
Proc. Indian Acad. Sci. (Math. Sci.), Vol. 111, No. 2, May 2001, pp. 221–227.
Printed in India

On a Tauberian theorem of Hardy and Littlewood

T PATI

10, Bank Road, Allahabad 211002, India
Institute of Mathematics and Applications, Bhubaneswar

MS received 17 April 2000

Abstract. In this paper, we give a simple alternative proof of a Tauberian theorem
of Hardy and Littlewood (Theorem E stated below, [3]).
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1. Introduction

Let
∑∞
n=0 an be an infinite series of real terms. Let

0 ≤ λ0 < λ1 <, . . . , λn → ∞
and let

∑
ane−λnx be convergent for allx > 0. If

f (x) =
∑

ane
−λnx → s

asx → 0, then we say that
∑
an is summable(A, λn) to s. Whenλn = n, the method

(A, λn) reduces to the classical method summability (A), named after Abel.
It is a famous result due to Abel that if

∑
an is convergent tos, then

∑
an is summable

(A) to s. That the converse is not necessarily true is evident from the example of the
series

1 − 1 + 1 − 1 · · ·
which is summable (A) to12, but not convergent. The question naturally arises as to whether
one can determine a suitable restriction or restrictions on the general terman so that

∑
an

will be convergent tos whenever it is summable (A). The first answer to this question was
given by Tauber in 1897 in the form of the following theorem.

Theorem A [7]. If
∑
an is summable(A) to s andnan = o(1), then

∑
an is convergent

to s.

A generalization of Theorem A to the set-up of summability(A, λn) was proved by
Landau [4].

Another significant generalization of Theorem A was obtained by Littlewood in 1910 in
the form of

Theorem B. If
∑
an is summable(A) to s, andnan = O(1), then

∑
an is convergent

to s.
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In fact Littlewood proved the following more general theorem.

Theorem C [5]. If
∑
µn is a series of positive terms such that, asn → ∞,

λn = µ1 + µ2 + · · · + µn → ∞, µn/λn → 0,∑
ane−λnx → s asx → 0, and

an = O

(
λn − λn−1

λn

)
,

then
∑
an is convergent tos.

Littlewood had stated that Theorem C is true even without the restriction:µn/λn → 0.
This result is stated below as Theorem C∗. It was proved in 1928 by Ananda-Rau [1]. A
simple alternative proof was supplied by Bosanquet (see Hardy [2]).

Theorem C∗. If
∑
µn is a series of positive terms such thatλn = µ1+µ2+· · ·+µn → ∞

asn → ∞,
∑
ane−λnx → s asx → 0 and

an = O

(
λn − λn−1

λn

)
, (1.1)

then
∑
an is convergent tos.

Littlewood also conjectured [5] that the following theorem is true.

Theorem D. If λ1 > 0, λn+1/λn ≥ θ > 1 (n = 1, 2, ...), and

f (x) =
∞∑
n=1

ane
−λnx → s as x → 0,

then
∑
an converges tos.

The truth of this conjecture was proved by Hardy and Littlewood [3]1. Theorems of this
kind are called ‘high indices’ theorems, as distinguished from ‘Tauberian’ theorems, since
in such theorems no restriction is needed to be imposed upon the general terman of the
series in question, excepting, of course, that

∑
ane−λnx is convergent for everyx > 0.

Such a theorem shows that the method(A, λn) with the type ofλn involved does not sum
any series which is not convergent, and therefore shows the ‘ineffectiveness’ of the method
(A, λn).

Hardy and Littlewood first established Theorem D in the special case in which

an = O(1)

and then, by further analysis, derived Theorem D itself. This is an instance of a Tauberian
theorem leading to a high indices theorem. Thus Hardy and Littlewood first established
the following Tauberian theorem.

Theorem E. If λ1 > 0, λn+1/λn ≥ θ > 1 (n = 1, 2, . . .),

f (x) =
∞∑
n=1

ane
−λnx → s as x → 0,

1 For a proof of Theorem D due to A E Ingham, see [2], proof of Theorem 114, where too, the result has been
obtained via a Tauberian theorem.
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andan = O(1), then
∑
an is convergent tos.

It should be observed that Theorem E is included in the theorem of Ananda-Rau, in which
no extra restriction is imposed onλn, in view of the fact that wheneverλn+1/λn ≥ θ > 1,

andan = O(1), an = O
(
λn−λn−1

λn

)
. On the other hand, under the hypotheses of Theorem

C∗, (1.1) implies:sn = O(1), and hencean = O(1) (see Lemma 2 in the sequel).

The object of the present paper is to give an alternative proof of Theorem E which is
quite straightforward, not requiring Lemmas 1 and 2 of Hardy and Littlewood [3].

2. Lemmas

We shall need the following lemmas.

Lemma1 [5]. If, asy → 0, ψ(y) → s, and for every positive integerr,

yrψ(r)(y) = O(1),

then for every positive integerr, yrψ(r)(y) = o(1).

Lemma2 [4].2 If 0 < λ1 < λ2 < , . . . , λn → ∞, asn → ∞, f (x) = ∑∞
n=1 ane

−λnx =
O(1) asx → 0, and

an = O

(
λn − λn−1

λn

)
,

then

sn = a1 + a2 + · · · + an = O(1).

Lemma3 [3]. If λ1 > 0 and

λn+1

λn
≥ θ > 1 (n = 1, 2, . . .)

then, forr = 1, 2, . . . ,
∞∑
n=1

λrne
−λnx = O(x−r ).

3. Proof of Theorem E

We may assume, without loss of generality, thats = 0. Thusf (x) = o(1) asx → 0. Also,
sincean = O(1), for r = 1, 2, ...,

xrf (r)(x) = (−1)rxr
∞∑
n=1

anλ
r
ne

−λnx

= O

(
xr

∞∑
n=1

λrne
−λnx

)

= O(1),

2 As remarked by Ananda-Rau in [1], the argument in Landau [4], pp. 13–14, has only to be slightly modified to
yield the result of Lemma 2.
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by Lemma 3. Hence, by Lemma 1,

xrf (r)(x) = o(1).

Since

f (x) =
∞∑
n=1

ane
−λnx =

∞∑
n=1

sn
(
e−λnx − e−λn+1x

) = x

∞∑
n=1

sn

∫ λn+1

λn

e−xudu,

we have

(−1)rxrf (r)(x) = xr+1
∞∑
n=1

sn

∫ λn+1

λn

ure−xudu− rxr
∞∑
n=1

sn

∫ λn+1

λn

ur−1e−xudu

= Vr − rVr−1, say.

Hence, by Lemma 1,

Vr = rVr−1 + o(1)

= r(r − 1)Vr−2 + o(r)+ o(1)

= r(r − 1)(r − 2)Vr−3 + o(r(r − 1))+ o(r)+ o(1)

= ....

= r!f (x)+ o(r(r − 1) . . .2)+ · · · + o(1),

so that3

Vr

r!
= f (x)+ o

(
1 + 1

2!
+ 1

3!
+ · · · + 1

r!

)
= f (x)+ o(1)

= o(1). (3.1)

This can be explicitly written as

1

r!
|F(x)| = 1

r!

∣∣∣∣xr+1
∑

sn

∫ λn+1

λn

tre−xtdt
∣∣∣∣ → 0 (r = 1, 2, . . .) (3.2)

asx → 0. If sn does not converge to zero, there exists a positive constanth such that
|sn| > h for an infinite number of values ofn. Letm be any one of these values. We shall
show that, whenr exceeds a sufficiently large positive integerr0,

limx→0
1

r!
|F(x)| ≥ δ > 0,

whereδ is a positive constant. This will contradict (3.2), and hence we will conclude that∑
an converges to zero, which is required to be proved.

3 In Hardy and Littlewood [3], (2.41) should be replaced by our (3.1)
Vr

r!
= o(1); line 4 from the top on p. 225

should be replaced by:r!
∞∑
n=0

snwn = Vr so that
∞∑
n=0

snwn = Vr

r!
= o(1). For similar alterations needed in the

papers [1], [5] and [8], see Pati [6].
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Now, by the hypotheses of Theorem E and Lemma 2,sn = O(1) and hence

|F(x)| ≥ |sm|xr+1
∞∑
n=1

∫ λn+1

λn

tre−xtdt −
∣∣∣∣∣xr+1

∞∑
n=1

(sn − sm)

∫ λn+1

λn

tre−xtdt

∣∣∣∣∣
> |sm|xr+1

∞∑
n=1

∫ λn+1

λn

tre−xtdt −Kxr+1
∞∑
m+1

∫ λn+1

λn

tre−xtdt

−Kxr+1
m−1∑
n=1

∫ λn+1

λn

tre−xtdt, (3.3)

whereK is a positive constant. We choose

x = 2r

λm+1 + λm
.

Then, for fixedr, x → 0 iff m → ∞. Since ([5], p. 440)

lim
x→0

xr+1
∞∑
n=1

∫ λn+1

λn

tre−xtdt = r!,

1

r!
limx→0 |sm|xr+1

∞∑
n=1

∫ λn+1

λn

tre−xtdt ≥ h. (3.4)

We now use the transformationu = xt , so that, fort = λm+1,

u = r
2λm+1

λm+1 + λm
= r(1 + η),

where

η = λm+1 − λm

λm+1 + λm
. (3.5)

Thus the second term in (3.3) gives

limx→0 x
r+1

∞∑
m+1

∫ λn+1

λn

tre−xtdt ≤
∫ ∞

r(1+η)
ure−udu. (3.6)

The third term in (3.3) gives

limx→0 x
r+1

m−1∑
1

∫ λn+1

λn

tre−xtdt ≤
∫ r(1−η)

0
ure−udu, (3.7)

whereη is as defined in (3.5).
Combining (3.4), (3.6) and (3.7) we have

1

r!
limx→0|F(x)| ≥ h− K

r!

[∫ r(1−η)

0
ure−udu+

∫ ∞

r(1+η)
ure−udu

]
. (3.8)

We show below that

I1 ≡
∫ r(1−η)

0
ure−udu < K1r

re−r (3.9)
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and

I2 ≡
∫ ∞

r(1+η)
ure−udu < K2r

re−r , (3.10)

where theK in each inequality denotes a positive constant, independent ofr.

Proof of(3.9). We have

I1 = −ure−u]r(1−η)
0 + r

∫ r(1−η)

0
ur−1e−udu.

Hence ∫ r(1−η)

0

( r
u

− 1
)
ure−udu = rr (1 − η)re−r(1−η).

Now, since 0< η < 1, u ≤ r(1 − η) implies:

r

u
− 1 ≥ η

1 − η
,

so that
η

1 − η
I1 ≤ rre−r [(1 − η)eη

]r
< rre−r ,

since

eη < 1 + η + η2 + · · · = 1

1 − η
.

Thus

I1 < K1r
re−r ,

where

K1 = 1 − η

η
= 2λm
λm+1 − λm

≤ 2

θ − 1
(θ > 1).

Proof of(3.10). We have

I2 = −ure−u]∞r(1+η) + r

∫ ∞

r(1+η)
ur−1e−udu.

Hence ∫ ∞

r(1+η)

(
1 − r

u

)
ure−udu = rre−r

(
1 + η

eη

)r
< rre−r ;

since

u ≥ r(1 + η) implies: 1− r

u
≥ η

1 + η
,

we have
η

1 + η
I2 < rre−r ,
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so that

I2 < K2r
re−r ,

where

K2 = 1 + η

η
= 2λm+1

λm+1 − λm
= 2

1 − λm
λm+1

≤ 2θ

θ − 1
(θ > 1).

Hence, from (3.8), (3.9) and (3.10), we have

limx→0
1

r!
|F(x)| ≥ h− 2K

θ + 1

θ − 1

rre−r

r!
.

Since by Stirling’s theorem,

rre−r

r!
∼ 1√

2π
r−

1
2 ,

takingr > r0, a sufficiently large positive integer, we have

limx→0
1

r!
|F(x)| ≥ δ > 0,

which contradicts (3.2). Hence our assumption that{sn} does not converge to 0 is false.

This completes the proof of Theorem E.
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