zd

hrl,j,αs+Akϕ
(s)
j (x − k),

where

ϕ
(s)
j (x) = a1/2ϕj (Ax − αs), 0 ≤ s ≤ a − 1. (49)

Taking Fourier transform, we obtain

(f rl )
∧(ξ) =

L∑
j=1

a−1∑
s=0

∑
k∈Zd

hrl,j,αs+Ake
−i〈ξ,k〉(ϕ(s)j )

∧(ξ)

=
L∑
j=1

a−1∑
s=0

prslj (ξ)(ϕ
(s)
j )

∧(ξ),
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whereprslj (ξ) = ∑
k∈Zd h

r
l,j,αs+Ake

−i〈ξ,k〉. Define

P rs(ξ) =
(
prslj (ξ)

)
1≤l,j≤L

(50)

and

P(ξ) =
(
P rs(ξ)

)
0≤r,s≤a−1

. (51)

Claim.

H(ξ) = P(Bξ)E(ξ), (52)

whereE(ξ) is defined in (42)–(44).

Proof of the claim. The(r, s)th block of the matrixP(Bξ)E(ξ) is the matrix

a−1∑
t=0
P rt (Bξ)Ets(ξ).

The(l, j)th entry in this block is equal to

a−1∑
t=0

L∑
m=1

prtlm(Bξ)E tsmj (ξ)

=
a−1∑
t=0

L∑
m=1

∑
k∈Zd

hrl,m,αt+Ake
−i〈Bξ,k〉δmja−1/2e−i〈ξ+2B−1βsπ,αt

〉

=
a−1∑
t=0

∑
k∈Zd

hrl,j,αt+Ake
−i〈Bξ,k〉a−1/2e−i〈ξ+2B−1βsπ,αt

〉
.

Now, the(l, j)th entry in the(r, s)th block ofH(ξ) is

hrlj (ξ + 2B−1βsπ) = a−1/2 ∑
k∈Zd

hrljke
−i〈ξ+2B−1βsπ,k

〉

= a−1/2
a−1∑
t=0

∑
k∈Zd

hrl,j,αt+Ake
−i〈ξ+2B−1βsπ,αt+Ak

〉
, by (2)

= a−1/2
a−1∑
t=0

∑
k∈Zd

hrl,j,αt+Ake
−i〈ξ+2B−1βsπ,αt

〉
· e−i〈Bξ,k〉.

So the claim is proved. In particular, we have

H ∗(ξ)H(ξ) = E∗(ξ)P ∗(Bξ)P (Bξ)E(ξ). (53)

SinceE(ξ) is unitary by Lemma 5.2,H ∗(ξ)H(ξ) andP ∗(Bξ)P (Bξ) are similar matrices.
Let λ(ξ) and3(ξ) respectively be the minimal and maximal eigenvalues of the positive
definite matrixH ∗(ξ)H(ξ), and letλ = inf

ξ
λ(ξ) and3 = sup

ξ

3(ξ). (It is clear from (52)

thatλ(ξ) and3(ξ) are 2πZd -periodic functions.) Suppose 0< λ ≤ 3 < ∞. Then we
have, by (48) (in the sense of positive definite matrices),

λI ≤ H ∗(ξ)H(ξ) ≤ 3I for a.e. ξ ∈ Td
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which is equivalent to

λI ≤ P ∗(ξ)P (ξ) ≤ 3I for a.e. ξ ∈ Td .

Then by Lemma 5.1, for allg ∈ L2(Rd), we have

λ
a−1∑
s=0

L∑
l=1

∑
k∈Zd

∣∣∣〈g, ϕ(s)l (· − k)
〉∣∣∣2 ≤

a−1∑
s=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f sl (· − k)
〉∣∣2

≤ 3
a−1∑
s=0

L∑
l=1

∑
k∈Zd

∣∣∣〈g, ϕ(s)l (· − k)
〉∣∣∣2 , (54)

whereϕ(s)l is defined in (49). Since

L∑
l=1

∑
k∈Zd

∣∣〈g, a1/2ϕl(A · −k)〉∣∣2 =
a−1∑
s=0

L∑
l=1

∑
k∈Zd

∣∣∣〈g, ϕ(s)l (· − k)
〉∣∣∣2 , (55)

which follows from (49), inequality (54) can be written as

λ
L∑
l=1

∑
k∈Zd

∣∣〈g, a1/2ϕl(A · −k)〉∣∣2 ≤
a−1∑
s=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f sl (· − k)
〉∣∣2

≤ 3
L∑
l=1

∑
k∈Zd

∣∣〈g, a1/2ϕl(A · −k)〉∣∣2 . (56)

This is the splitting trick for frames: theA−1Zd -translates of theL dilated func-
tions ϕl(A·), 1 ≤ l ≤ L, are ‘decomposed’ intoZd -translates of theaL functionsf sl ,
0 ≤ s ≤ a − 1, 1 ≤ l ≤ L.

We now apply the splitting trick to the functions{f sl : 1 ≤ l ≤ L} for eachs, 0 ≤ s ≤
a − 1 to obtain

λ
L∑
l=1

∑
k∈Zd

∣∣〈g, a1/2f sl (A · −k)〉∣∣2 ≤
a−1∑
r=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f s,rl (· − k)
〉∣∣2

≤ 3
L∑
l=1

∑
k∈Zd

∣∣〈g, a1/2f sl (A · −k)〉∣∣2 , (57)

wheref s,rl , 0 ≤ r ≤ a − 1 are defined as in (46) (f sl now replacesϕl):

f
s,r
l (x) =

L∑
j=1

∑
k∈Zd

hsljka
1/2f rj (Ax − k); 0 ≤ s ≤ a − 1, 1 ≤ l ≤ L. (58)

Summing (57) over 0≤ s ≤ a − 1, we have

λ
a−1∑
s=0

L∑
l=1

∑
k∈Zd

∣∣〈g, a1/2f sl (A · −k)〉∣∣2 ≤
a−1∑
s=0

a−1∑
r=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f s,rl (· − k)
〉∣∣2

≤ 3
a−1∑
s=0

L∑
l=1

∑
k∈Zd

∣∣〈g, a1/2f sl (A · −k)〉∣∣2 .
Using (56), we obtain

λ2
L∑
l=1

∑
k∈Zd

∣∣〈g, a2/2ϕl(A
2 · −k)〉∣∣2 ≤

a−1∑
s=0

a−1∑
r=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f s,rl (· − k)
〉∣∣2

≤ 32
L∑
l=1

∑
k∈Zd

∣∣〈g, a2/2ϕl(A
2 · −k)〉∣∣2 . (59)
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Now as in the case of orthonormal wavelet packets, we can definef nl , for eachn ≥ 0 and
1 ≤ l ≤ L (see (23) and (27)). In order to ensure thatf nl are inL2(Rd), it is sufficient
to assume that all the entries in the matrixH(ξ), defined in (47), are bounded functions.
Comparing (58) and (23), we see that

{f s,rl : 0 ≤ r, s ≤ a − 1} = {f s+arl : 0 ≤ r, s ≤ a − 1} = {f nl : 0 ≤ n ≤ a2 − 1}.
So (59) can be written as

λ2
L∑
l=1

∑
k∈Zd

∣∣〈g, a2/2ϕl(A
2 · −k)〉∣∣2 ≤

a2−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f nl (· − k)
〉∣∣2

≤ 32
L∑
l=1

∑
k∈Zd

∣∣〈g, a2/2ϕl(A
2 · −k)〉∣∣2 .

By induction, we get for eachj ≥ 1,

λj
L∑
l=1

∑
k∈Zd

∣∣〈g, aj/2ϕl(Aj · −k)〉∣∣2 ≤
aj−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f nl (· − k)
〉∣∣2

≤ 3j
L∑
l=1

∑
k∈Zd

∣∣〈g, aj/2ϕl(Aj · −k)〉∣∣2 . (60)

We summarize the above discussion in the following theorem.

Note. {f nl : n ≥ 0, 1 ≤ l ≤ L} will be called the wavelet frame packets.

Theorem 6.1.Let{ϕl : 1 ≤ l ≤ L} ⊂ L2(Rd) be such that{ϕl(·−k) : 1 ≤ l ≤ L, k ∈ Zd}
is a frame for its closed linear spanV0, with frame boundsC1 andC2. LetH(ξ),Hr(ξ), λ
and3 be as above. A ssume that all entries ofHr(ξ +2B−1βsπ) are bounded measurable
functions such that0 < λ ≤ 3 < ∞. Let {f nl : n ≥ 0, 1 ≤ l ≤ L} be the wavelet frame
packets and letVj = {f : f (A−j ·) ∈ V0}. Then for allj ≥ 0, the system of functions

{f nl (· − k) : 0 ≤ n ≤ aj − 1, 1 ≤ l ≤ L, k ∈ Zd}
is a frame ofVj with frame boundsλjC1 and3jC2.

Proof. Since{ϕl(· − k) : 1 ≤ l ≤ L, k ∈ Zd} is a frame ofV0 with frame boundsC1 and
C2 , it is clear that for allj

{aj/2ϕl(Aj · −k) : 1 ≤ l ≤ L, k ∈ Zd}
is a frame ofVj with the same bounds. So from (60), we have

λjC1‖g‖2 ≤
aj−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f nl (· − k)
〉∣∣2 ≤ 3jC2‖g‖2 for all g ∈ Vj . (61)

2

In Theorem 3.2 we proved that the basic multiwavelet packets form an orthonormal basis
for L2(Rd) = ∪Vj . An analogous result holds for the wavelet frame packets if the matrix
H(ξ), defined in (47), is unitary.
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Before proving this result let us observe how the space∪j≥0Vj looks like. LetV0 =
sp{ϕl(· − k) : 1 ≤ l ≤ L, k ∈ Zd}, Vj = {f : f (A−j ·) ∈ V0} andVj ⊂ Vj+1. Let
W = ∪Vj . Then it is easy to check thatf ∈ W ⇒ f (· − A−j k) ∈ W for all j ∈ Z and
k ∈ Zd . We claim that elements of the formA−j k are dense inRd . ForK = {k1, k2, . . . , ka}
a set of digits forA, define the set

Q = Q(A,K) =
{
x ∈ Rd : x =

∑
j≥1

A−j εj ; εj ∈ K
}
.

In the above representation ofx, εj ’s need not be distinct. We have

‖A−j x‖ ≤ Cαj‖x‖, x ∈ Rd ,

whereC is a constant and 0< α < 1 (see [17], Chapter 5). Therefore, the series that defines

x is convergent. Forx = (x1, x2, . . . , xd) ∈ Rd , ‖x‖ = (|x1|2 +|x2|2 +· · ·+ |xd |2) 1
2 . The

setQ satisfies the following properties (see [10]):

(i) Q = ∪ai=1A
−1(Q+ ki)

(ii) ∪k∈Z(Q+ k) = Rd

(iii) Q is compact.

Let ε > 0 andy ∈ Q. We first show that there existj ∈ Z and k ∈ Zd such that
‖y − A−j k‖ < ε. From (i) we have

Q =
a⋃
i=1

A−1(Q+ ki)

=
a⋃
i=1

A−1

[
a⋃

m=1

A−1(Q+ km)+ ki

]

=
a⋃
i=1

a⋃
m=1

(A−2Q+ A−2km + A−1kl).

Hence, for anyj ≥ 1 and anyy ∈ Q, there existyj ∈ Q andl1, l2, . . . , lj ∈ K such that

y = A−j yj + A−j lj + A−(j−1)lj−1 + · · · + A−1l1.

Therefore,

‖y − A−j {lj + Alj−1 + · · · + Aj−1l1}‖ = ‖A−j yj‖
≤ Cαj‖yj‖
≤ C′αj (asQ is compact)

< ε, choosingj suitably.

Now if y ∈ Rd , then by (ii)y = y0 + p for somey0 ∈ Q andp ∈ Zd . Fory0 ∈ Q, there
existj ≥ 0 andk ∈ Zd such that‖y0 − A−j k‖ < ε. That is,

‖y0 + p − A−j (k + Ajp)‖ < ε

⇒ ‖y − A−j (k + Ajp)‖ < ε.

So the claim is proved.
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We have proved thatW is invariant under translations byA−j k and these elements are
dense inRd . Therefore,W is a closed translation invariant subspace ofL2(Rd). Hence,
W = L2

E(R
d) for someE ⊂ Rd (see [15]), where

L2
E(R

d) = {f ∈ L2(Rd) : suppf̂ ⊂ E}.
Now let

E0 =
L⋃
l=1

⋃
j≥0

Bj (suppϕ̂l).

Claim. E = E0 a.e.
To prove the claim we will follow [1], Theorem 4.3. Sinceϕl(Aj ·) ∈ Vj ⊂ W , the

function
(
ϕl(A

j ·))∧ = 1
aj
ϕ̂l(B

−j ·) ∈ Ŵ = {f̂ : f ∈ W }. Therefore,Bj (suppϕ̂l) =
supp

(
1
aj
ϕ̂l(B

−j ·)
)

⊂ E for all j ≥ 0 and 1≤ l ≤ L, which implies thatE0 ⊂ E. Let

E1 = E \ E0. We have

f ∈ Vj ⇔ f̂ =
L∑
l=1
ml(B

−j ξ)ϕ̂l(B−j ξ), (62)

for some 2πZd -periodic functionsml ∈ L2(Td).Hence, (62) implies that̂f = 0 onE1 for
all f ∈ Vj and hence, for allf ∈ ∪Vj = W . Taking closure, we obtain that̂f = 0 onE1

for all f ∈ W . ButW is the set of all functions whose Fourier transform is supported in
E. SinceE1 ⊂ E, we get thatE1 = ∅ a.e. Therefore,E = E0 a.e. 2

Theorem 6.2. Let {ϕl(· − k) : 1 ≤ l ≤ L, k ∈ Zd} ⊂ L2(Rd) be a frame for its closed
linear spanV0, with frame boundsC1 andC2 and letV0 ⊂ V1, whereVj = {f : f (A−j ·) ∈
V0}. Assume thatH(ξ) is unitary for a.e.ξ . Then{f nl (·−k) : n ≥ 0, 1 ≤ l ≤ L, k ∈ Zd}
is a frame for the space∪j≥0Vj with the same frame bounds.

More generally, letS = {(n, j) ∈ N0 × Z} be such that
⋃
(n,j)∈S In,j is a partition of

N0. Then the collection of functions{aj/2f nl (Aj · −k) : 1 ≤ l ≤ L, (n, j) ∈ S, k ∈ Zd} is
a frame for∪j≥0Vj with the same boundsC1 andC2 .

Proof. SinceH(ξ) is unitary,λ = 3 = 1 so that the inequalities in (60) are equalities, and
from (61) we have

C1‖g‖2 ≤
aj−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f nl (· − k)
〉∣∣2 ≤ C2‖g‖2 for all g ∈ Vj . (63)

Now leth ∈ ∪j≥0Vj . Then there existshj ∈ Vj such thathj → h asj → ∞. Fix j , then
for j < j ′, we have from (63)

aj−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈hj ′ , f nl (· − k)
〉∣∣2 ≤ C2‖hj ′ ‖2.

Letting j ′ → ∞ first and thenj → ∞, we have for allh ∈ ∪j≥0Vj∑
n≥0

L∑
l=1

∑
k∈Zd

∣∣〈h, f nl (· − k)
〉∣∣2 ≤ C2‖h‖2. (64)
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To get the reverse inequality we again use (63):

C1‖hj‖2 ≤
aj−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈hj , f nl (· − k)
〉∣∣2

=
aj−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈hj − h, f nl (· − k)
〉+ 〈

h, f nl (· − k)
〉∣∣2 .

Therefore,

C
1/2
1 ‖hj‖ ≤

( aj−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈hj − h, f nl (· − k)
〉∣∣2) 1

2

+
( aj−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈h, f nl (· − k)
〉∣∣2) 1

2

≤ C
1/2
2 ‖hj − h‖ +

( aj−1∑
n=0

L∑
l=1

∑
k∈Zd

∣∣〈h, f nl (· − k)
〉∣∣2) 1

2
, by (64).

Takingj → ∞, we get

C1‖h‖2 ≤ ∑
n≥0

L∑
l=1

∑
k∈Zd

∣∣〈h, f nl (· − k)
〉∣∣2

for all h ∈ ∪Vj . So the first part is proved.
Now letUnj = sp{aj/2f nl (Aj · −k) : 1 ≤ l ≤ L, k ∈ Zd}. Then we can prove as in

the orthogonal case (see (35)) that

Unj =
⊕
r∈In,j

Ur0,

where
⊕

is just a direct sum not necessarily orthogonal, andIn,j = {r ∈ N0 : ajn ≤ r ≤
aj (n + 1) − 1}. Now, sinceH(ξ) is unitary, we haveλ = 3 = 1 and hence (57) is an
equality. Therefore,

L∑
l=1

∑
k∈Zd

∣∣〈g, a1/2f nl (A · −k)〉∣∣2 =
a−1∑
r=0

L∑
l=1

∑
k∈Zd

∣∣〈g, f an+rl (· − k)
〉∣∣2 .

From this we get

L∑
l=1

∑
k∈Zd

∣∣〈g, a2/2f nl (A
2 · −k)〉∣∣2 =

a−1∑
t=0

a−1∑
r=0

L∑
l=1

∑
k∈Zd

∣∣∣〈g, f a(an+r)+tl (· − k)
〉∣∣∣2

=
a2(n+1)−1∑
r=a2n

L∑
l=1

∑
k∈Zd

∣∣〈g, f rl (· − k)
〉∣∣2 .

Similarly,

L∑
l=1

∑
k∈Zd

∣∣〈g, aj/2f nl (Aj · −k)〉∣∣2 =
aj (n+1)−1∑
r=aj n

L∑
l=1

∑
k∈Zd

∣∣〈g, f rl (· − k)
〉∣∣2

= ∑
r∈In,j

L∑
l=1

∑
k∈Zd

∣∣〈g, f rl (· − k)
〉∣∣2 . (65)
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From the first part of the theorem, we have for allf ∈ ∪Vj

C1‖f ‖2 ≤ ∑
n≥0

L∑
l=1

∑
k∈Zd

∣∣〈f, f nl (· − k)
〉∣∣2 ≤ C2‖f ‖2.

But, the setS is such that
⋃
(n,j)∈S In,j = N0. Therefore,

C1‖f ‖2 ≤ ∑
(n,j)∈S

∑
r∈In,j

L∑
l=1

∑
k∈Zd

∣∣〈f, f rl (· − k)
〉∣∣2 ≤ C2‖f ‖2.

Using (65), we get

C1‖f ‖2 ≤ ∑
(n,j)∈S

L∑
l=1

∑
k∈Zd

∣∣〈f, aj/2f nl (Aj · −k)〉∣∣2 ≤ C2‖f ‖2

for all f ∈ ∪Vj . This completes the proof of the theorem. 2
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