Proc. Indian Acad. Sci. (Math. Sci.), Vol. 111, No. 3, August 2001, pp. 351-363.
O Printed in India

Monotone iterative technique for impulsive delay differential
equations

BAOQIANG YAN and XILIN FU

Department of Mathematics, Shandong Normal University, Ji-Nan, Shandong
250 014, People’s Republic of China

MS received 29 May 2000
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1. Introduction

In this paper, we discuss the impulsive retarded functional differential equation (IRFDE)

x'= f(t, x), t€[0,T],t #u;
Axli=y = i(x (), k=1,2,...,m; (1.1
x0 = O,

where® € PC([—7, 0], R) = {x, x is a mapping from{, 0] into R, x(¢~) = x(¢) for all

t € (—1,0], x(tT) exists for allt € [—7,0), andx(tT) = x(¢) for all but at most a finite
number of pointg € [—7,0)} andM (-, 0], R) = {x, x is a bounded and measurable
function from [z, 0] into R} with norm||x|| = SUR¢[_ o7 X (@), T > 0, x,(0) = x(r +
0),0 e[-1,0,0=t0<t1<t2<-- <ty <T,J=[0,T],J =J— {1}, ltis
easy to see tha®Co([—7, 0], R) € M([—7, 0], R) andM ([—z, 0], R) is a Banach space.
Now we suppose thatf € C(J x M([—7,0],R),R), Iy € C(R,R)(k = 1,2,...,m)
throughout this paper.

In [1] and [2], some existence and unigueness results were obtained for eq. (1.1) by the
Tonelli's method or fixed point theorems. And itis well-known that the method of upper and
lower solutions and its associated monotone iteration is powerful technique for establishing
existence-comparison for differential equations (see [4, 5, 6]). But to impulsive differential
equations with delay as eq. (1.1), this method has not been used yet as far as we know. In
this paper, we discuss eqg. (1.1) by the method and we can find that the delay and impulses
make the discussions more difficult.

2. Main results

AssumeM ([—z, T], R) = {x, x is a bounded and measurable function frepr[T] into
R}with norm|lx|| = supg[—; 77 Ix ()], PCo([—7, T], R) = {x, x isamapping fromd, 0]
into R, x(t7) = x(t) forall t € (-7, 0], x(t™) exists for allt € [—1,0),x(t") = x(1)
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for all but at most a finite number of pointse [—t, 0), andx(z) is continuous at €
[0, T] — {#;}/_, left continuous at = #, andx(t,j) exists(k =1,2,...,m)}.

DEFINITION 2.1

A functionx € PCp([—7, T], R) is said to be a solution of (1.1) i satisfies the first
expression of eq. (1.1) for all € J except on a set of Lebesgue measure zero (the
exceptional points will generally include but may not be limited to impulse tireand
satisfies the second one of eq. (1.1) forrakt {#};" ;, andx is piecewise absolutely
continuous on [QT] with xg = ®.

DEFINITION 2.2

AfunctionG : M([—z, 0], R) — Rissaidto be weakly continuous@s € M([—z, 0], R)
if for any {¢,} € M([—z, O], R) with ”T dn(s) = ¢o(s), a.e.s € [—1, 0], then
n— (o8]

lim G(¢n) = G(o).

n—-+00

And G is said to be weakly continuous @ ([—, 0], R) if G is weakly continuous at
¢ forany¢ € M([—z, O], R).

Remark2.1. This condition is more direct than that in [1] and is different from that in [2],
which need thaff (¢, ) is continuous at eactr, ¥o) € (0, T] x L1([—r, 0], R™).

Lemma2.1. Assume that a functiog : J x M([—7, 0], R) — R is continuous at every
t € J foreach fixedp € M([—t, 0], R) and is weakly continuous at evetye M ([, 0],
R) for each fixed € J. Then for everx € PC([—7, T], R), g(t, x;) is measurable on
[0, T7].

Proof. Choose a continuous function sequeficg such that

lim x,(t) =x(@), forall t e[—7, T].
n——+00

By Lemma 4 in [3],x,, is continuous at € [0, T]. Sog(z, x,;) is measurable on [T].
Since Iim Xnt (8) = x:(s), forall s € [—7, O], then
n——+0oo

lim g, x,) = g(t,x;), forall ¢t €0, T].

n——+00
Sog(t, x;) is measurable on [@]. a

SetB € M([—1,0], R)*. Moreover, suppose that there existy a& L1(—7, 0], R)
with y (¢) > 0 for all mostr € [—1, 0] such that

0
By = | Y (@)y()dt

0
forally € M([—7, 0], R) and| B|| =/ y(1)dt.

Now we list a main lemma.
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Lemma2.2 (Comparison resu)t Assume thap € PC([—z, T], R) N C1(J’, R) satisfies

p'<—Mp@t)—Bp:, telt#u
: 2.2)
Ap'[:[k S _Lkp(tk)v (k - 17 27 e m)

0
where constantd/ > 0,0< L, <1k =12,...,m)andMpy = / e My (r)dr. And
-7

suppose further that

(a) eitherp(0) < po(s) <0,s € [-7, 0] and

n* .(1—-L
MoAs < fl( . o 2.2)
1+ 37 M (1= Ly)
whereAy = max{ty, to —t1, ..., T — ty,}; OF

(b) p(0) > —2, po € PCo([—7, 0], INCL(I', Rywherel’ = [, 0]— {1}, ,, (),
is the set of the discontinuous pointsRf p’ (1) < Moa,

pF) — plt—i) < —L_ip(t—y), (2.3)
inf =—A <0and
se[—r,O]p(S) =san
L (1—Ly)
MoAo < =" s (2.4)
1+ Z’j’??r 1‘[2":].(1 — L)

whereA; =max{tz_, +t,t—p41 —tp, ..., —t-1, 11,02 —t1,..., T —t,,}. Thenp(t) <0
fora.e.r e J.

Proof. Now letv(r) = eM'u(r),t € [—t, 0]. By the definition ofB, the eq. (2.1) can be
listed as

t
() < — eM(t=9) —nds, tel t+t,
v <= [ My —nds ety 25

Av|i=y < —Ligv(te), *k=2L12,...,m).
Now we will provev(r) < 0,r € [—1, T].

In fact, if there exists a & * with v(z*) > 0, we might well suppose’ # 11,12, ..., by
(otherwise, we can choose aearing:* enough withv(r) > 0), let

inf  v(r) = —b. (2.6)

—T<t<t*
First we consider the case (a).

(A) Incase ofb = 0: v(r) > 0,7 € [0,¢*]. Thenv'(r) < 0,¢ € [0,¢*]. Sov'(+*) < O.
This is a contradiction.

(B) In case ofb > 0: Assumer™* € (1, t;+1]. Itis clear that there exists a8 1, < t*
with v(t,) = —b, wherer, in someJ;(j < i) or v(t;') = —b. We may assume that
v(ty) = —b (in case ofv(tj?L) = —b, the proof is similar). By mean value theorem, we
have
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() —v() = V' (&) * — 1), o< &< 1%

() — v ) = v (G — ti-), fic1 < §i—1 <t
v(tj12) — U(f;-;_l) =0 (4042 — tj11), 141 < i1 < 1j42;
v(tj4+1) —v(te) = U/(C*)(tj+l — 1), Ly < 8s <tjy1.

On the other hand, fare [0, t*]

t
V(1) < — / M=y (s)y (s — t)ds < bMo. (2.7)
t

—-T

Now from (2.1), we get
v(t) < A— Lovw), (k=1,2....m),
and

v(t*) — (L— Lv(t;) < bMpAq,

v(t) — (L= Li—1)v(ti-1) < bMpA,

(2.8)
v(tjy2) — (1= Ljy1)v(tj11) < bMoAq,

v(tjy1) +b < bMoAa,

which implies

i
0 < w(t*) < —bITi_; (1 — Li) + bMoA; [1+ doom_a- Lk)} )
I=j+1

Moreover,

1_I;‘<=j+1(1 — L)
1+ Z§=j+1 M, (1~ L)
H?:jﬂ(l — L)
M q + Z;=j+1 M, (1= L)
- H;{"zl(l — L)
T+ L LA Lo’

MoAq1 >

v

which contradicts (2.2).
By virtue of (A) and (B),v(r) <0,t € J.
Next we consider the case (b).

(A If —b = i[rgf ] v(t), we can obtain a contraction similarly as (a).
te[0,t*

(B) If —b < i[gf ]v(t), thenb = A and there existsa € (t_;_1, t_ ;] with v(z,) = —b
te[0,r*

(orv(tjj_l) = —b, the proof is similar). So
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v(t*) — vt = V@) — 1), < g <t
() — v ) = v (G — ti-), fi—1 < i1 <t

v(t1) —v(th) = v/ (C_1) (1 — 1-1), t1<ia<ty 2.9)
v(t1) — vty =V ({2 (-1 — 1-2), tp <2<t '

) L)

v(—j41) = V() = VP — 1)), o < G- <1ojia,
(k) = v(t) = V(G (1) — 1), fe < Gw < 1.

By (2.9) and (2.3), one has

v(*) — (- Liv(ti) < bMoAz,

v(ti) — (1= Li—)v(ti-1) < bMoAz,

v(t1) — (1 — L_1)v(t_1) < bMoAy,
v(t_1) — (1 — L_2)v(t—2) < bMpAy,

v(t—j1) — (1= L_j)v(t—;) < bMoAa,
v(t—;) +b < bMpAy,

which implies
0 <v(®)
. i .
< —bIli__.(1— Ly)+bMoA; !1+12 T, (- Lk)} .
==
Similarly we get
M ;(1—Ly)
14+ Y- (1= Ly

M ,a—Lo

M+ ¥ T (= Lo
. (1—Ly)
> 9
Tl LA Lo
which contradicts (2.4).
By virtue of (A") and(B"), v'(¢) < 0, a.e.t € J. And the proof is complete. a

MoAs >

v

Lemma2.3. Leto,n € M([—7,T], R). Thenx € PCo([—z, T], R) is a solution of the
equation

x'+ Mx + Bx; =o(t), teld,t#1t,
Ax|i=y = L) — Li[x (@) —n@)], (k=12,...,m), (2.10)
.xlo =

if and only ifx € PCo([—1, T], R) is a solution of the following integral equation
t
x(1) = DO M + / e Mo () — B, ]ds
0

+ > e ML) — Lalx ) — n@)l}.t € J, (2.11)

O<ty <t

wherex;(s) = x(t +5) =P +s)ift +5 <0.
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Proof. Assume thatt € PCo([—7, T1, R) is a solution of IRFDE (2.10). Lei(r) =
x(t)e™M! Thenz € PC([—t, T], R) and

7)) =[o@)—Bx)le ™, 1[0, T], t#£1 (k=1,2,...,m).

Since (o () — Bx;)e"™" is measurable on [@], it is easy to establish the following
formula:

t
z(t) = z(0) +/ Z/(s)ds + Z [z(t,:r) —z(n)], t €[0, T].
0 O<p <t

And from the second expression of (2.10), we have

26 — 2(tr) = (1) — Lalx (1) — n(n)]1eM.

Consequently,

x(H)eM = ®(0) + /I[U([) — Bxglds
0
+ > () — Lelx (@) — n@o)]ye”™, 1 € [0, T],

O<t <t

i.e.,x(t) satisfies (2.11).
Conversely, ifx € PC([—7, T]) is a solution of eq. (2.11), by direct differentiation, it
is easy to see the first expression of (2.10) is true for all[0, T'] — {#};"_, except on a
set of Lebesgue measure zero and the second one and the third one of (2.10) are true. The
proof is complete. ]

Lemma2.4. Equation(2.11)has a unique solution i®®? Co([—t, T], R) with xg = .

Proof. Forx e C([0, 1], R), let||x|| = max{e ™! |x (1), ¢ € [0, 1]} and
t
(A1x) (1) = ©(0)eM! +/ e MU=95(s) — (Bxy)]ds, t € J,
0

wherex(t+s) = ®(t+s)if t+s < 0andMy = ||B||+1. ObviouslyA: : C([0, 1], R) —
C([0, 1], R) is a continuous operator. Fory € C([0, 1], R),

[(A1x)(2) — (A1y) ()|
t
fo [(Bx,) — (Byy)ds

t 0
/0/ x5 (r) — ys(r)|y (r)drds

0 t
/ folxs(r)—ys(r)ly(r)dsdr

0 t
/ /les(r)—ys(r)ldsy(r)dr



Impulsive delay differential equations 357

0 t+r
= / / |x(s) — y(s)|dsy (r)dr

0 t+r

- f /0 x(s) — y(s)ldsy (r)dr
0 t

< ffo|x<s>—y<s>|dsy(r>dr

t 0
= fOIX(S)—y(S)IdS/ y(r)dr

t
T /O &M1& M5 | (5) — y(s) | ds
18]

M1t
< —¢€ — vyl
= lx =yl
So
— Mt 1Bl
e " (Ax) (1) — (Ay)D| = —lx — ¥,
My
ie.,
Bl
[(A1x — A1y)|l < Fllx =yl (2.12)
1

By contraction mapping theorem,; has a unique fixed point; € C([0, 1], R). For
x € C([t1, 12], R), let ||x|| = max{e M2 |x(¢)|, t € [t1, 2]} and

(A2x)(t) = (x1(11)) 4 [ (n(11)) — L1(xa(r1) — n(tr))]e” M)

t
+ / e M=o (s) — Bx,]ds, t € [r1, 2], (2.13)
1

wherex(t +s) = @t +s)ift +5 < 0, x( +s) = x1(t +s)if t +5 € (0,#1] and
My = ||B| + 1. Similarly, A2 has a unique fixed point in C([z1, 2], R). So forth and
so on, forx € C([t,, T], R), let | x| = max{e~Mr+1!|x(¢)|, t € [t,, T]} and

(An422) (1) = (X (tn)) + [Ln ((t2)) — Ly (0 (1)) — n(8,)]e" M=)

t
+/ e M=o (s) — Bx,]ds, t € [ta, T], (2.14)
0

wherex(t+s) = ®(t+s)ift+s <0, x(t+s) = x1(t+s)ift+s € (0,11],...,x(t+s) =
Xp—1(t +s)ift +5 € (t,—2, t,] and M, 11 = ||B|| + 1.
Similarly A,,;1 has a unique fixed point,+1 € C([#,, T], R). Let

d(1), t e[—1,0];
x1(1), t e (0,n];
x*@) =1 x200), t € (t1, 12];

“ey

xn+l([)» t e (ty, T]~

Thenx* € PC([—z, T], R) is a solution. Ify* € PC([—z, T], R) is another solution of
equation, by*(r) = y*(¢r) forr € [—t, 0], itis easy to verifyc*(r) = y*(¢r) forz € [0, 11].
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And so onx*(t) = y*(¢t) for ¢t € (11, t2]. Continuing as before, we get'(t) = y*(¢) for

t € (t,, T]. Thereforex* = y*. The proof is complete. o
Now we list some independent conditions for convenience.

(A1) There existt, v € PCo([—1, T], R) satisfyingu(t) < v(z) (¢t € J) and

u'(t) < [t up), teJ t#E 1
Au|l=lk = Ik(”(”())’ (k= 13 27""7m)7
ug < @,

Av|t=tk Z Ik(v(tk))’ (k: 17 27‘-'5m)7
vo > .

{ V(1) = f(t, ), telt#n;

Moreover,® — ug andvg — & satisfy either the assumption (a) or (b) of Lemma 2.1.
(A2) There exist constant® > 0 such that

ft.¢) = f@.¥) = =M@@0) — v () — B¢ — ),

whenever € J, ¢, ¥ € {x;, u(t) <x(t) <v(t),t € J}withg > .
(A3) Thereexistconstants® L, <1(k=1,2,...,m) such that

Ii(x) — It (y) = —Li(x — y),

whenevem () <y <x <v(), k=12,...,m).

(Ag) f :J x M(J—1,0], R) — R is continuous at every € J for each fixedyp €
M([—z, 0], R) and is weakly continuous at evegye M ([—t, O], R) for each fixed
tel.

Theorem 2.1. Let the conditiongA1)—(A4) be satisfied ang” € C([0, T] x M([—t, 0],

R), R) and[u, v] € PCo([—7, 0], R). Then there exist monotone sequefgg, {v,} C

PCo([—7, T], R) which converge or/ to the minimal and maximal solutions, x* €

PCo([—7, T], R) in [u, v] respectively. Thatis, if € PCo([—7, T], R) is any solution
satisfyingx € [u, v], then

u(t) Sur() < ... Sx(t) Sx() SxTO =L = v@) =L S @) S, e

Proof. For anyn € [u, v], consider the linear eq. (2.10), where
o(t) = f(t,n)+ Mn()+ By, t € J.

By the condition(A4) and Lemma 2.1, one has € M([—,T], R). By Lemma 2.3,
IRFDE (2.10) has a unique solutiane PCo([—z, T], R) with xo = ®. Let

x(t) = (An)(), t € J. (2.15)

ThenA is a continuous operator from [v] into PCo([—z, T], R). Now we show
(@) u < Au, Av < v;
(b) A is nondecreasing inf v].
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To prove (a), we sai; = Auandp = u — u3. By Lemma 2.3, we have

uy(t) + Muy(t) + Buy = f(t,u;) + Mu(t) + Bu,, teJ,t#1,
Aurli=y = It(u(ty)) — Li[ui(t) — u(t)], k=12,....,m, (2.16)
u1o = e.

So
p't)y=u'(t) —ui'(t) < —Mp(t) — Bpx, teld,t#n,
AP|t:tk = AM|t:tk - Alfil|z:tk < —Lip(ty), *k=12,...,m) (2-17)
po=ug—u1o0 <0,

which implies by virtue of Lemma 2.2 that(z) < O fort € J, i.e. u < u3 = Au.
Similarly, we can show; = Av < v.
To prove (b), forn1, n2 € [u, vl with n1 < 12, let p = x1 — x2, wherexy; = Ang, x2 =
Anp. From Lemma 2.2, we get
P =xi—x
=[f @ nu) + M(n1(t) — x1(2)) + (Bny, — Bxa)]
—[f (. n20) + M(n2(t) — x2(t)) 4 (Bn2: — Bx2;)]
= —[f(t n20) — f(t. n1)
+M (n2(t) — n1(2)) + (Bnzr — Bnas)]
—Mp — Bp;
< —Mp(t) — Bp;,t € J, t # 1,

AP|t=tk = Axllt:tk - A952|z=tk
= {Im ) — Lilx1(te) — m(t)]} — {le(m2(te)) — Le[x2(te) — n2(t)]}
= —{lc(m2(tr)) — k(1 (te)) + Li[n2(te) — na(t)]} — Lip(te)
< —-Lipty), k=1,2,...,m),

and
po = x10—x20 = 0.

Hence, by Lemma 2.3(¢r) < Oforallz € J,i.e.,An1 < Anp, and (b) is proved.
Letu, = Au,_1,andv, = Av,—1 (mn =1,2,...,m). By (a) and (b), we get

u) <ur(t) <...<up() <...<v,(O)<...<...<vi(@t) <v@®), teJ, (2.18)

andu,, v, € PCo([—7, T], R) with u,,0 = v,0 = &,n = 1,2,.... So there exist, and
x* such that

up(t) = x4(),t €[—1,T], n > +o0, (2.19)
v (1) = x*(),t € [-7,T], n — +oo. (2.20)

Therefore

Ui () = X51(8), 1 € J,s € [—71,0], n > 400,

Ut () = x/(s),t € J,s € [-7,0], n > +o0.



360 Baogiang Yan and Xilin Fu

So
S un) + Muy_1(t) — (Bup, — Buy—14)
— f(t, Xe) + Mx,(t),n —> +00.
By the Lebesgue dominated convergence theorem, we get

t
/ eiM(tix)[f(si Ups) + Mup_1(5) — (Bups — Bun—lf)]ds
0

t
- / e MO (s, x45) + Maxu(s)]ds, n — oo, (221)
0
So
t
() = D) M 4 / e MU f (s, xus) + Mxi(s)lds, 1 €0, 1], (2.22)
0

wherex,o = ®. And by virtue of the continuity of1, we get
I1(up (1)) — I1(x4(11)), n — +o0. (2.23)
Similarly, one has
X (1) = [xa(11) + N(xa ()] e MO

t
+ / e MU= £(s, xys) + Mxy(s)]ds, t € (11, 12], (2.24)
t

1
wherex,g = ®. So forth and so on,

(1) = [ (tn) + I (xi(8,))] e MO0
t
+ f e MU= £(s, xys) + Mxy(s)]ds, t € (1, T], (2.25)
tn
wherex,g = ®. Then

t
X4(t) = q)e_Mt +/ e_M(t_S)[f(sv Xss) + Mx*(s)]ds
0

+ > e ML), 1€ . (2.26)

O<t <t

By the similar proof, we get
t
x*(t) = ®(0)eM! +[ e MU= (s, x¥) + Mx*(s)]ds
0

+ Y e MR (), (2.27)

O<ify <t
wherexg = &.
Finally, if x € PC([—1, T], R) is a solution of eq. (1.1) ind, v], Now let p = u, — x
and use mathematics induction. Obviously x. Suppose:,_1 < x. Then
p/ — un/ _ x/
= f(t,up—11) — M(up(t) — up—1(t)) — (Bunr — Bu,_y,) — f (&, x1)
=—Mp — Bp: — [f(t,x;) — f(t,un—11)]
+M(—x(@) + up—1(9)) + (—Bx; + Bup—1s)
<—Mp—Bp;,telJ, t#1,
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AP|t=tk = Aun|t=tk_Ax|t=tk

= Di(up—1(t)) — Lilun () — up—1(tr)] — I (x (1))

361

= —{Li(x) — Le(upn—1(te) + Le[x(tx) — un—1(t)]} — L p(t)

_Lkp(tk)7 (k = 1’ 27 ceey m)’

PO = Uno — X0 = 0.

Hence, by Lemma 2.23(t) < Oforallt € J, i.e. u,(t) < x(t),t € J. Sou,(t) < x(t),
teJ,n=12,.... Bythe same proof, we can shawr) < v (1),r € J,n=1,2,....
Consequentlyy, (1) < x(t) < x*(¢),t € J. The proof is complete.

3. An example

We consider.

where

/_ i _ 3 i 2 _ _ 5
x' = 72(t x(1)) +40(t x(t—=1)

1 (. 0 ° 1
+— smzt—/ x(t + 5)ds ,z;éé,te(o,l];
-1

144
1 /1
Axli—y = é’“(é)’
X0 = ¢,
1, re[-1-3),
o) =1 1
E’ te(_%’o]

Conclusion.IRFDE (3.1) admits minimal and maximal solutions.

Proof. Let

and

u(@®) =0, r e[-1,1]

17 re [_13 O]v
v(t) = 1+1, IG(O, %]7

S 1
t—i-é, te(3,1].

O

(3.1)

It is easy to see that, v are not solutions of eq. (3.1) andf) < v(¢), r € [—1,1].

Moreover,
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u'(t) =0, rel0,1];

1 1
U/(t) = 1, t e |:0, E) U (E, 1],
fltou) = =34+ —%+ —_sins, 1 € [0, 1],

712 40 144

_ 1 3, 1 2 5
f(t’vt)—72(t A+1) +40(t 1

3
1 (. 0
+3ﬁ(sm%-[4v0+sxm),te[Ql}
Then

u'(t) < f(t,uy), te(0,1),1#3:
A < 1 1

u|t=% _—éu )
ug < o,
V(1) = f(t,v), red,t#
Av| 1 /1

Vi=n = =g 3 )
vg > P,

i.e. the conditionA3) is true.
By mean value theorem, we get

1 3 . 3 _ 1 2
z?«t )= -y))= Zéft n(x, y)°(x —y),
L2 N5 2 N5y T 40y _
40((t X)) =" =y)°) = S(I C(x, ¥ (x —y)
and
L (it —x)3 = (it — )3 = — = (SR — (. )2 (x — )
144 48 ’ '
For anyy € M([—1, 0], R), let
B _1 1 10 d
¢—§¢(—)+4—8/_1w(s) 5.
Then
1
f@, o) — f,¥) = —2—4(45(0) —¥(0) — (B¢ — BY)

forallg, v € {x;, u(®) < x(t) <v@),t €[0, 1]} with¢ < .
So the conditior{A») is true.

For1<<< !
uz_y_x_vz,

1
Ix) = 1(y) = —glx = ).
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1 1 1
So the conditionfA3z) istrue. SoM = —, L1 = =, A1 = =, Ar =1,
itior(A3) Is tru 24,1 6’1 272
Iy 1+1_1
0=22787 6

For p1(1) = u(t) — ®(1), ¢ € [-1, 0], we get

1 1 1
L i1=—=-,A=max{-=,1 -} =1 inf t)=-1 0
1= X{Z’ ,2} ,IG[I_LO]F1() < p1(0)

and
1 1
"(t) =0 < Mo, -1, —=)n{—-=,0].
e e

Moreover,

5 (1-L_1(1—1Ly)
MoA1 < — = .
23 1+(AQ1-L_)+@A-L_1)A-Ly)

For po = () — v(z), we get

1
p2(0) = —3= p2(1), t € [-1,0]

and
5 (1-Ly

Mg < — ==Y
11 1+@A-Ly)

And thus it is easy to see théd\,) is true. By Theorem 2.1, eq. (3.1) has a maximal
solution and a minimal solution. The proof is complete. m|

Remark.Our result can be extended to impulsive delay differential equations in Banach
spaces.
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