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1. Introduction

In this paper, we discuss the impulsive retarded functional differential equation (IRFDE)

x′ = f (t, xt ), t ∈ [0, T ], t 6= tk;

1x|t=tk = Ik(x(tk)), k = 1, 2, . . . , m;

x0 = 8,

(1.1)

where8 ∈ PC([−τ, 0], R) = {x, x is a mapping from [τ, 0] intoR, x(t−) = x(t) for all
t ∈ (−τ, 0], x(t+) exists for allt ∈ [−τ, 0), andx(t+) = x(t) for all but at most a finite
number of pointst ∈ [−τ, 0)} andM([−τ, 0], R) = {x, x is a bounded and measurable
function from [−τ, 0] into R} with norm‖x‖ = supt∈[−τ,0] |x(t)|, τ > 0, xt (θ) = x(t +

θ), θ ∈ [−τ, 0], 0 = t0 < t1 < t2 < · · · < tm < T, J = [0, T ], J ′ = J − {ti}
m
i=1. It is

easy to see thatPC0([−τ, 0], R) ⊆ M([−τ, 0], R) andM([−τ, 0], R) is a Banach space.
Now we suppose thatf ∈ C(J × M([−τ, 0], R), R), Ik ∈ C(R,R)(k = 1, 2, . . . , m)
throughout this paper.

In [1] and [2], some existence and uniqueness results were obtained for eq. (1.1) by the
Tonelli’s method or fixed point theorems. And it is well-known that the method of upper and
lower solutions and its associated monotone iteration is powerful technique for establishing
existence-comparison for differential equations (see [4, 5, 6]). But to impulsive differential
equations with delay as eq. (1.1), this method has not been used yet as far as we know. In
this paper, we discuss eq. (1.1) by the method and we can find that the delay and impulses
make the discussions more difficult.

2. Main results

AssumeM([−τ, T ], R) = {x, x is a bounded and measurable function from [−τ, T ] into
R} with norm‖x‖ = supt∈[−τ,T ] |x(t)|, PC0([−τ, T ], R) = {x, x is a mapping from [τ, 0]
into R, x(t−) = x(t) for all t ∈ (−τ, 0], x(t+) exists for allt ∈ [−τ, 0), x(t+) = x(t)
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for all but at most a finite number of pointst ∈ [−τ, 0), andx(t) is continuous att ∈

[0, T ] − {ti}
m
i=1 left continuous att = tk, andx(t+k ) exists(k = 1, 2, . . . , m)}.

DEFINITION 2.1

A function x ∈ PC0([−τ, T ], R) is said to be a solution of (1.1) ifx satisfies the first
expression of eq. (1.1) for allt ∈ J except on a set of Lebesgue measure zero (the
exceptional points will generally include but may not be limited to impulse timestk) and
satisfies the second one of eq. (1.1) for allt ∈ {tk}

m
k=1, andx is piecewise absolutely

continuous on [0, T ] with x0 = 8.

DEFINITION 2.2

A functionG : M([−τ, 0], R) → R is said to be weakly continuous atφ0 ∈ M([−τ, 0], R)
if for any {φn} ⊆ M([−τ, 0], R) with lim

n→+∞
φn(s) = φ0(s), a.e.s ∈ [−τ, 0], then

lim
n→+∞

G(φn) = G(φ0).

AndG is said to be weakly continuous onM([−τ, 0], R) if G is weakly continuous at
φ for anyφ ∈ M([−τ, 0], R).

Remark2.1. This condition is more direct than that in [1] and is different from that in [2],
which need thatf (t, ψ) is continuous at each(t, ψ0) ∈ (0, T ] × L1([−r, 0], Rn).

Lemma2.1. Assume that a functiong : J ×M([−τ, 0], R) → R is continuous at every
t ∈ J for each fixedφ ∈ M([−τ, 0], R) and is weakly continuous at everyφ ∈ M([−τ, 0],
R) for each fixedt ∈ J . Then for everyx ∈ PC([−τ, T ], R), g(t, xt ) is measurable on
[0, T ].

Proof. Choose a continuous function sequence{xn} such that

lim
n→+∞

xn(t) = x(t), for all t ∈ [−τ, T ].

By Lemma 4 in [3],xnt is continuous att ∈ [0, T ]. Sog(t, xnt ) is measurable on [0, T ].
Since lim

n→+∞
xnt (s) = xt (s), for all s ∈ [−τ, 0], then

lim
n→+∞

g(t, xnt ) = g(t, xt ), for all t ∈ [0, T ].

Sog(t, xt ) is measurable on [0, T ]. 2

SetB ∈ M([−τ, 0], R)∗. Moreover, suppose that there exists aγ ∈ L1([−τ, 0], R)
with γ (t) ≥ 0 for all mostt ∈ [−τ, 0] such that

Bψ =

∫ 0

−τ

ψ(t)γ (t)dt

for all ψ ∈ M([−τ, 0], R) and‖B‖ =

∫ 0

−τ

γ (t)dt .

Now we list a main lemma.
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Lemma2.2 (Comparison result). Assume thatp ∈ PC([−τ, T ], R)∩C1(J ′, R) satisfies{
p′ ≤ −Mp(t)− Bpt , t ∈ J, t 6= tk

,

1p|t=tk ≤ −Lkp(tk), (k = 1, 2, . . . , m)
(2.1)

where constantsM ≥ 0, 0 ≤ Lk ≤ 1 (k = 1, 2, . . . , m) andM0 =

∫ 0

−τ

e−Mtγ (t)dt . And

suppose further that

(a) eitherp(0) ≤ p0(s) ≤ 0, s ∈ [−τ, 0] and

M011 ≤
5mk=1(1 − Lk)

1 +
∑m
j=15

j

k=1(1 − Lk)
, (2.2)

where11 = max{t1, t2 − t1, . . . , T − tm}; or

(b) p(0) ≥ −λ, p0 ∈ PC0([−τ, 0], R)∩C1(I ′, R)whereI ′ = [−τ, 0]−{tl}
−1
l=−r , {tl}

−1
l=−r

is the set of the discontinuous points ofP0, p
′(t) ≤ M0λ,

p(t+−i )− p(t−i ) ≤ −L−ip(t−i ), (2.3)

inf
s∈[−τ,0]

p(s) = −λ < 0 and

M012 ≤
5mk=−r (1 − Lk)

1 +
∑m
j=−r 5

m
k=j (1 − Lk)

, (2.4)

where12 = max{t−r + τ, t−r+1 − tr , . . . ,−t−1, t1, t2 − t1, . . . , T − tm}. Thenp(t) ≤ 0
for a.e. t ∈ J .

Proof. Now let v(t) = eMtu(t), t ∈ [−τ, 0]. By the definition ofB, the eq. (2.1) can be
listed as 

 v′(t) ≤ −

∫ t

t−τ

eM(t−s)v(s)γ (s − t)ds, t ∈ J, t 6= tk,

1v|t=tk ≤ −Lkv(tk), (k = 1, 2, . . . , m).
(2.5)

Now we will provev(t) ≤ θ, t ∈ [−τ, T ].
In fact, if there exists a 0< t∗ with v(t∗) > 0, we might well supposet∗ 6= t1, t2, . . . , tm

(otherwise, we can choose at̄ nearingt∗ enough withv(t̄) > 0), let

inf
−τ≤t≤t∗

v(t) = −b. (2.6)

First we consider the case (a).

(A) In case ofb = 0: v(t) ≥ 0, t ∈ [0, t∗]. Thenv′(t) ≤ 0, t ∈ [0, t∗]. So v′(t∗) ≤ 0.
This is a contradiction.

(B) In case ofb > 0: Assumet∗ ∈ (ti , ti+1]. It is clear that there exists a 0≤ t∗ < t∗

with v(t∗) = −b, wheret∗ in someJj (j ≤ i) or v(t+j ) = −b. We may assume that

v(t∗) = −b (in case ofv(t+j ) = −b, the proof is similar). By mean value theorem, we
have
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


v(t∗)− v(t+i ) = v′(ζi)(t
∗ − ti ), ti < ζi < t∗;

v(ti)− v(t+i−1) = v′(ζi−1)(ti − ti−1), ti−1 < ζi−1 < ti;

. . . , . . .

v(tj+2)− v(t+j+1) = v′(ζj+1)(tj+2 − tj+1), tj+1 < ζj+1 < tj+2;

v(tj+1)− v(t∗) = v′(ζ∗)(tj+1 − t∗), t∗ < ζ∗ < tj+1.

On the other hand, fort ∈ [0, t∗]

v′(t) ≤ −

∫ t

t−τ

eM(t−s)v(s)γ (s − t)ds ≤ bM0. (2.7)

Now from (2.1), we get

v(t+k ) ≤ (1 − Lk)v(tk), (k = 1, 2 . . . , m),

and 


v(t∗)− (1 − Li)v(ti) ≤ bM011,

v(ti)− (1 − Li−1)v(ti−1) ≤ bM011,

. . . , . . .

v(tj+2)− (1 − Lj+1)v(tj+1) ≤ bM011,

v(tj+1)+ b ≤ bM011,

(2.8)

which implies

0< v(t∗) ≤ −b5ik=j+1(1 − Lk)+ bM011


1 +

i∑
l=j+1

5ik=l (1 − Lk)


 .

Moreover,

M011 >
5ik=j+1(1 − Lk)

1 +
∑i
l=j+15

i
k=l (1 − Lk)

≥
5mk=j+1(1 − Lk)

5mk=i+1 +
∑i
l=j+15

m
k=l (1 − Lk)

≥
5mk=1(1 − Lk)

1 +
∑m
l=15

m
k=l (1 − Lk)

,

which contradicts (2.2).
By virtue of (A) and (B),v(t) ≤ 0, t ∈ J .
Next we consider the case (b).

(A ′) If −b = inf
t∈[0,t∗]

v(t), we can obtain a contraction similarly as (a).

(B′) If −b < inf
t∈[0,t∗]

v(t), thenb = λ and there exists at∗ ∈ (t−j−1, t−j ] with v(t∗) = −b

(or v(t+−j−1) = −b, the proof is similar). So
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

v(t∗)− v(t+i ) = v′(ζi)(t
∗ − ti ), t i < ζi < t∗;

v(ti)− v(t+i−1) = v′(ζi−1)(ti − ti−1), ti−1 < ζi−1 < ti;

. . . , . . .

v(t1)− v(t+−1) = v′(ζ−1)(t1 − t−1), t−1 < ζ−1 < t1,

v(t−1)− v(t+−2) = v′(ζ−2)(t−1 − t−2), t−2 < ζ−2 < t−1,

. . . , . . . ;

v(t−j+1)− v(t+−j ) = v′(ζ−j )(t−j+1 − t−j ), t−j < ζ−j < t−j+1,

v(t1−j )− v(t∗) = v′(ζ∗)(t−j − t∗), t∗ < ζ∗ < t−j .

(2.9)

By (2.9) and (2.3), one has


v(t∗)− (1 − Li)v(ti) ≤ bM012,

v(ti)− (1 − Li−1)v(ti−1) ≤ bM012,

. . . , . . .

v(t1)− (1 − L−1)v(t−1) ≤ bM012,

v(t−1)− (1 − L−2)v(t−2) ≤ bM012,

. . . , . . .

v(t−j+1)− (1 − L−j )v(t−j ) ≤ bM012,

v(t−j )+ b ≤ bM012,

which implies

0< v(t∗)

< −b5ik=−j (1 − Lk)+ bM012

{
1 +

i∑
l=−j

5ik=l (1 − Lk)

}
.

Similarly we get

M012 >
5ik=−j (1 − Lk)

1 +
∑i
l=−j 5

i
k=l (1 − Lk)

≥
5mk=−j (1 − Lk)

5mk=−j +
∑i
l=−j 5

m
k=l (1 − Lk)

≥
5mk=−r (1 − Lk)

1 +
∑m
l=−r 5

m
k=l (1 − Lk)

,

which contradicts (2.4).
By virtue of (A ′) and(B′), v′(t) ≤ 0, a.e.t ∈ J . And the proof is complete. 2

Lemma2.3. Let σ, η ∈ M([−τ, T ], R). Thenx ∈ PC0([−τ, T ], R) is a solution of the
equation 


x′ +Mx + Bxt = σ(t), t ∈ J, t 6= tk,

1x|t=tk = Ik(ηk)− Lk[x(tk)− η(tk)], (k = 1, 2, . . . , m),
xt0 = 8

(2.10)

if and only ifx ∈ PC0([−τ, T ], R) is a solution of the following integral equation

x(t) = 8(0)e−Mt +

∫ t

0
e−M(t−s)[σ(s)− Bxs ]ds

+
∑

0<tk<t

e−M(t−tk){Ik(η(tk))− Lk[x(tk)− η(tk)]}, t ∈ J, (2.11)

wherext (s) = x(t + s) = 8(t + s) if t + s ≤ 0.
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Proof. Assume thatx ∈ PC0([−τ, T ], R) is a solution of IRFDE (2.10). Letz(t) =

x(t)e−Mt . Thenz ∈ PC([−τ, T ], R) and

z′(t) = [σ(t)− Bxt )]e
−Mt , t ∈ [0, T ], t 6= tk (k = 1, 2, . . . , m).

Since (σ (t) − Bxt )e−Mt is measurable on [0, T ], it is easy to establish the following
formula:

z(t) = z(0)+

∫ t

0
z′(s)ds +

∑
0<tk<t

[z(t+k )− z(tk)], t ∈ [0, T ].

And from the second expression of (2.10), we have

z(t+k )− z(tk) = {Ik(η(tk))− Lk[x(tk)− η(tk)]}e
Mtk .

Consequently,

x(t)eMt = 8(0)+

∫ t

0
[σ(t)− Bxs ]ds

+
∑

0<tk<t

{Ik(η(tk))− Lk[x(tk)− η(tk)]}e
Mtk , t ∈ [0, T ],

i.e.,x(t) satisfies (2.11).
Conversely, ifx ∈ PC([−τ, T ]) is a solution of eq. (2.11), by direct differentiation, it

is easy to see the first expression of (2.10) is true for allt ∈ [0, T ] − {tk}
m
k=1 except on a

set of Lebesgue measure zero and the second one and the third one of (2.10) are true. The
proof is complete. 2

Lemma2.4. Equation(2.11)has a unique solution inPC0([−τ, T ], R) with x0 = 8.

Proof. Forx ∈ C([0, t1], R), let ‖x‖ = max{e−M1t |x(t)|, t ∈ [0, t1]} and

(A1x)(t) = 8(0)e−Mt +

∫ t

0
e−M(t−s)[σ(s)− (Bxs)]ds, t ∈ J,

wherex(t+s) = 8(t+s) if t+s ≤ 0 andM1 = ‖B‖+1. ObviouslyA1 : C([0, t1], R) →

C([0, t1], R) is a continuous operator. Forx, y ∈ C([0, t1], R),

|(A1x)(t)− (A1y)(t)|

=

∫ t

0
[(Bxs)− (Bys)]ds

=

∫ t

0

∫ 0

−τ

|xs(r)− ys(r)|γ (r)drds

=

∫ 0

−τ

∫ t

0
|xs(r)− ys(r)|γ (r)dsdr

=

∫ 0

−τ

∫ t

0
|xs(r)− ys(r)|dsγ (r)dr
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=

∫ 0

−τ

∫ t+r

r

|x(s)− y(s)|dsγ (r)dr

=

∫ 0

−τ

∫ t+r

0
|x(s)− y(s)|dsγ (r)dr

≤

∫ 0

−τ

∫ t

0
|x(s)− y(s)|dsγ (r)dr

=

∫ t

0
|x(s)− y(s)|ds

∫ 0

−τ

γ (r)dr

= ‖B‖

∫ t

0
eM1se−M1s‖x(s)− y(s)‖ds

≤
‖B‖

M1
eM1t‖x − y‖.

So

e−M1t |(A1x)(t)− (A1y)(t)| ≤
‖B‖

M1
‖x − y‖,

i.e.,

‖(A1x − A1y)‖ ≤
‖B‖

M1
‖x − y‖. (2.12)

By contraction mapping theorem,A1 has a unique fixed pointx1 ∈ C([0, t1], R). For
x ∈ C([t1, t2], R), let ‖x‖ = max{e−M2t |x(t)|, t ∈ [t1, t2]} and

(A2x)(t) = (x1(t1))+ [I1(η(t1))− L1(x1(t1)− η(t1))]e
−M(t−t1)

+

∫ t

t1

e−M(t−s)[σ(s)− Bxs ]ds, t ∈ [t1, t2], (2.13)

wherex(t + s) = 8(t + s) if t + s ≤ 0, x(t + s) = x1(t + s) if t + s ∈ (0, t1] and
M2 = ‖B‖ + 1. Similarly,A2 has a unique fixed pointx2 in C([t1, t2], R). So forth and
so on, forx ∈ C([tn, T ], R), let ‖x‖ = max{e−Mn+1t |x(t)|, t ∈ [tn, T ]} and

(An+1x)(t) = (xn(tn))+ [In(η(tn))− Ln(xn(tn))− η(tn)]e
−M(t−tn)

+

∫ t

0
e−M(t−s)[σ(s)− Bxs ]ds, t ∈ [tn, T ], (2.14)

wherex(t+s) = 8(t+s) if t+s ≤ 0, x(t+s) = x1(t+s) if t+s ∈ (0, t1], . . . , x(t+s) =

xn−1(t + s) if t + s ∈ (tn−2, tn] andMn+1 = ‖B‖ + 1.
SimilarlyAn+1 has a unique fixed pointxn+1 ∈ C([tn, T ], R). Let

x∗(t) =




8(t), t ∈ [−τ, 0];
x1(t), t ∈ (0, t1];
x2(t), t ∈ (t1, t2];
. . . , . . . ;

xn+1(t), t ∈ (tn, T ].

Thenx∗ ∈ PC([−τ, T ], R) is a solution. Ify∗ ∈ PC([−τ, T ], R) is another solution of
equation, byx∗(t) = y∗(t) for t ∈ [−τ, 0], it is easy to verifyx∗(t) = y∗(t) for t ∈ [0, t1].
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And so on,x∗(t) = y∗(t) for t ∈ (t1, t2]. Continuing as before, we getx∗(t) = y∗(t) for
t ∈ (tn, T ]. Thereforex∗ = y∗. The proof is complete. 2

Now we list some independent conditions for convenience.

(A1) There existu, v ∈ PC0([−τ, T ], R) satisfyingu(t) ≤ v(t) (t ∈ J ) and

u′(t) ≤ f (t, ut ), t ∈ J, t 6= tk;

1u|t=tk ≤ Ik(u(tk)), (k = 1, 2, . . . , m),
u0 ≤ 8,


v′(t) ≥ f (t, vt ), t ∈ J, t 6= tk;

1v|t=tk ≥ Ik(v(tk)), (k = 1, 2, . . . , m),
v0 ≥ 8.

Moreover,8− u0 andv0 −8 satisfy either the assumption (a) or (b) of Lemma 2.1.

(A2) There exist constantsM ≥ 0 such that

f (t, φ)− f (t, ψ) ≥ −M(φ(0)− ψ(0))− B(φ − ψ),

whenevert ∈ J, φ,ψ ∈ {xt , u(t) ≤ x(t) ≤ v(t), t ∈ J } with φ ≥ ψ .

(A3) There exist constants 0≤ Lk ≤ 1 (k = 1, 2, . . . , m) such that

Ik(x)− Ik(y) ≥ −Lk(x − y),

wheneveru(tk) ≤ y ≤ x ≤ v(tk), (k = 1, 2, . . . , m).

(A4) f : J × M([−τ, 0], R) → R is continuous at everyt ∈ J for each fixedφ ∈

M([−τ, 0], R) and is weakly continuous at everyφ ∈ M([−τ, 0], R) for each fixed
t ∈ J .

Theorem 2.1. Let the conditions(A1)–(A4) be satisfied andf ∈ C([0, T ] ×M([−τ, 0],
R), R) and [u, v] ⊆ PC0([−τ, 0], R). Then there exist monotone sequence{un}, {vn} ⊆

PC0([−τ, T ], R) which converge onJ to the minimal and maximal solutionsx∗, x
∗ ∈

PC0([−τ, T ], R) in [u, v] respectively. That is, ifx ∈ PC0([−τ, T ], R) is any solution
satisfyingx ∈ [u, v], then

u(t) ≤ u1(t) ≤ . . . ≤ x∗(t) ≤ x(t) ≤ x∗(t) ≤ . . . ≤ vn(t) ≤ . . . ≤ v1(t) ≤ v(t), t ∈ J.

Proof. For anyη ∈ [u, v], consider the linear eq. (2.10), where

σ(t) = f (t, ηt )+Mη(t)+ Bηt , t ∈ J.

By the condition(A4) and Lemma 2.1, one hasσ ∈ M([−τ, T ], R). By Lemma 2.3,
IRFDE (2.10) has a unique solutionx ∈ PC0([−τ, T ], R) with x0 = 8. Let

x(t) = (Aη)(t), t ∈ J. (2.15)

ThenA is a continuous operator from [u, v] into PC0([−τ, T ], R). Now we show

(a) u ≤ Au,Av ≤ v;

(b) A is nondecreasing in [u, v].
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To prove (a), we setu1 = Au andp = u− u1. By Lemma 2.3, we have

u′

1(t)+Mu1(t)+ Bu1t = f (t, ut )+Mu(t)+ But , t ∈ J, t 6= tk,

1u1|t=tk = Ik(u(tk))− Lk[u1(tk)− u(tk)], k = 1, 2, . . . , m,
u10 = 8.

(2.16)

So

p′(t) = u′(t)− u1

′(t) ≤ −Mp(t)− Bpt , t ∈ J, t 6= tk,

1p|t=tk = 1u|t=tk −1u1|t=tk ≤ −Lkp(tk), (k = 1, 2, . . . , m)
p0 = u0 − u10 ≤ 0,

(2.17)

which implies by virtue of Lemma 2.2 thatp(t) ≤ 0 for t ∈ J , i.e. u ≤ u1 = Au.
Similarly, we can showv1 = Av ≤ v.

To prove (b), forη1, η2 ∈ [u, v] with η1 ≤ η2, letp = x1 − x2, wherex1 = Aη1, x2 =

Aη2. From Lemma 2.2, we get

p′ = x′
1 − x′

2

= [f (t, η1t )+M(η1(t)− x1(t))+ (Bη1t − Bx1t )]

−[f (t, η2t )+M(η2(t)− x2(t))+ (Bη2t − Bx2t )]

= −[f (t, η2t )− f (t, η1t )

+M(η2(t)− η1(t))+ (Bη2t − Bη1t )]

−Mp − Bpt

≤ −Mp(t)− Bpt , t ∈ J, t 6= tk,

1p|t=tk = 1x1|t=tk −1x2|t=tk

= {Ik(η1(tk))− Lk[x1(tk)− η1(tk)]} − {Ik(η2(tk))− Lk[x2(tk)− η2(tk)]}

= −{Ik(η2(tk))− Ik(η1(tk))+ Lk[η2(tk)− η1(tk)]} − Lkp(tk)

≤ −Lkp(tk), (k = 1, 2, . . . , m),

and

p0 = x10 − x20 = 0.

Hence, by Lemma 2.2,p(t) ≤ 0 for all t ∈ J , i.e.,Aη1 ≤ Aη2, and (b) is proved.
Let un = Aun−1, andvn = Avn−1 (n = 1, 2, . . . , m). By (a) and (b), we get

u(t) ≤ u1(t) ≤ . . . ≤ un(t) ≤ . . . ≤ vn(t) ≤ . . . ≤ . . . ≤ v1(t) ≤ v(t), t ∈ J, (2.18)

andun, vn ∈ PC0([−τ, T ], R) with un0 = vn0 = 8, n = 1, 2, . . .. So there existx∗ and
x∗ such that

un(t) → x∗(t), t ∈ [−τ, T ], n → +∞, (2.19)

vn(t) → x∗(t), t ∈ [−τ, T ], n → +∞. (2.20)

Therefore

unt (s) → x∗t (s), t ∈ J, s ∈ [−τ, 0], n → +∞,

vnt (s) → x∗
t (s), t ∈ J, s ∈ [−τ, 0], n → +∞.
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So

f (t, unt )+Mun−1(t)− (Bunt − Bun−1t )

→ f (t, x∗t )+Mx∗(t), n → +∞.

By the Lebesgue dominated convergence theorem, we get∫ t

0
e−M(t−s)[f (s, uns)+Mun−1(s)− (Buns − Bun−1s)]ds

→

∫ t

0
e−M(t−s)[f (s, x∗s)+Mx∗(s)]ds, n → +∞. (2.21)

So

x∗(t) = 8(0)e−Mt +

∫ t

0
e−M(t−s)[f (s, x∗s)+Mx∗(s)]ds, t ∈ [0, t1], (2.22)

wherex∗0 = 8. And by virtue of the continuity ofI1, we get

I1(un(t1)) → I1(x∗(t1)), n → +∞. (2.23)

Similarly, one has

x∗(t) = [x∗(t1)+ I1(x∗(t1))]e
−M(t−t1)

+

∫ t

t1

e−M(t−s)[f (s, x∗s)+Mx∗(s)]ds, t ∈ (t1, t2], (2.24)

wherex∗0 = 8. So forth and so on,

x∗(t) = [x∗(tn)+ In(x∗(tn))]e
−M(t−tn)

+

∫ t

tn

e−M(t−s)[f (s, x∗s)+Mx∗(s)]ds, t ∈ (tn, T ], (2.25)

wherex∗0 = 8. Then

x∗(t) = 8e−Mt +

∫ t

0
e−M(t−s)[f (s, x∗s)+Mx∗(s)]ds

+
∑

0<tk<t

e−M(t−tk)Ik(x∗(tk)), t ∈ J. (2.26)

By the similar proof, we get

x∗(t) = 8(0)e−Mt +

∫ t

0
e−M(t−s)[f (s, x∗

s )+Mx∗(s)]ds

+
∑

0<tk<t

e−M(t−tk)Ik(x
∗(tk)), (2.27)

wherex∗
0 = 8.

Finally, if x ∈ PC([−τ, T ], R) is a solution of eq. (1.1) in [u, v], Now letp = un − x

and use mathematics induction. Obviouslyu ≤ x. Supposeun−1 ≤ x. Then

p′ = un
′ − x′

= f (t, un−1t )−M(un(t)− un−1(t))− (Bunt − Bun−1t )− f (t, xt )

= −Mp − Bpt − [f (t, xt )− f (t, un−1t )]

+M(−x(t)+ un−1(t))+ (−Bxt + Bun−1t )

≤ −Mp − Bpt , t ∈ J, t 6= tk,
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1p|t=tk = 1un|t=tk −1x|t=tk

= Ik(un−1(tk))− Lk[un(tk)− un−1(tk)] − Ik(x(tk))

= −{Ik(x(tk))− Ik(un−1(tk)+ Lk[x(tk)− un−1(tk)]} − Lkp(tk)

≤ −Lkp(tk), (k = 1, 2, . . . , m),

and

p0 = un0 − x0 = θ.

Hence, by Lemma 2.2,p(t) ≤ 0 for all t ∈ J , i.e. un(t) ≤ x(t), t ∈ J . Soun(t) ≤ x(t),

t ∈ J, n = 1, 2, . . .. By the same proof, we can showx(t) ≤ v(n)(t), t ∈ J, n = 1, 2, . . ..
Consequently,x∗(t) ≤ x(t) ≤ x∗(t), t ∈ J . The proof is complete. 2

3. An example

We consider.


x′ =
1

72
(t − x(t))3 +

1

40
(t2 − x(t − 1))5

+
1

144

(
sin2 t −

∫ 0

−1
x(t + s)ds

)3

, t 6=
1

2
, t ∈ (0, 1];

1x|
t= 1

2
= −

1

6
x

(
1

2

)
,

x0 = φ,

(3.1)

where

φ(t) =




1, t ∈ [−1,−1
2),

1

2
, t ∈ (−1

2, 0].

Conclusion.IRFDE (3.1) admits minimal and maximal solutions.

Proof. Let

u(t) = 0, t ∈ [−1, 1]

and

v(t) =




1, t ∈ [−1, 0];

1 + t, t ∈ (0, 1
2];

t +
5

6
, t ∈ (1

2, 1].

It is easy to see thatu, v are not solutions of eq. (3.1) andu(t) ≤ v(t), t ∈ [−1, 1].
Moreover,
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1u|
t= 1

2
= −

1

6
u

(
1

2

)
,

1v|
t= 1

2
= −

1

6
> −

1

2
= −

1

6
u

(
1

2

)
u′(t) = 0, t ∈ [0, 1];

v′(t) = 1, t ∈

[
0,

1

2

)
∪

(
1

2
, 1

]
,

f (t, ut ) =
1

72
t3 +

1

40
t10 +

1

144
sin6 t, t ∈ [0, 1],

f (t, vt ) =
1

72
(t − (1 + t))3 +

1

40
(t2 − 1)5

+
1

144

(
sin2 t −

∫ 0

−1
v(t + s)ds

)3

, t ∈ [0, 1].

Then 

u′(t) ≤ f (t, ut ), t ∈ (0, 1), t 6= 1

2;

1u|
t= 1

2
≤ −

1

6
u

(
1

2

)
,

u0 ≤ 8,

v′(t) ≥ f (t, vt ), t ∈ J, t 6= tk;

1v|t=tk > −
1

6
v

(
1

2

)
,

v0 ≥ 8,

i.e. the condition(A3) is true.
By mean value theorem, we get

1

72
((t − x)3 − (t − y)3) = −

1

24
(t − η(x, y))2(x − y),

1

40
((t2 − x)5 − (t2 − y)5) = −

1

8
(t − ζ(x, y))4(x − y)

and

1

144
((sin2 t − x)3 − (sin2 t − y)3) = −

1

48
(sin2 t − γ (x, y))2(x − y).

For anyψ ∈ M([−1, 0], R), let

Bψ =
1

8
ψ(−1)+

1

48

∫ 0

−1
ψ(s)ds.

Then

f (t, φ)− f (t, ψ) ≥ −
1

24
(φ(0)− ψ(0))− (Bφ − Bψ)

for all φ,ψ ∈ {xt , u(t) ≤ x(t) ≤ v(t), t ∈ [0, 1]} with φ ≤ ψ .
So the condition(A2) is true.

Foru

(
1

2

)
≤ y ≤ x ≤ v

(
1

2

)
,

I (x)− I (y) = −
1

6
(x − y).
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So the condition(A3) is true. SoM =
1

24
, L1 =

1

6
,11 =

1

2
,12 = 1,

M0 <
1

24
+

1

8
=

1

6
.

Forp1(t) = u(t)−8(t), t ∈ [−1, 0], we get

L−1 =
1

2
,1 = max

{
1

2
, 1,

1

2

}
= 1, inf

t∈[−1,0]
p1(t) = −1< p1(0)

and

p′
1(t) = 0< M0, t ∈

[
−1,−

1

2

)
∩

(
−

1

2
, 0

]
.

Moreover,

M011 <
5

23
=

(1 − L−1)(1 − L1)

1 + (1 − L−1)+ (1 − L−1)(1 − L1)
.

Forp2 = 8(t)− v(t), we get

p2(0) = −
1

2
≤ p2(t), t ∈ [−1, 0]

and

M0 <
5

11
=

(1 − L1)

1 + (1 − L1)
.

And thus it is easy to see that(A4) is true. By Theorem 2.1, eq. (3.1) has a maximal
solution and a minimal solution. The proof is complete. 2

Remark.Our result can be extended to impulsive delay differential equations in Banach
spaces.
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