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Abstract. In this paper explicit expressions af + 1 idempotents in the rin@ =

Fq[X]/(XZ'" — 1) are given. Cyclic codes of length'2ver the finite fieldF,, of
odd characteristic, are defined in terms of their generator polynomials. The exact
minimum distance and the dimension of the codes are obtained.
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1. Introduction

Throughout in this paper we considgy to be a field of odd characteristic and the ring

R = F,[X]/(X?" —1). TheringR can be viewed as semi-simple group rifig-o» where

Con is a cyclic group of order’2 generated by. It is assumed that reader is familiar
with the properties of cyclic codes based on the theory of idempotents [3]. In 82 of this
paper complete set of equivalence classes (modtija2given and also the construction

of explicit expressions of idempotents is given. In 83, we completely describe the cyclic
codes of length’2 in terms of their generator polynomials. In 84 we obtgioyclotomic
cosets (modulo’?) when order ofy modulo 2* = 2”—2, An example has been given to
illustrate the results.

2. Construction of idempotents

For any positive integew, consider the sef = {1,2,3,...,2" — 1}. Divide the setS
into disjoint classes; (modulo 2") as follows:
For 1 <i < m, consider the set

S =271, 2713, ..., 27 2n; — D}, L <n; < 2"

Clearly the elements &; are incongruent to each other modufe. 2Vote that the elements
of S; are the product of’21 with odd numbers. So these are divisible by%2but no higher
power of 2. In the se§, the number of elements divisible by 2 but no higher power of
2 are

(2m—i+l _ 1) _ (2m—i _ l) — 2m—i+1 _ 2m—i — 2m—i (2 _ 1) — 2m—i.
Hence the number of elements in the Seis

#S, = 2mt.
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Clearly fori # j, S; NS; = ® and so

o (ﬁl si) =Y @sH=Y @ H=2"-1
= i=1 i=1

Hence the setS; (1 < i < m) form the partitioning of the sef (modulo 2*).
For 1< i < m, define the elemerf; (x) as

szi

Si(X) =Y =Y A2 @D,

seS; n,-:l

Let« be a primitive 2'th root of unity in an extension of the fiel},. To prove the main
theorem we require the following facts:

Fact2.1 Forl<i <m,
' 0 o
Si(a)y =] —2m=1 jf j=2m
2m—i if 2m—i+1|j
Proof. By definition, for 1<i < m,

2m—i
i—1 L
Si (X) — Z x2 (2n, 1)
ni=1

om—i om—i om—i

_ Z 2= Z w22 _ Z w2 H2ni-2)
ni=1 nj=1 ni=1
2m—i+l_1 2m—i

_ Z (xzi—l)k _ Z 2 i=1)
k=0 ni=1

Therefore,
2m—i+1_1 - 2m—i .
Si@h) =Y @ = P, 1)
k=0 ni=1

Casel. If2m~yj,then2'~1y 2~1js02~1; £ 0 (mod 2") hencex? '/ = 1. Similarly

a?J =+ 1. Therefore (1) gives that

i—1 . om—i+1 i+ om—i

@) -1 @) -1

Si(a’) = . - . =0-0=0
e a2t -1 @i —1

(denominator being non-zero). This proves the Case 1.

Case2. If j=2"" then271j =2""1and 2j = 2". Sincex is a primitive 2"th root
of unity in an extension of, s0a?/ = 2" = 1 ande? "/ = 2" = —1. Again (1)
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gives that
' 2m—[+1_l 2m—i
Sy = Y (=D => pnt
k=0 n;j=0
- 0-— 2m7i — _2m7i.

This proves the Case 2.

Case3. If 2"=*+1/j then 2/21~1;j implies thate? "/ = 1 and alsax?/ = 1. Again
from (1) we have

2m—i+1_l 2m—i

Y, @ =Y @t
k=0 n;=0

— 2m—i+1 _ 2m—i — 2m—i (2 _ 1) — 2m—i.

Si(al)

This proves the Fact 2.1.

Fact2.2. ForO<i<m-—1,
m . .
i 0 if 2m=tyj
1+ > S,(af)z‘ i i 2m_i|j :
r=i+1

Proof. By definition

2m=i_q

m
14+ ) Se)= > @)k
r=i+1 k=0

If 2m=i y j then 2" f 2' j implies thate?/ + 1. Hence the required sum takes the value
zero. Secondly if 27/j, then 2!/2' j implies thate?/ = 1 in the extension field and
hence the required sum takes the value

m=iog

Z (1)]( _ Zm_i.
k=0

This proves the Fact 2.2.
Our construction of idempotents is based on the following two facts developed in 82 and
3 of chapter 8 of [3].

Fact2.3. An expressioa(x) in R is an idempotent ifé(«/) = 0 or 1.

Fact2.4. Anidempoteng;(x) is primitive iff

1 if jeY, forsomer,0<r<m

(o)) =
ei(a’) = 0 otherwise

whereY, is someg-cyclotomic coset (modulo™ with Yo = {0}.
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Theorem 2.5. The following polynomial expressions afe: + 1) idempotents in the
ring R,

1 2m—1 . 1 m
eo(x) = o Z x! = o {1+Zsk(x)}
j=0 k=1
andforl<i <m

1 m
¢i(¥) = o1 {l+ D S - Si(x)} :

k=i+1

Proof. By Fact 2.2

: 1 “ . 0 if 2myj
60(“”:27{1*25"(“”} - ’1 if 2/|(j
k=1
_ 0 if jeS
= ‘1 it 2m|j

By Fact 2.4¢0(x) is a primitive idempotent with single non-zes8 = 1. For 1< i < m,
Facts 2.1 and 2.2 show that

' 0 if 2miyj
ei@ly=|1 if 2mi=
0 if 2m—i+1|j

Thusfor1<i <m,e;(a/) =0o0r1ande(a/) = 1onlyif j = 2"~ or equivalently by
definition onlyifj € S,,—;+1. Hence by the Fact 2.3 the expressies(s) are idempotents.
3. Cyclic codes of length &

Let for 0 < i < m, E; denotes the cyclic code of length 2vith idempotent generator
ei (x). By (Theorem 56, [4]), (Remark 6.3, [6]) the generator polynomjiét) of the cyclic
codeE; is given by

gi(x) = g.c.d.(e(x), x*" —1). 2)

Define

2m—1 om
1—x
gO(x): E xt = 1+
t=0
and for 1< i < m,
i1

Then to showg; (x) (0 < i < m) is the generating polynomial of the cyclic code. In
view of (2) it is sufficient to prove the following two facts:

Fact3.1. gi(a/) = 0iff e;(a/) = 0.
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Fact3.2. g;(x)/x%" — 1.
To prove the Fact 3.1, consider for<li < m,

1
ei(x) = W{1+S,+1++Sm_sl}
1 2m—[_1 . 2m—[ L
= | L e ey
k=0 ni=1
1 2m—i_1 ) - 2m—i -
1D D Ml
k=0 ni=1
1 m-iol - m-iol
= 2m—i+l Z (xz )k o xz Z (xz )k
k=0 k=0
1 i—1 A
= @y 2 o)
k=0
1 21'71
= m(l—x M1+ Siva+---+ Sul
1
e ().

Thus for 1< i < m, ¢;(x) is a constant multiple of; (x). Also by definitioneg(x) is a
constant multiple ofo(x). Henceg; (a/) = 0 iff ¢;(a/) = 0.
To prove the Fact 3.2, consider forQi < m,
l_xzm _ 1_ (xzi)szi _ (1—x2i){(x2i)2”17i_1+ (xzi)szi_z_‘_ + (xzi) —I—l}
= A+ A =22 DL+ Sipr o+ Su)
i—1
= (1+x% g

Thusg; (x) is a factor of(1 — x2"). Hence the assertion follows.
Theorem 3.3. E; is a[2”, 21—1, 2~i+1] cyclic code ovelG F (q).

Proof. By Corollary 3 ([3], p. 218) (generalized to non binary case) forG < m,
dim E; = #a/ such that; (¢/) = 1.

By Theorem 2.5, we have (/) = 1onlyif j € S,_;11. SodimE; = #S,,_;11 =
2i-1,

As shown in [5, 6, 1] it is easy to prove that the repetition cailgenerated by, (x)
has the minimum distancé"2*1 andd(Eg) = 2" = # non-zero terms igy(x).

4. g-Cyclotomic cosets (modulo ) when order (q) = 2M2

First note that such @ exists due to the following facts [2]. Obviously in this case> 3.
So throughout this section assume that- 3.
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Fact4.1. The integer2 has no primitive root.
Fact4.2. Leta be any odd integer, then it is always true that ~ = 1 (mod 2").

Fact4.3. If orda) = 2 (mod 2) anda? # 1 (mod 2), then orda) = 2”2 (mod 2") for
everym > 3.
Computation of;-cyclotomic cosets (modulo™) depend upon the following facts:

Fact4.4. If ordig) = 2"—2 (modulo 2") for everym > 3, (Fact 4.3), theg’ # —1 (mod
2mforl <t <2m2,

Proof. Forr > 2”2, we havey’ = 1 (mod 2").

If possible lety’ = —1 (mod 2") for some non-negative integekx 22, theng? =
(mod 2"). But ordg) = 2"2 implies that 22=2|2r or 2" 3|t = r = 2" 34, but
t < 2"~2. So we must have = 1. So we have

= qZ'H = —1(mod 2")
= ¢ = —1(mod 2" Y. ®3)
But we are assuming that agg) = 2”2 for all m > 3. So we have
q2m_3 = 1(mod 2" 1). (4)
From (3) and (4)
—1=1(mod 2 1) forallm >3
which is not possible. Hence the result follows.
Fact4.5. Thus in this casg cyclotomic cosets moduld™are given by:
Forl<i <m,
X, = (21 2i—1q 21,2 25—1q2m*<i+1)—1}

Xz* — {_21 1’ _Di 1q’_21 1 2’.”7_21 lq2 1}.

Remark4.6. By definition ofS; it is clear that for 1< i < m,

S =X; U Xl*
Note that integers of the typg = 81 + 3(A > 0) satisfy the above facts. In particular
we may consideg = 3, then ordex3) = 22 (modulo 2") for all m > 3. In this case
observe the following.
Fact4.7. Forl<i <m — 2,

32" = 1(mod 211y
or

2i-132"" Y _ 2i-1(mod 2).
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Fact4.8. Since 3 is primitive root of unity modulo 4

32 = 1(mod ) = 2" 232 = 2"~2(modulo 2").
Fact4.9. Since 3= —1 (mod 2),

2"23=—-2""2(mod 2")
and

2m=2.32 = _2"=2 3(modulo 2).
Fact4.10.

= —1(mod 2,
= 2" 1 = _2"Y(mod 2").

Using the facts of 84, the 3-cyclotomic cosets moduftca2e given as follows:
Forl<i<m-—2,

X, = {21'—17 21'—1.3, 21'—132’ L 21'_132711—(1'+1)_1}7
X;k — {_2i71’ _2i713’ _21'71327 L _2i7132’"*("+1)71}
and
Xp-1 = Xy =(2"72 20723 = (-2"7% —2"23),
Xo = X5 ={2"7).

Example. Considery = 5 andCs be a cyclic group of orderyenerated by. Then the
g-cyclotomic cosets (modulc®®are given by

X1 = {1,5,25,29 17 219,13},
X; = {-1,-5,-25 -29 —17,-21, -9, —13}
= ({81,277, 3,15, 11,23 19},
X, = {2,10,18, 26},
X5 = {30,2214,6)
X3 = (4,20},
X; = {2812,
X4 = ({8},
X; = {24,
X5 = {6} = X;
By Remark 4.6,

S1 = {1,3,57,9,11, 13 15,17, 19, 21, 23, 25, 27, 29, 31},

S, = {2,6,10,14, 18, 22 26,30},
Ss = {4 12 20,28},
Sa = (8,24,

Ss = {16}
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The six distinct idempotents in this case can be read as follows:

eo(x) = 2—],'5{1+Sl+52+53+54+55}(x),
e1(x) = 2—]:5{1+52+S3+S4+S5— S1}(x),
e2(x) = 2—14{1+53+S4+55—52}(XL
e3(x) = 2—13{1—|—S4~I-55— S3}(x),

es(x) = 2—12{1 + S5 — Sa}(x),

es(x) = %{1— Ss}(x).

The important parameters of the cod&s E1, E2, E3, E4, Es of length 2 over the field
GF(5) are listed in the table below.

Code Non-zero Dimension  Minimum  Generator
K distanced polynomial,g; (x)
Eo o°=1 1 v T4+x+x2+---+x%
E; o 1 p (L —x){1+ S2+ S3+ S4 + S5}
E;  af a® 2 2 (1 —x?{1+ S3+ Sq+ S5}
E3 at, a2 %0 28 4 2 1 —xMH{1+ x8 + x4+ x16
E4 o2, b, @10, 14, @18, 0?2, 26, 30 8 2 1- xs){l + x16}
Es ol jes; 16 2 (1—x1)

Example.Considerg = 3 andcg be a cyclic group of order®2generated by. Then the
g-cyclotomic cosets (modulo®are given by

X1 = ({13},
Xi = {57,
X2 = (2,6},
X3 = {4},
Xo = {0}

The five primitive idempotents in the group algebra GF((’S)are given with their non-
zeroes:

Primitive idempotents Non-zeroes

eo(x) = {1+ X1+ X + Xa+ Xa}(x) o

e1(x) = H{1+ Xs+ Xo — (X1 + XD)(x) &, j € X3
e2(x) = {1+ X3 — X2} (x) al,j € Xz
e3(x) = H{(1— X3) — (X1 — XP)}Hx) al, j € Xy
ea(x) = (1 — X3) + (X1 — X7}(x) ol j € X]
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