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Abstract. In this paper explicit expressions ofm + 1 idempotents in the ringR =
Fq [X]/〈X2m − 1〉 are given. Cyclic codes of length 2m over the finite fieldFq , of
odd characteristic, are defined in terms of their generator polynomials. The exact
minimum distance and the dimension of the codes are obtained.
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1. Introduction

Throughout in this paper we considerFq to be a field of odd characteristic and the ring
R = Fq [X]/〈X2m −1〉. The ringR can be viewed as semi-simple group ringFqC2m where
C2m is a cyclic group of order 2m generated byx. It is assumed that reader is familiar
with the properties of cyclic codes based on the theory of idempotents [3]. In §2 of this
paper complete set of equivalence classes (modulo 2m) is given and also the construction
of explicit expressions of idempotents is given. In §3, we completely describe the cyclic
codes of length 2m in terms of their generator polynomials. In §4 we obtainq-cyclotomic
cosets (modulo 2m) when order ofq modulo 2m = 2m−2. An example has been given to
illustrate the results.

2. Construction of idempotents

For any positive integerm, consider the setS = {1, 2, 3, . . . , 2m − 1}. Divide the setS
into disjoint classesSi (modulo 2m) as follows:

For 1≤ i ≤ m, consider the set

Si = {2i−1, 2i−13, . . . , 2i−1(2ni − 1)}, 1 ≤ ni ≤ 2m−i

Clearly the elements ofSi are incongruent to each other modulo 2m. Note that the elements
of Si are the product of 2i−1 with odd numbers. So these are divisible by 2i−1 but no higher
power of 2. In the setS, the number of elements divisible by 2i−1 but no higher power of
2 are

(2m−i+1 − 1) − (2m−i − 1) = 2m−i+1 − 2m−i = 2m−i (2 − 1) = 2m−i .

Hence the number of elements in the setSi is

#Si = 2m−i .
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Clearly fori 6= j, Si ∩ Sj = 8 and so

#

(
m∪

i=1
Si

)
=

m∑
i=1

(#Si) =
m∑

i=1

(2m−i ) = 2m − 1.

Hence the setsSi(1 ≤ i ≤ m) form the partitioning of the setS (modulo 2m).
For 1≤ i ≤ m, define the elementSi(x) as

Si(X) =
∑

xs

s∈Si

=
2m−i∑
ni=1

x2i−1(2ni−1).

Let α be a primitive 2mth root of unity in an extension of the fieldFq . To prove the main
theorem we require the following facts:

Fact2.1 For 1≤ i ≤ m,

Si(α
j ) =

∣∣∣∣∣∣
0 if 2m−i 6 |j

−2m−i if j = 2m−i

2m−i if 2m−i+1|j
.

Proof. By definition, for 1≤ i ≤ m,

Si(X) =
2m−i∑
ni=1

x2i−1(2ni−1)

=
2m−i∑
ni=1

x2i−1(2ni−1) +
2m−i∑
ni=1

x2i−1(2ni−2) −
2m−i∑
ni=1

x2i−1(2ni−2)

=
2m−i+1−1∑

k=0

(x2i−1
)k −

2m−i∑
ni=1

x2i (ni−1).

Therefore,

Si(α
j ) =

2m−i+1−1∑
k=0

(α2i−1j )k −
2m−i∑
ni=1

α2i j (ni−1). (1)

Case1. If 2m−i 6 | j , then 2m−16 | 2i−1j so 2i−1j 6≡ 0 (mod 2m) henceα2i−1j 6≡ 1. Similarly
α2i j 6= 1. Therefore (1) gives that

Si(α
j ) = (α2i−1j )2m−i+1 − 1

α2i−1j − 1
− (α2i j )2m−i − 1

α2i j − 1
= 0 − 0 = 0

(denominator being non-zero). This proves the Case 1.

Case2. If j = 2m−i , then 2i−1j = 2m−1 and 2ij = 2m. Sinceα is a primitive 2mth root
of unity in an extension ofFq , soα2i j = α2m = 1 andα2i−1j = α2m−1 = −1. Again (1)
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gives that

Si(α
j ) =

2m−i+1−1∑
k=0

(−1)k −
2m−i∑
ni=0

(+1)ni−1

= 0 − 2m−i = −2m−i .

This proves the Case 2.

Case3. If 2m−i+1/j then 2m/2i−1j implies thatα2i−1j = 1 and alsoα2i j = 1. Again
from (1) we have

Si(α
j ) =

2m−i+1−1∑
k=0

(1)k −
2m−i∑
ni=0

(1)ni−1

= 2m−i+1 − 2m−i = 2m−i (2 − 1) = 2m−i .

This proves the Fact 2.1.

Fact2.2. For 0≤ i ≤ m − 1,

1 +
m∑

r=i+1

Sr(α
j ) =

∣∣∣∣ 0 if 2m−i 6 | j

2m−i if 2m−i | j .

Proof. By definition

1 +
m∑

r=i+1

Sr(α
j ) =

2m−i−1∑
k=0

(α2i j )k.

If 2m−i 6 | j then 2m 6 | 2ij implies thatα2i j 6= 1. Hence the required sum takes the value
zero. Secondly if 2m−i/j , then 2m/2ij implies thatα2i j = 1 in the extension field and
hence the required sum takes the value

2m−i−1∑
k=0

(1)k = 2m−i .

This proves the Fact 2.2.
Our construction of idempotents is based on the following two facts developed in §2 and

3 of chapter 8 of [3].

Fact2.3. An expressione(x) in R is an idempotent iffe(αj ) = 0 or 1.

Fact2.4. An idempotentei(x) is primitive iff

ei(α
j ) =

∣∣∣∣ 1 if j ∈ Yr for somer, 0 ≤ r ≤ m

0 otherwise,

whereYr is someq-cyclotomic coset (modulo 2m) with Y0 = {0}.
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Theorem 2.5. The following polynomial expressions are(m + 1) idempotents in the
ring R,

eo(x) = 1

2m

2m−1∑
j=0

xj = 1

2m

{
1 +

m∑
k=1

Sk(x)

}

and for 1≤ i ≤ m

ei(x) = 1

2m−i+1


1 +

m∑
k=i+1

Sk(x) − Si(x)


 .

Proof. By Fact 2.2

e0(α
j ) = 1

2m

{
1 +

m∑
k=1

Sk(α
j )

}
=

∣∣∣∣ 0 if 2m6 | j

1 if 2m | j

=
∣∣∣∣ 0 if j ∈ Sk

1 if 2m | j .

By Fact 2.4,e0(x) is a primitive idempotent with single non-zeroα0 = 1. For 1≤ i ≤ m,
Facts 2.1 and 2.2 show that

ei(α
j ) =

∣∣∣∣∣∣
0 if 2m−i |/j
1 if 2m−i = j

0 if 2m−i+1|j

∣∣∣∣∣∣ .
Thus for 1≤ i ≤ m, ei(α

j ) = 0 or 1 andei(α
j ) = 1 only if j = 2m−i or equivalently by

definition only ifj ∈ Sm−i+1. Hence by the Fact 2.3 the expressionsei(x) are idempotents.

3. Cyclic codes of length 2m

Let for 0 ≤ i ≤ m, Ei denotes the cyclic code of length 2m with idempotent generator
ei(x). By (Theorem 56, [4]), (Remark 6.3, [6]) the generator polynomialgi(x) of the cyclic
codeEi is given by

gi(x) = g.c.d.(ei(x), x2m − 1). (2)

Define

g0(x) =
2m−1∑
t=0

xt = 1 − x2m

1 − x

and for 1≤ i ≤ m,

gi(x) = (1 − x2i−1
)[1 + Si+1 + · · · + Sm].

Then to showgi(x) (0 ≤ i ≤ m) is the generating polynomial of the cyclic codeEi . In
view of (2) it is sufficient to prove the following two facts:

Fact3.1. gi(α
j ) = 0 iff ei(α

j ) = 0.
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Fact3.2. gi(x)/x2m − 1.
To prove the Fact 3.1, consider for 1≤ i ≤ m,

ei(x) = 1

2m−i+1
{1 + Si+1 + · · · + Sm − Si}

= 1

2m−i+1




2m−i−1∑
k=0

(x2i

)k −
2m−i∑
ni=1

(x2i−1
)(2ni−1)




= 1

2m−i+1




2m−i−1∑
k=0

(x2i

)k − x2i−1
2m−i∑
ni=1

(x2i−1
)(2ni−2)




= 1

2m−i+1




2m−i−1∑
k=0

(x2i

)k − x2i−1
2m−i−1∑

k=0

(x2i

)k




= 1

2m−i+1
(1 − x2i−1

)




2m−i−1∑
k=0

(x2i

)k




= 1

2m−i+1
(1 − x2i−1

){1 + Si+1 + · · · + Sm}

= 1

2m−i+1
gi(x).

Thus for 1≤ i ≤ m, ei(x) is a constant multiple ofgi(x). Also by definitione0(x) is a
constant multiple ofg0(x). Hencegi(α

j ) = 0 iff ei(α
j ) = 0.

To prove the Fact 3.2, consider for 0≤ i ≤ m,

1 − x2m = 1 − (x2i

)2m−i = (1 − x2i

){(x2i

)2m−i−1 + (x2i

)2m−i−2 + · · · + (x2i

) + 1}
= (1 + x2i−1

)(1 − x2i−1
){1 + Si+1 + · · · + Sm}

= (1 + x2i−1
)gi(x).

Thusgi(x) is a factor of(1 − x2m
). Hence the assertion follows.

Theorem 3.3. Ei is a [2m, 2i−1, 2m−i+1] cyclic code overGF(q).

Proof. By Corollary 3 ([3], p. 218) (generalized to non binary case) for 0≤ i ≤ m,
dimEi = #αj such thatei(α

j ) = 1.
By Theorem 2.5, we haveei(α

j ) = 1 only if j ∈ Sm−i+1. So dimEi = #Sm−i+1 =
2i−1.

As shown in [5, 6, 1] it is easy to prove that the repetition codeEi generated bygi(x)

has the minimum distance 2m−i+1 andd(E0) = 2m = # non-zero terms ing0(x).

4. q-Cyclotomic cosets (modulo 2m) when order (q) = 2m−2

First note that such aq exists due to the following facts [2]. Obviously in this casem ≥ 3.
So throughout this section assume thatm ≥ 3.
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Fact4.1. The integer 2m has no primitive root.

Fact4.2. Leta be any odd integer, then it is always true thata2m−2 ≡ 1 (mod 2m).

Fact4.3. If ord(a) = 2 (mod 23) anda2 6≡ 1 (mod 24), then ord(a) = 2m−2 (mod 2m) for
everym ≥ 3.

Computation ofq-cyclotomic cosets (modulo 2m) depend upon the following facts:

Fact 4.4. If ord(q) = 2m−2 (modulo 2m) for everym ≥ 3, (Fact 4.3), thenqt 6≡ −1 (mod
2m) for 1 ≤ t ≤ 2m−2.

Proof. For t ≥ 2m−2, we haveqt ≡ 1 (mod 2m).
If possible letqt ≡ −1 (mod 2m) for some non-negative integert < 2m−2, thenq2t ≡ 1

(mod 2m). But ord(q) = 2m−2 implies that 2m−2|2t or 2m−3|t ⇒ t = 2m−3a, but
t < 2m−2. So we must havea = 1. So we have

⇒ q2m−3 ≡ −1(mod 2m)

⇒ q2m−3 ≡ −1(mod 2m−1). (3)

But we are assuming that ord(q) = 2m−2 for all m ≥ 3. So we have

q2m−3 ≡ 1(mod 2m−1). (4)

From (3) and (4)

−1 ≡ 1(mod 2m−1) for all m ≥ 3

which is not possible. Hence the result follows.

Fact4.5. Thus in this caseq cyclotomic cosets modulo 2m are given by:
For 1≤ i ≤ m,

Xi = {2i−1, 2i−1q, 2i−1q2, . . . , 2i−1q2m−(i+1)−1},
X∗

i = {−2i−1, −2i−1q, −2i−1q2, . . . ,−2i−1q2m−(i+1)−1}.

Remark4.6. By definition ofSi it is clear that for 1≤ i ≤ m,

Si = Xi ∪ X∗
i .

Note that integers of the typeq = 8λ + 3(λ ≥ 0) satisfy the above facts. In particular
we may considerq = 3, then order(3) = 2m−2 (modulo 2m) for all m ≥ 3. In this case
observe the following.

Fact4.7. For 1≤ i ≤ m − 2,

32m−(i+1) ≡ 1(mod 2m−i+1)

or

2i−132m−(i+1) ≡ 2i−1(mod 2m).
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Fact4.8. Since 3 is primitive root of unity modulo 4

32 ≡ 1(mod 22) ⇒ 2m−232 ≡ 2m−2(modulo 2m).

Fact4.9. Since 3≡ −1 (mod 22),

2m−2.3 ≡ −2m−2(mod 2m)

and

2m−2.32 ≡ −2m−2.3(modulo 2m).

Fact4.10.

1 ≡ −1(mod 2),

⇒ 2m−1 ≡ −2m−1(mod 2m).

Using the facts of §4, the 3-cyclotomic cosets modulo 2m are given as follows:
For 1≤ i ≤ m − 2,

Xi = {2i−1, 2i−1.3, 2i−132, . . . , 2i−132m−(i+1)−1},
X∗

i = {−2i−1, −2i−13, −2i−132, . . . ,−2i−132m−(i+1)−1}
and

Xm−1 = X∗
m−1 = {2m−2, 2m−2.3} = {−2m−2, −2m−2.3},

Xm = X∗
m = {2m−1}.

Example.Considerq = 5 andC25 be a cyclic group of order 25 generated byx. Then the
q-cyclotomic cosets (modulo 25) are given by

X1 = {1, 5, 25, 29, 17, 21, 9, 13},
X∗

1 = {−1, −5, −25, −29, −17, −21, −9, −13}
= {31, 27, 7, 3, 15, 11, 23, 19},

X2 = {2, 10, 18, 26},
X∗

2 = {30, 22, 14, 6}
X3 = {4, 20},
X∗

3 = {28, 12},
X4 = {8},
X∗

4 = {24},
X5 = {6} = X∗

5.

By Remark 4.6,

S1 = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31},
S2 = {2, 6, 10, 14, 18, 22, 26, 30},
S3 = {4, 12, 20, 28},
S4 = {8, 24},
S5 = {16}.
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The six distinct idempotents in this case can be read as follows:

e0(x) = 1

25
{1 + S1 + S2 + S3 + S4 + S5}(x),

e1(x) = 1

25
{1 + S2 + S3 + S4 + S5 − S1}(x),

e2(x) = 1

24
{1 + S3 + S4 + S5 − S2}(x),

e3(x) = 1

23
{1 + S4 + S5 − S3}(x),

e4(x) = 1

22
{1 + S5 − S4}(x),

e5(x) = 1

2
{1 − S5}(x).

The important parameters of the codesE0, E1, E2, E3, E4, E5 of length 25 over the field
GF(5) are listed in the table below.

Code Non-zero Dimension Minimum Generator

K distance,d polynomial,gi(x)

E0 α0 = 1 1 25 1 + x + x2 + · · · + x31

E1 α16 1 25 (1 − x){1 + S2 + S3 + S4 + S5}
E2 α8, α24 2 24 (1 − x2){1 + S3 + S4 + S5}
E3 α4, α12, α20, α28 4 23 (1 − x4){1 + x8 + x24 + x16}
E4 α2, α6, α10, α14, α18, α22, α26, α30 8 22 (1 − x8){1 + x16}
E5 αj , j ∈ S1 16 2 (1 − x16)

Example.Considerq = 3 andC3
2 be a cyclic group of order 23 generated byx. Then the

q-cyclotomic cosets (modulo 23) are given by

X1 = {1, 3},
X∗

1 = {5, 7},
X2 = {2, 6},
X3 = {4},
X0 = {0}.

The five primitive idempotents in the group algebra GF(3)C3
2 are given with their non-

zeroes:

Primitive idempotents Non-zeroes

e0(x) = 1
23 {1 + X1 + X∗

1 + X2 + X3}(x) α0

e1(x) = 1
23 {1 + X3 + X2 − (X1 + X∗

1)}(x) αj , j ∈ X3

e2(x) = 1
22 {1 + X3 − X2}(x) αj , j ∈ X2

e3(x) = 1
22 {(1 − X3) − (X1 − X∗

1)}(x) αj , j ∈ X1

e4(x) = 1
22 {(1 − X3) + (X1 − X∗

1}(x) αj , j ∈ X∗
1



Codes of length2m 379

References

[1] Arora S K and Pruthi Manju, Minimal cyclic codes of length 2pn, Finite fields and their
applications,5 (1999) 177–187

[2] Burton David M, Elementary number theory, 2nd ed. (University of New Harsheri)
[3] Mac Williams F J and Sloane N J A,Theory of error-correcting codes (Amsterdam: North

Holland) (1977)
[4] Pless V, Introduction to the theory of error correcting codes (New York: Wiley-Interscience)

(1981)
[5] Pruthi Manju and Arora S K, Minimal codes of prime power length, Finite fields and their

applications,3 (1997) 99–113
[6] Vermani Lekh R, Elements of algebraic coding theory (UK: Chapman and Hall) (1992)


