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Abstract. The orthonormal basis generated by a waveleL &fR) has poor fre-
quency localization. To overcome this disadvantage Coifman, Meyer, and Wicker-
hauser constructed wavelet packets. We extend this concept to the higher dimensions
where we consider arbitrary dilation matrices. The resulting badi$ @) is called

the multiwavelet packet basis. The concept of wavelet frame packet is also general-
ized to this setting. Further, we show how to construct various orthonormal bases of
L2(R%) from the multiwavelet packets.
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1. Introduction

Consider an orthonormal wavelet bf(R). At the jth resolution level, the orthonormal
basis{y i : j, k € Z} generated by the wavelet has a frequency localization proportional
to 2/. For example, if the wavelet is band-limited (i.e.j) is compactly supported), then
the measure of the support @f jx)" is 2/ times the measure of the supportjof since

W) &) = 27122 e 2K ke,
where
Vi =212y - —k), j kel

So whenj is large, the wavelet bases have poor frequency localization. Better frequency
localization can be achieved by a suitable construction starting from an MRA wavelet basis.
Let{V; : j € Z} be an MRA of L2(R) with corresponding scaling functiop and
waveletyr. Let W; be the corresponding wavelet subspad®s:= sp{yjx : k € Z}. In
the construction of a wavelet from an MRA, essentially the sgaceas split into two
orthogonal componentg, and Wy. Note thatV; is the closure of the linear span of the
functions{z%go(z - —k) : k € 7}, whereasVy and Wy are respectively the closure of the
span of{p(- — k) : k} and{y(- — k) : k}. Sincep(2- —k) = ¢ (2(- — 5)), we see that
the above procedure splits the half-integer translates of a function into integer translates of
two functions.
In fact, the splitting is not confined td; alone: we can choose to spiit;, which is the

span of{y (27 - —k) : k} = {y (2/'(~ — %)) . k}, to get two functions whose 2/ Dk
translates will span the same spatg. Repeating the splitting procedujdimes, we get
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2/ functions whose integer translates alone span the spacdf we apply this to each
W;, then the resulting basis @ (R), which will consist of integer translates of a count-
able number of functions (instead of all dilations and translations of the wayg|etill
give us a better frequency localization. This basis is called ‘wavelet packet basis’. The
concept of wavelet packet was introduced by Coifman, Meyer and Wickerhauser [6, 7].
For a nice exposition of wavelet packetsIcf(R) with dilation 2, see [11].

The concept of wavelet packet was subsequently generalifdptaking tensor prod-
ucts [5]. The non-tensor product version is due to Shen [16]. Other notable generalizations
are the biorthogonal wavelet packets [4], non-orthogonal version of wavelet packets [3],
the wavelet frame packets [2] d& for dilation 2, and the orthogonal, biorthogonal and
frame packets oft? by Long and Chen [13] for the dyadic dilation.

In this article we generalize these concept&{dfor arbitrary dilation matrices and we
will not restrict ourselves to one scaling function: we consider the case of those MRASs for
which the central space is generated by several scaling functions.

DEFINITION 1.1

A d x d matrix A is said to be a dilation matrix fdk? if
(i) Az%) c 7% and
(ii) all eigenvalues. of A satisfy|A| > 1.
Property (i) implies tha#t has integer entries and herjaket A| is an integer, and (ii) says
that| detA| is greater than 1. Lek = A’, the transpose oA anda = | detA| = | detB|.
ConsideringZ? as an additive group, we see th&f? is a normal subgroup af?. So
we can form the cosets ofz¢ in 7¢. It is a well-known fact that the number of distinct
cosets ofAZ¢ in 74 is equal tau = | detA| ([10, 17]). A subset oZ¢ which consists of
exactly one element from each of thecosets ofAZ¢ in Z¢ will be called aset of digits
for the dilation matrixA. Therefore, ifK 4 is a set of digits forA, then we can write

7' = |J Az? + ),
HEK 4

where{AZ¢ + 1 : u € K 5} are pairwise disjoint. A set of digits fot need not be a set of

0 2) of R?, the set

digits for its transpose. For example, for the dilation matix= (1 0

0
digits for A, then so isK — u, whereu € K. Therefore, we can assume, without loss of
generality, that = K.
The notion of a multiresolution analysis can be extendedl4d?) by replacing the
dyadic dilation by a dilation matrix and allowing the resolution spaces to be spanned by
more than one scaling function.

{ (0> , (é) } is a set of digits forM but not forM’. Itis easy to see that i is a set of

DEFINITION 1.2

A sequencgV; : j e Z} of closed subspaces af(RY) will be called a multiresolution
analysis (MRA) of L2(R?) of multiplicity L associated with the dilation matrix if the
following conditions are satisfied:



Multiwavelet and frame packets bE(R?) 441

(M1) V; C Vjyiforallj ez
(M2) UjezV; is dense inL2(RY) andn;czV; = {0}
(M3) f e V;ifandonlyif f(A) € Vj41

(M4) there exist functions{e1, ¢2, ..., g1} in Vp, called thescaling functionssuch that
the system of functiongy; (- —k) : 1 <1 < L, k € 7%} forms an orthonormal basis
for V.

The concept of multiplicity was introduced by Hér{12] in his Ph.D. thesis.
Since{g;(- —k) : 1 <1 <L, k € 7%} is an orthonormal basis dfy, it follows from
property (M3) thafa//?¢; (A7 - —k) : 1 <1 < L, k € Z%} is an orthonormal basis df;.
Observe that iff € L2(R?), then
(@ f(AT - —10) &) = a2 B7EN f(BE), £eR!, kezd,

The Fourier transform of a functiofi € LY(R?) is defined by
Fre) =1© = /R S ey, £ e RY

To define the Fourier transform for functions bf(R?), the operatorF is extended from
LN L2(R9), which is dense i.2(R?) in the L2-norm, to the whole of.2(R?). For this
definition of the Fourier transform, Plancherel theorem takes the form

1 ..
(f.g) = W(f, g;  fige LA®R.

First of all we will prove a lemma, the splitting lemma (see [8]), which is essential for the
construction of wavelet packets. We need the following facts for the proof of the splitting
lemma.

(@) LetT? = [—n, 7]? and f € LY(R?). SinceR? = U, 5a (T + 2krr), we can write

/Rd f(o)dx =/T )3 f(x+2kn)}dx. )

4 ezd

(b) Let{s; : k € 29} € 1*(z?) andK g be a set of digits for the dilation matrig. As 74
can be decomposed @¢ = U, ck, (BZ? + 1), we can write

DoSk= D, D Su+Bk- (2)
kezd weKp kezd
(c) LetKp be a set of digits foB. Define

Qo= | B7HT! +2un).
HEKp

SinceKp is a set of digits forB, the setQq satisfiesU .z« (Qo + 2km) = R4, This
fact, together with Qo| = (27)¢, implies that{Qq + 2kx : k € 79} is a pairwise
disjoint collection (see Lemma 1 of [10]). Therefore,

/ £ (x)dx =/ { > f(x+2kn)}dx, for f € LY(R?). ©)
R4 Qo “kezd

A function f is said to be 279-periodic if f(x + 2km) = f(x) for all k € Z¢ and for
a.e.x € RY.
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2. The splitting lemma

Let{g : 1 <[ < L} be functions inL2(R¢) such thatjg;(- — k) : 1 <1 < L,k € 79}
is an orthonormal system. Lét = sp{a?¢;(A-—k) : [,k}. Forl<1[,j < L and
0 <r < a— 1, suppose that there exist sequeriégs : k € 7%} e 12(7%). Define

L
f0 =3 % hjaei(Ax — k). 4)
j=lkezd

Taking Fourier transform of both sides

. L I
flr(é:) _ Z Z h;’jkafl/Zefl(B SJ{)Q/(B_I%_)
Jj=1lkezd
L 1oy s 1
= > h(B7)¢;(B78), (5)
j=1
where
@)=Y aYhi et 1<l j<L 0<r<a-1, (6)
kezd

andhj; is 2 74-periodic and is inL2(T%). Now, for 0<r < a — 1, define theL x L
matrices

H(§) = (”?f@))lg,m' (7)
By denoting

P() = (pr(x), ..., 0L () (8)

OE) = (f1®).....00(5) . 9)
we can write (5) as

Fr(&) = H,(B~%)®(B~%), 0<r<a-—1, (10)

whereF, (x) = (f] (x), f5 (), ..., ff(x) andFr (&) = (f1©), f5&), ..., frE).

The following well-known lemma characterizes the orthonormality of the system

{gi(-—k): 1<1<L, keZ?%. We give a proof for the sake of completeness.

Lemma2.1. The systeniy; (- —k): 1 <1 < L,k € 7%} is orthonormal if and only if
> ¢ +2km)pi(5 +2kn) =85, 1<jl<L.

kezd
Proof. Suppose that the syste@y (- — k) : 1 <1 < L, k € Z%} is orthonormal. Note that
(0iC¢ =)ot —a)) =9, o1(- — (@ — p)))forl < j,I < Landp,q € Z*. Now

8j150p = lej. @1 —p)) (@7, (@ —=pN")

= W
1 ~ . g
B W/I;{d@j(f)él(f)e”pﬂf)dg

1 —
= - b 5 (p.£)
- (Zn)d/W{kezzdwj(é+2kn)<pz(§+2kn)}e’P ds, by D).
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Therefore, the 27¢-periodic functionG ;;(§) = Y ¢;(& + 2kn)@i (£ + 2kx) has Four-
kezd

ier coefficientséjl(—p) =8j180p, P € 7% which implies thalG ;; = 6, a.e. By reversing

the above steps we can prove the converse. m|

Let M*(&) be the conjugate transpose of the maivixs) and I, denote the identity
matrix of orderL.

Lemma2.2. (The splitting lemmpLet{¢; : 1 < < L} be functions inL2(R%) such that
the systenfa'/?¢;(A - —k) : 1 < j < L, k € Z¢}is orthonormal. LetV be its closed
linear span. Letk be a set of digits foB. Also letf", H, be as above. Then

{(fft—k:0<r<a-1 1<I<L, kez%
is an orthonormal system if and only if

Y Ho (6 + 2B um)HF (& + 2B tun) =8,50,, 0<r,s<a—1 (11)
nek

Moreover{f/(-—k): 0<r<a-1, 1<I<L, ke 7% is an orthonormal basis of
whenever it is orthonormal

Proof. For 1<1,j <L,0<r,s <a—1andp € 7, we have
)

- = )d<(f =)

= (Zn)d f (D E )N Ee P Edg

1 - .
~ @ Ju > Z 1 (B~6) 1}, (B 6) g (B 1) (B )€/l
¢ m=1n=
(by (5))

T @) /Wkez 2 Z {hjm(B (& + 2km))h}, (B~H(§ + 2km))

7Zdm=1n=

P (BHE + 2km)gn (B~1E +2km)) | €742 (by (1)

1
= o B L X Wi B4 25l (5T 25 )
neK m=1n
{ 3 G (B7Y(E 4 2um) + 2km)@n(B~L(E + 2um) + an)}eup,adg
kezd
(by (2))
1
~ (@) /w ZK 21 Z Wy (BYE + 2B~y )b, (B~1& + 2B~ )
neEK m=1ln=

Sun€ P Ede  (by Lemma 21)

= L/W{ > Zh;m(B Ye + 2B Yum)ns, (B~ + 2B~ ;m)} §de.

(Zn)d nekK m=1
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Therefore,
(77 frc=m) = susus0p
s Y 2 h'(B7Y + 2B~ 1um)hs, (B~ + 2B 1um) = 6,8 forae & e R
;LEKm 1
L
& Y YW, ¢ +2B um)ki, (€ + 2B ur) = 5.8 forae & e RY
nekK m=1
& Y H (¢ +2B tum)H}(E + 2B tun) = 6,0 forae & eRY.
nek

We have proved the first part of the lemma.

Now assume thalf/ (- — k) : 0<r<a-1 1<I<L, ke 7%} is an orthonormal
system. We want to show that this is an orthonormal basig.ot.et f € V. So there
exists{c;, : p € 7%} € 12(z%), 1 < j < L such that

L
f@) =Y ¥ cjpa’?pi(Ax — p).

J=lpezd

Assume thatf L f/(- — k) forall r, [, k.

Claim. f =0.
Forallr,l,ksuchthat 0<r <a—1,1<1 <L,k € 74, we have

0 = (ffe=n A==k ¥ ¥ cpaoa-—p)

J=1lpezd
L A
ol(1¢=0) " (Z, T enatora-—p) |
= %/ () E)e &8 33 pa V2B rlg (B e ds
(27[) Rd J 1[762‘1
_ o / Zh (B16)pn (B0)e 8 S 5wl 6l (BT de
T @ o S p “
(by (5))
1/2 ,
= oo Zh ©in® Y. T T, @ B0 (¢ B)
(@) j=1pezd
a1/2

= - 3 z iy (€ + 2q70) P (§ + 2q7)

(2m)d Qo gezd m=1

L _ .
3 Y ¢ (€ + 2qm)eT itk BET2UmI G p 2T gs  (by (3))
J=1pezd

1/2 -

Qom=1j=1pezd gezd
.e—i<k,BE)ei(p,E)dé-
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a1/2 L - |
@i, Y Y K (E)ampe kB (e ds  (by Lemma 21)
o m=1pezd
al/? . o
@m? Z /B Z Z h?m(g)c'mpe_l( > §>el<[7f)d§-

@m)4 ek JB-11442um) m=1 pezd

a1/2 L . -1
72 / > Xy + 2B ey e I BEF25 )
(2m)¢ ek JB114 =1 pega

_ei(p,éﬂ-ZB’l;u‘r)d%-
al/? L . -
— 7 o 5 B 5 e v 2n tumelreran in)|
B neK m=1pezd
ik BE) g

Since{%e*”kﬂ‘) cke Z"] is an orthonormal basis fdr2(B—1T¢), the above equa-

tions give

L . —
> > %e’(SJrzB 1M,P>hl’m(§ +2B tur) =0ae forallr, I
nek m=lpezd

Form=1,2,..., L, define

CnE) = Y cmpe P, (12)
pezd

So we have

L
> Y CuE+2B tun)h),(E +2B umr) =0, 0<r<a-1, 1<I<L. (13)
nek m=1

Equations (11) are equivalent to saying that fox® <a —1, 1</ < L and for a.e.
£ € R?, the vectors

(?m($+23‘1un):15m5L, ,ueK)

are mutually orthogonal and each has norm 1, considered as a vectos itr-theensional
spaceC%t, so that they form an orthonormal basis fot”. Equation (13) says that the
vector

(Cm("§+ZBleT)31§m§L, ueK) (14)

is orthogonal to each member of the above orthonormal bagi$’af Hence, the vector
in the expression (14) is zero. In particul@ay,(§) = 0, forallm, 1 <m < L. That s,
emp=0,1<m<L, pe 7¢. Therefore,f = 0. This ends the proof. o

The splitting lemma can be used to decompose an arbitrary Hilbert space into mutually
orthogonal subspaces, as in [7]. We will use the following corollary later.
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COROLLARY 2.3

Let{Elk c1<i<L, ke Zd} be an orthonormal basis of a separable Hilbert spéte
LetH,, 0 <r <a — 1be as above and satisf¥1). Define

L
Fio= Y MppaiEmps O0<r<a-11<I<L, kez’
m=lpezd

Then{F}, : 1<1 <L, k € %} is an orthonormal basis for its closed linear spf and
_ na—1lar
H=&,_gH".

Proof. Lety1, ¢, ..., ¢z be functions inL2(R%) such thalg;(-—k) : 1 < < L,k € 7%)
is an orthonormal system. L& = 5p{a/?¢;(A - —k) : I, k}. Define a linear operatdf
from the Hilbert space to H by T'(a'/?¢;(A - —k)) = Ej. Let f/ are asin (4). Then,
T(ff(-—k)= F,fk. Now the corollary follows from the splitting lemma. O

3. Construction of multiwavelet packets

Let{V; : j € Z} be an MRA of L2(R?) of multiplicity L associated with the dilation
matrix A. Let{¢; : 1 <[ < L} be the scaling functions. Singg,1 <[ < L are in
Vo C Vi and{a¥?p;(A-—k): 1< j < L,k € Z%} forms an orthonormal basis 6f,
there exist{hjx : k € 74} e 12(z%) for 1 <1, j < L such that

L
o= X hzjkal/z(pj(Ax — k).
j=lkezd

Taking Fourier transform, we get
L

— —7 _1 A —
-Zl Zdhljka 1/2¢g i(B s,k)(pj(B 15)
J=Lkez

L
zl hi;(B~Y6)p;(B~1), (15)
]j=

@1(&)

wherehy; (&) = Y, 0 a=Y?hxe" €K andhy; is 2z 7?-periodic and is inL?(T9). Let
Ho(&) be theL x L matrix defined by

Ho(®) = ((h;©))

<l,j<L’

We will call Hp the low-pass filter matrix Rewriting (15) in the vector notations (8) and
(9), we have

® () = Ho(B~1)d(B~1¢). (16)
Let W; be the wavelet subspaces, the orthogonal complementiof V; ;. 1:
W;=Vi10V;.
Properties (M1) and (M3) of Definition 1.2 now imply that

Wi LWy, )
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and
feW, & f(A™7.) e W. (17)
Moreover, by (M2),L2(R?%) can be decomposed into orthogonal direct sums as

L2RY) = Pw; (18)

jez
j=0
By Lemma 2.1 and eq. (15), we have (for<l/, j < L)

Sii = Y. ¢+ 2km)Pi(€ + 2km)
kezd

L
> X im (B + 2m)9m (B + 2%m))

kezd “m=1

L
{2 n(BHE + 260 (B + 200 |

Now, using (2), we have

L L
Sji = Y Y hjm(B7YE + 2B tum) (B + 2B u)
neKpm=1n=1

> {@m(B_l(é + 2um) 4 2km) @ (B~L(E + 2um) + an)},
kezd

whereK p is a set of digits forB. Using Lemma 2.1 again, we get

L
Sii= Y Y hjm(B~Y + 2B um)hy (B~ + 2B 1 um). (20)
neKpm=1

This is equivalent to saying that

> Ho( +2B lum)HE(E + 2B lum) =1, forae &.
HEKB

Equation (20) is also equivalent to the orthonormality of the vectors
(mj6 +2B7um) i 1= j <L, pekg), 1=i=L geT’,

TheseL orthonormal vectors in the L-dimensional spac&“’ can be completed, by
Gram-Schmidt orthonormalization process, to produce an orthonormal bagig-foket
us denote the new vectors by

(W€ +287um): 1< j<L peky), 1sl<L l<r<a—1¢eT

and extend the functions, (1<r <a—-1 1=<I[,j <L) 27 7¢-periodically (see [9]
for the one-dimensional dyadic dilation). Denoting Hy(£), 1 <r <a — 1theL x L
matrix

(hlrf (§)>151,j5L’
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we have

> Ho(§ 4+ 2B lun)H ( + 2B tum) = 8,51, forae &.
HEKB

Now, forl<r <a—1, 1 <[ < L, define
HGE il hi;(B~1E)¢; (B71E). (21)
j=
Since;; are 2r7¢-periodic, there exist;;, : k € 74} e 12(2) such that
LE = X a Ve ek,

kezd

Now, applying the splitting lemma t&1, we see thaff/ (- — k) : 0<r <a—-1,1<

[ < L,k € 7%} is an orthonormal basis fdf;. We use the conventiap = flo, 1<i<L
with hj; = hg. andhyj; = h?jk. The decompositioVy = Vo & Wp, and the fact that
{flo(- —k):1<I1<L, k eZ%is an orthonormal basis 6, imply that

(ff¢t—-k:l<r<a-11<I<L, keZ%)
is an orthonormal basis fd¥p. By (17) and (18), we see that
(al?ff(A) - —k):1l<r<a-11<I<L, jeZ, ke

is an orthonormal basis fat2(R¢). This basis is called theultiwavelet basignd the
functions{f/ : 1 < r < a— 1, 1<1<L} are themultiwaveletsassociated with
the MRA {V; : j € Z} of multiplicity L. For 0<r <a — 1, by denotingF,(x) =
(1), Q). ... f1 @) and Fr(§) = (f @), f5&). ... f{ &))", we can write (16)
and (21) as

Fr () = H(B~%)®(B~%), O0<r<a-1 (22)

This equation is known as thezaling relationsatisfied by the scaling functions & 0)
and the multiwavelets (¥ r < a — 1).

As we observed, applying splitting lemma to the spae= sp{a/?¢;(A - —k) :
1<I<L, keZz%, we get the functiong;, 0 <r <a—1, 1 <! < L. Now, for any
n € No = N U {0}, we definef;", 1 <[ < L recursively as follows. Suppose th#t,
r € Ng, 1 <1 < L are defined already. Then define

L
@ =3 Y ha?fi(Ax—k); 0<s<a-1 1<I<L. (23)
Jj=lkezd

Taking Fourier transform
L
TN = ; hi; (B (f))N(B1E). (24)
J=

In vector notation, (24) can be written as

(Fstar)"(§) = Hy(B~ ) F, (B~ ). (25)
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Note that (23) defineg" for every non-negative integerand every suchthat1</ < L.
Observe thayfl0 =¢@,1 <1 < L arethe scaling functionsanfl, 1 <r <a—-1,1<

[ < L are the multiwavelets. So this definition is consistent with the scaling relation (22)
satisfied by the scaling functions and the multiwavelets.

DEFINITION 3.1

The functions{ f : n > 0, 1 < < L} as defined above will be called thasic multi-
wavelet packetsorresponding to the MRAV; : j e Z} of L?(R?) of multiplicity L
associated with the dilatioA.

The Fourier transforms of the multiwavelet packets

Our aim is to find an expression for the Fourier transform of the basic multiwavelet packets
in terms of the Fourier transform of the scaling functions. For anintegef, we consider
the unique a-adic expansion(i.e., expansion in the baag:

n =1+ poa + pza® + -+ pjal 1 (26)

where O< pu; <a—1foralli =1,2,..., jandu; # 0.
If n can be expressed as in (26) then we will sdyasa-adic length;j. We claim that if
n has lengthy and has expansion (26), then

Fo(§) = Hyy (B~')Hy,(B72€) -+ H, (B 6)D(B/£), (27)

so that(f;")" (&) is thelth component of the column vector in the right hand side of (27).
We will prove the claim by induction.
From (22) we see that the claim is true forabf length 1. Assume it for length. Then
an integern of a-adic lengthj + 1 is of the formvm = p + an, where 0O< u <a — 1 and
n has lengthj. Suppose has the expansion (26). Then from (25) and(27), we have

(Fm)A(‘i:) = (Fu+an)/\(‘§)
= Hu(B)F,(B™%)
= Hu(B™Y6)H, (B~%)---H,,(B~U*V5)d(B~U+V),

Sincem = p+an = pu+ pra + poa® + -+ ,leaj, F,,(§) has the desired form. Hence,
the induction is complete.
The first theorem regarding the multiwavelet packets is the following.

Theorem 3.2.Let{f" : n > 0, 1 <1 < L} be the basic multiwavelet packets constructed
above. Then

() {(ff¢—k:al <n<a/tl—1 1<I<L, kezis an orthonormal basis of
Wi, j=0.
(i) {f'¢ =k :0=<n< al —1, 1<l1<L, keZ%is an orthonormal basis of
Vi, j=0.
(i) {f"¢ -k :n>0, 1<I<L, keZz%isanorthonormal basis af?(R?).
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Proof. Since{f' :1<n <a-1, 1<I < L} arethe multiwavelets, the#-translates
form an orthonormal basis foWp. So (i) is verified forj = 0. Assume forj. We

will prove for j + 1. By assumption, the functiong;’(- — k) : a/ < n < a/*1 — 1,

1<1 <L, kez%isan orthonormal basis d¥;. Sincef € W; & f(A) € W,41,

the system of functions

(@2 f"(A-—k):a! <n<a/tt—1, 1<l<L, kez%
is an orthonormal basis ;1. Let
E, =5pla'?f(A-—k): 1<I<L, keZ.

Hence,

altl-1

Wiii= € En (28)

n=al

Applying the splitting lemma td&,,, we get the functions

L
g =Y ¥ hjafiAx—k) Osr<a-1 1<l<L) (29)
m=1kezd

sothatig/"(-—k): 0<r<a-—-1, 1<I<L, keZzisanorthonormal basis df,.
But by (23), we have

g?,r — flr+an.
This fact, together with (28), shows that

(P (—k:0<r<a-1 1<I<L, keZ o/ <n<a™ -1

= {(ff(—k:a/tt<n<ad™ -1 1<i<L, kez%

is an orthonormal basis &¥;, 1. So (i) is proved. Item (ii) follows from the observation
thatV; = Vo ® Wo @ - -- & W;_1 and (jii) follows from the fact that'V; = L?(RY). O

4. Construction of orthonormal bases from the multiwavelet packets

We now takaall dilations by the matrix andall Z¢-translations of the basic multiwavelet
packet functions.

DEFINITION 4.1
Let{f" :n >0, 1 <1 < L}bethebasic multiwavelet packets. The collection of functions
P={al?f(A) - —k):n>0, 1<I<L, jeZ ke7%

will be called the general multiwavelet packeétsssociated with the MRAV;} of L2(RY)
of multiplicity L.

Remark4.2. Obviously the collectio® is overcomplete ir.2(R¢). For example
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(i) The subcollectionwithy =0, n >0, 1<l <L, ke z4 gives us the basic multi-
wavelet packet basis constructed in the previous section.
(i) The subcollectionwitm =1,2,...,a—1; 1<I<L, jeZ, ke z%is the usual
multiwavelet basis.
So it will be interesting to find out other subcollectionsfwhich form orthonormal
bases for.2(R%).
Forn > 0 and; € Z, define the subspaces

Ut = spla’/?f{(AT - —k): 1< <L, ke, (30)
Observe that
a—1
U)=v;, and PuUj=Ww,; jeZ
r=1

Hence, the orthogonal decompositivp,; = V; @ W; can be written as

a—1
0
U =P
r=0
We can generalize this fact to other values of

PROPOSITION 4.3

Forn > 0andj € Z, we have

a—1

;1+1 = @ qun-l—r. (31)
r=0

Proof. By definition
L= fa’® At 1sis L kezd].
Let
Epe(x) = a%fl"(Aj*l -—k), forl<I<L, kez

Then{E;;: 1<I<L, ke 7%} is an orthonormal basis of the Hilbert Spd{lﬁ_l. For
O<r<a-1,let

L
Fo) = Y hpparEnplx), 1<I<L, ke,
m=1gezd
and
H =5p{F/,: 1<I<L, kez}.

Then, by Corollary 2.3 we have

a—1
n o _ r
=D
r=0
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Now
. L
Fl(x) = > Ry, p—ak Em,p(x)
m=1pgezd
L
= Z Z hlr,m,aEm,Ak+a(x)
m=1qezd
$ 4 j+1
= Z Zh;maazfnr;(A] x — Ak — )
m=1gezd o
i L 1 ;
= a2y Y hj,.a?fm (A(Afx —k) —a)
m=lgezd
= a?fT(AIx —k), by(23.
Therefore,
r __ yran+r
H =Uj
and
a—1
+
Uja = Qs
r=0

O

Using Proposition 4.3 we can get various decompositions of the wavelet subspaces
W;, j = 0, which in turn will give rise to various orthonormal basedB{(R?).

Theorem 4.4.Letj > 0. Then, we have

w; = Pu;
a—1

w, = @ui,
r=a

a1+171

Wi = DU 1<

r=al
w, = P U (32)
WhereUJ’? is defined in(30).

Proof. SinceW; = @;’j U/’., we can apply Proposition 4.3 repeatedly to get (32).0

Theorem 4.4 can be used to construct many orthonormal bagesif). We have the
following orthogonal decomposition (see (19)):

LR = Vo Wo D W1 Wo®d---.
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For eachj > 0, we can choose any of the decompositiond¥gfdescribed in (32). For
example, if we do not want to decompose dify, then we have the usual multivavelet
decomposition. On the other hand, if we prefer the last decomposition in (32) for each
W;, then we get the multiwavelet packet decomposition. There are other decompositions
as well. Observe that in (32), the lower indexﬂbj’s are decreased by 1 in each succ-
essive step. If we keep some of these spaces fixed and choose to decompose others by using
(31), then we get decompositions Bf; which do not appear in (32). So there is certain
interplay between the indicese Ng andj € Z.

Let S be a subset dNg x Z, whereNg = N U {0}. Our aim is to characterize those
for which the collection

Psz[a%f,"(Af.—k): 1<I<L, keZ (n,j)es}

will be an orthonormal basis df2(R?). In other words, we want to find out those subsets
S of Ng x Z for which

P ur =R, (33)
(n,j)es
By using (31) repeatedly, we have
a—1
_ +
v = Uy
r=0
a(n+1)—1 an+1)—1la-1
r +
- O v © | @ury]
r=an r=an s=0
a?(n+1)-1 al(n+1)—-1
= D v.== D v (34)
r=a2n r=ain
Letl, j={reNp: a’n <r <al(n+ 1) — 1}). Hence,
ut= P us. (35)
re[,,yj
That is,
Duvi=-D D
(n,j)es (n,j)es VEI(,,,J')

But we have already proved in Theorem 3.2 that
L*®Y) = @ ug.

reNp

Thus, for (33) to be true, it is necessary and sufficientthat : (n, j) € S} is a partition
of No. We say{A; : [ € I} is a partition ofNg if A; C Ng, A;’s are pairwise disjoint, and
Urer A; = Np. We summarize the above discussion in the following theorem.

Theorem 4.5. Let{f" : n = 0, 1<I[ <L} be the basic multiwavelet packets and
S C Ng x Z. Then the collection of functions

{a%fl”(Af.—k): 1<i<L, kezd (. jes)

is an orthonormal basis af2(R9) if and only if{I, ;: (n, j) € S}is a partition ofNo.
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5. Wavelet frame packets

Let’H be a separable Hilbert space. A sequeinge k € Z} of H is said to be a frame for
‘H if there exist constantS1 andC», 0 < C1 < C2 < oo such that for alk € H,

Callxl® < | (x. x) |7 < Collx |12 (36)
kez
The largestC1 and the smallest; for which (36) holds are called the frame bounds.
Suppose tha® = {¢t,¢?, ..., "} C L?(RY) such that{p/(- —k) : 1 <1 < N,
k € 7%} is a frame for its closed linear spahi®). Let vt w2, ..., ¥V be elements in
S(®) so that eachy/ is a linear combination af'(- —k); 1 <1 < L, k € Z¢. A natural
question to ask is the following: when can we say fyat(- —k) : 1 < j < N, k € 7%}
is also a frame fof(®)?
If ¥/ € S(®), then there existbp i : k € 2%} in 12(z9) such that

) N
Y =3 Y piue (x —k).
I=1kezd
In terms of Fourier transform

n N .
yE) = Y Y piue® ¢ &)

I=1kezd

N
Zgl PuE)¢'® (1<j=<N), (37)

whereP;;(§) = Y. pjue "), Let P(£) be theN x N matrix:
kezd

P© = (Pu®)

1<j, <N’

LetS andT be two positive definite matrices of ordgr We sayS < T if (x, Sx) < (x, Tx)

for all x € RV. The following lemma is the generalization of Lemma 3.1 in [2].

Lemmab.1. Lety!, ¢/ for1 <1 < N, and P(£) be as above. Suppose that there exist
constant’1 andC», 0 < C1 < C2 < oo such that

C1l < P*(§)P(§) < Col forae & e T (38)

Then, for all f € L?(R4), we have

N 2 X 2 N 2
Y YA C=0) =X SAvC=b) =YX Y |fe'¢—b)". (39)

I=1kezd I=1kezd I=1kezd
Let A be a dilation matrixB = A’ anda = | detA| = | detB|. Let
Kis={ag,a1,...,0q4_1} (40)
and

K ={Bo,B1.--., Pa-1} (41)
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be fixed sets of digits foA and B respectively. ForG< r,s <a—1and 1</, <L,
define for a.e&,

E3(6) = 8yja beilE2B T hmen), (42)
Let

ER©) = (£ ©) (43)

1<i,j=<L

and

E© = (E"@) (44)

So E (&) is block matrix witha blocks in each row and each column, and each block is
a square matrix of ordek, so thatE(¢) is a square matrix of orderL. We have the
following lemma which will be useful for the splitting trick for frames.

O<r,s<a-1

Lemmab.2. (i)If v e K4, then Y e /27(B7 1) = g5,
nekp

(i) The matrixE (§), defined in(44), is unitary.
Proof. Item (i) is the orthogonal relation for the characters of the finite gty z¢ (see
[14]). Observe that the mapping

w+ BZ¢ e i2r(B 7 wy) ) ¢ Ka

is a character of the (finite) coset grod/Bz¢. If v = 0 (i.e., if v € AZ9), then
there is nothing to prove. Suppose thatt 0, then there exists o’ € Kp such that
e~ 27(B1'v) £ 1. SinceKp is a set of digits foB, so iskp — i/. Hence,

Z efiZH(B’l(p.fu’),v): Z efiZU(B’lu,v>' (45)
nekKp nekKp
Now
Z eﬂ'Zﬂ(B’l/A,v) _ eﬂ'Zﬂ(B’l/A’,u)' Z eﬂZn(B*(uﬂ/),u)
nekp nekKp
e—ih(B_lu/,v>. Z e—iZH(B_lp,,v)’ by(45)
HEKB
Therefore,

S e izrB ) — o) since e (BT £ 1,
HEKp

To prove (ii), observe that the, s)th block of the matrixE (§) E*(§) is
a—1
2% E"(&) (E"(®))".
=

The (/, j)th entry in this block is

Ty ene (g©)

t=0m=1
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a—1 L 12 i 1 1/2 -1
S Syma gil+2B B} 8jma gi6+2B~ B )
t=0m=1

= Z5zm ,mZa i )

= Z(Szma,-mam, (by (i) of the lemma

m=1
= 8lj5rs~
This proves thak (§) E*(§) = I. Similarly, E*(&§)E(§) = I. Therefore E (¢) is a unitary
matrix. ]

6. Splitting lemma for frame packets

Let{g; : 1 <1 < L} be functions inL?(R?) such thafy;(- —k) : 1 <[ < L,k € 7%} isa
frame for its closed linear span. For 0<r <a —1 and 1< < L, suppose that there
exist sequenceld;, : k € 7%} € 12(2%). Definef; as in (4) and (5). Thatis,

)= Z > hljka 20 (Ax — k). (46)

j=lkezd
Let H, (¢) be the matrix defined in (7). L&k 4 andK 3 be respectively fixed sets of digits
for A andB as in (40) and (41). LeH (¢) be the matrix
-1

HE) = (6 +287m) (47)
H (&) is a block matrix witha blocks in each row and each column, and each block is of
orderL so thatH (¢) is a square matrix of orderL.. Assume that there exist constagts
andCy, 0 < C1 < C2 < oo such that

C1I < H*(§)H(€) < CI forae & € T?. (48)

We can writef;” as

L
) = Z Z Ry at?p;(Ax — k)
J
j=lkezd
L a—1
= Zl . Z hl]a+Aka 20 (Ax — ay — Ak), by (2)
J=1s=Uke
L a-1 )
= Z Z Z hl,j,ocy—&-Ak‘pj (x — k),
j=1s=0kezd
where
(pj(.s)(x) = al/zfpj(Ax —os), O0<s<a-1 (49)
Taking Fourier transform, we obtain
A Loacl r —i(E.k) (A
UD€ = LN % hjarm® HER () (©)
/_ s=0kez

3 Zp SO E),

j=15=0
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wherep)? (§) = Yreza b o4 ax® Y. Define

Pre = (i ®),, (50)
and

P() = (P”@)>O<”<a_1' (51)
Claim.

H(&) = P(BE)EE), (52)

whereE (&) is defined in (42)—(44).

Proof of the claim The(r, s)th block of the matrixP (B¢) E (¢) is the matrix
a—1
> P"'(B§)E"(&).
t=0

The(l, j)th entry in this block is equal to

a—1 L

Y Y pin(BEEN (&)

t=0m=1

Ty (BEk 1/2-i(t+2B71
P o L T Ce A
t=0m=1kezd

ot ' 1/2 o ifg+2B
=y % hlrjat+Ake—z(B§,k)a— [2g-ils+2B 7 Byman)
1=0kez?

Now, the(/, j)th entry in the(r, s)th block of H (§) is

I’l?l (é + ZB_lﬂST[) = a—l/2 Z hlrjke,i<é+23—lﬁxn’k>
kezd

a—1
_ _ “1g
=a Y Y M e an® 428" et Ak py (2)
1=0kezd

a—1
__—172 r —i(E+2B 718,70 —i(BE&,k
= a / Z Z hl,j,at+Ake l<5 Bs t>.e i(B&§ >.
t=0kezd

So the claim is proved. In particular, we have
H*(§)H(§) = E*(§) P*(BE)P(BE)E(£). (53)

SinceE (¢) is unitary by Lemma 5.2H*(§) H (§) andP*(B&) P(B¢) are similar matrices.
Let A(&) and A (&) respectively be the minimal and maximal eigenvalues of the positive
definite matrixd*(§)H (§), and letA = irgf AE) andA = supA(&). (Itis clear from (52)

&

thatA(£) and A (¢) are 2rZ¢-periodic functions.) Suppose€ A < A < oco. Then we
have, by (48) (in the sense of positive definite matrices),

A< H*E)H@E) <Al forae&eT?
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which is equivalent to
Al < PX(E)PE) < Al forae & e T

Then by Lemma 5.1, for alf € L?(R?), we have

a-1 L (s) 2 a—1 L
WYY e o=l = TY X e fre-h)f
s=0l=1kezd s=01=1kezd
a—1 L ©)
= ALY Y e -0 6o
s=01=1keczd
Wherego(“) is defined in (49). Since
L V2 (A . a=11L (S)__k 2 -
> Y g a2 -0’ =L ¥ ¥ |(g.0”c-0) (55)
I=1kezd s=01=1kezd
which follows from (49), inequality (54) can be written as
L 12 2 a=1 L s 2
Y X g aPaa—0)" = X X g ¢ =h)
I=1kezd s=0l=1kezd
L
< AY Y g a¥20(A- b)), (56)
I=1kezd

This is the splitting trick for frames: thet~1Z¢-translates of thel dilated func-
tions ¢;(A-), 1 <1 < L, are ‘decomposed’ int@“-translates of the:L functions Nid
O<s<a-11<I<L.

We now apply the splitting trick to the functiog;’ : 1 </ < L} foreachs, 0 <s <
a — 1to obtain

L
1YY (g a2 fpA - —b)f

I=1kezd

A
I M?

papap o YA

2 (57)

IA

A Z > g a¥?f (A —h)

I=1kezd
where /""", 0 < r < a — 1 are defined as in (46)f{ now replaces;):

) = Z Y hja?fi(Ax —k); 0<s<a-11<I<L. (58)

Jj=lkezd
Summing (57) over & s <a — 1, we have

a—1 L a—la—1 L s

XY Y a2 @A) = LYY Y g 6= b)f

s=01=1fezd s=0r=01=1kezd
a=-1L 1/2 25 2

<= ALY X |g.a2fr A =R

s=0l=1kezd

Using (56), we obtain

2 L 2 a—la—1 L 5
WYY (e a®Ppi(A? - D) YYX Y e e =h)

I=1kezd s=0r=01=1kezd

L
A2Y Y |(g.a®2pi(A2 - ). (59)
I=1kezd

IA

IA
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Now as in the case of orthonormal wavelet packets, we can dgfineer eachn > 0 and

1 <1 < L (see (23) and (27)). In order to ensure tifgtare inL2(R%), it is sufficient
to assume that all the entries in the matlx¢), defined in (47), are bounded functions.
Comparing (58) and (23), we see that

(ff7:0<srs<a-1={ffT:0<rs<a-1={f':0<n<a®-1}.

So (59) can be written as

L a?-1
293 Dl PRELITCIE ) D D b ol PO
I=1kezd n=0I1=1kezd
L
< A2Y Y |(s.a®Pgu(A%- ).
I=1kezd
By induction, we get for eacl > 1,
. L - . 2 a/—1 L 2
MY X g aaal - —b)" = X 3 ¥ s ¢ =h)
I=1kezd n=0I=1keczd
. L . .
< AY T |<g,a//2gol(A-’-—k))|2. (60)

I=1kezd
We summarize the above discussion in the following theorem.

Note {f' :n >0, 1 </ < L} will be called the wavelet frame packets.

Theorem 6.1.Let{g; : 1 <1 < L} c L%(R%) besuchthafy,(-—k):1 <1< L,k € 7%

is a frame for its closed linear spary, with frame bound€’s andC». LetH (§), H,(§), A
andA be as above. A ssume that all entrieshfé + 2B ~18,7) are bounded measurable
functions suchthad < A < A < co. Let{f' :n > 0,1 <[ < L} be the wavelet frame
packets and leV; = {f : f(A™/-) € Vp}. Then for allj > 0, the system of functions

{(fft—k:0<n<al -1 1<I<L, kez

is a frame ofV; with frame bounds.’/ C1 and A/ C».

Proof. Since{g;(- —k) : 1 <1< L, k € 7%} is a frame ofVy with frame bound€’; and
Ca , itis clear that for allj

{alPei(A7 - —k): 1<I<L, kezd)
is a frame ofV; with the same bounds. So from (60), we have

a/—-1 L
Mgl < X X Y g ¢ =) < AlCalgl> forallg e V;. (61)
n=0I[=1kezd

O

In Theorem 3.2 we proved that the basic multiwavelet packets form an orthonormal basis
for L2(R?) = U_VJ An analogous result holds for the wavelet frame packets if the matrix
H (&), defined in (47), is unitary.
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Before proving this result let us observe how the spageyV; looks like. LetVy =
sploe- —k) 21 <1 <L, kez, Vi ={f: f(A7) e VoandV; C Vj;1. Let
W = UV;. Thenitis easy to check thgte W = f(- — A7/k) e Wforall j € Zand
k € 7¢. We claim that elements of the forAT / k are dense iit?. ForK = {k1, ko, . .., ks}
a set of digits forA, define the set

0=0(AK)= {x eR?:x =ZA_j€j;€j € K}
j=1
In the above representationofe;’s need not be distinct. We have
A7 x| < Ca x|l x € R,

whereC isaconstantand @ « < 1(see[17], Chapter5). Therefore, the series that defines
x is convergent. Far = (x1, x2, ..., xg) € R, x|l = (|x12+ [x22+- - -+ |xa2) 2. The
setQ satisfies the following properties (see [10]):
() 0=U1A7Y(Q +k)
(i) Urez(Q + k) = R?
(iii) Q is compact.
Lete > Oandy € Q. We first show that there exist € Z andk e Z¢ such that
ly — A7/k| < €. From (i) we have

0 = JaQ+k

i=1

= (Ja™t [U AN + k) + kl}
i=1

m=1

= O LaJ (A720 + A %k, + A" YK)).

i=1m=1

Hence, for anyj > 1 and anyy € Q, there existy; € Q andly, I, ...,I; € K such that
y=ATly, + AT+ ATV AT
Therefore,

ly — A7+ Alja+ -+ AT M)

1A= y;l
Cal |yl
C'a’/ (asQ is compact
¢, choosingj suitably.

IAIA

A

Now if y € R?, then by (ii)y = yo + p for someyg € Q andp € Z?. Foryg € Q, there
existj > 0 andk € 74 such that|yp — A~/k|| < €. Thatis,

lyo+p—A"J(k+Ap)| <e
= ly—A(k+Alp)| <e.

So the claim is proved.
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We have proved tha¥ is invariant under translations by~/k and these elements are
dense inRk¢. Therefore,W is a closed translation invariant subspaced.é(R¢). Hence,
W = LZ(R) for someE c R (see [15]), where

LZ(RY) = {f € L2(RY) : suppf C E}.

Now let
L

Eo = B/ (suppén).

Claim. E = Ep a.e.
To prove the claim we will follow [1], Theorem 4.3. Singg(A’/-) € V; C W, the

function (</>1(Af~))A = a—lj@(B‘j-) e W ={f:f e W}. Therefore,B/(supp@;) =
supp (a—lj@(B‘f-)> Cc Eforall j > 0and 1< < L, which implies thatEg C E. Let
E1 = E\ Eo. We have

" L ) )
fevie f= LmBIonB e, (62)

for some 2 7¢-periodic functionsn; € L2(T%). Hence, (62) implies thaf = 0 on E; for
all f € V; and hence, for alf € UV; = W. Taking closure, we obtain thgt= 0 on E;
forall f € W. But W is the set of all functions whose Fourier transform is supported in
E. SinceE; C E, we get thatF; = @ a.e. ThereforeE = Ep a.e. O

Theorem 6.2. Let {g;(- —k) : 1 <1 <L, k € 7%} c L?[R?) be a frame for its closed
linear spanVyp, with frame bound€’; andC, and letVg C V1, whereV; = {f : f(A77) €
Vo}. Assume thak (£) is unitary fora.e.£. Then{f/'(-—k):n >0, 1<l <L, ke 7%
is a frame for the space ;o V; with the same frame bounds.

More generally, letS = {(n, j) € Ng x Z} be such thaU(,Lj)eS I,,j is a partition of
No. Then the collection of functiods’/? (A’ - —k) : 1 <1 < L, (n, j) € S,k € Z9}is
a frame forU;>qV; with the same bounds; andC> .

Proof. SinceH (§) is unitary,,. = A = 1 so that the inequalities in (60) are equalities, and
from (61) we have

al—1 L

2
Cilgl’< ¥ 3 g ¢ —B)|" < C2llgl?® forallgeV;.  (63)
n=0I[=1kezd

Now leth € U;j>oV;. Then there exists; € V; such that;; — h asj — oo. Fix j, then
for j < j’, we have from (63)

al-1 L 2 2
X2 2 ry £1C =BT < Callhl®
n=0I[=1kezd
Letting j* — oo first and thernj — oo, we have for alh € U;>qV;
L n 2 2
XX | A =0)T < Callnll”. (64)

n>=0l=1kezd
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To get the reverse inequality we again use (63):

a/—-1 L
il = X ¥ X |y e = o)
n=0I[=1kezd
al—1 L 2
= XY X |(h—h =)+ (k1= 0)
n=01[=1kezd
Therefore,
12 al-1L 2\ 3
il = (X X % b —hosie = o))
n=0[=1kezd
a/—1L P %
+(Z X % [ fre=n)f)
n=0I[=1kezd
1/2 alZ1L 2\ 2
= Py =n+ (T X X | fre=n)f)" by s,

n=01[=1kezd

Taking j — oo, we get

L
2
Cllhl? < 3 3 3 [ ¢ = D)
n>0l=1kezd
forall » € UV;. So the first part is proved.
Now letU”" = sp{a//2f/"(A7 - —k): 1<1 <L, keZ%. Then we can prove as in
the orthogonal case (see (35)) that

v = € v,

re[,,ﬁj
whered is just a direct sum not necessarily orthogonal, &nd= {r € Ng : aln<r <
a’(n + 1) — 1}. Now, sinceH (£) is unitary, we have. = A = 1 and hence (57) is an
equality. Therefore,

a

L 2 -1L 2
> ¥ e 2fia-=b) = X X 2 g =R

I=1kezd r=01=1kezd

From this we get

L a—la—1 L 2
Z Z |<g, a2/2fln(A2 ) —k)>|2 _ Z Z Z Z <g’ fla(an—&-r)+t(. . k)>‘
I=1kezd t=0r=01=1kczd

az(n+1)—1 L

= Y X s fe-n0)

r=a?n [=lkezd

Similarly,
L . ) 5 al(n+1)-1 L 2
> X g a2fal-—0)" = X X X s fF¢=h)
I=1kezd r=ain [=1kezd

= ) i Y g ¢ =0)>.  (65)

rEI,,’j I=1kezd
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From the first part of the theorem, we have for Al UV;

L
GlfIP< Y Y X £ £ =0 < call I

n>0 I=1 kezd

But, the setS is such that J,, ;s In,j = No. Therefore,

alfifs ¥ % i Y (£ £r¢ =) < Call£112

(n,j)eSreI,,J I=1kezd

Using (65), we get

L . .
alfi<s ¥ X % [(fa2fral - —0)f < call £12

(n,j)eSI=1kezd

for all f € UV;. This completes the proof of the theorem. |
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