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Abstract. In this paper, we give a simple alternative proof of a Tauberian theorem
of Hardy and Littlewood (Theorem E stated below, [3]).
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1. Introduction
Let > >y a, be an infinite series of real terms. Let
O<Ap<A1<,...,A4 = 00

and letd_ a,e*** be convergent for alt > 0. If

fx) = Zane_)‘”" — s

asx — 0, then we say tha}_ a,, is summablg A, A,) tos. Whenx, = n, the method
(A, X,,) reduces to the classical method summability (A), named after Abel.
It is a famous result due to Abel that)f a, is convergent te, then)_ a, is summable
(A) to s. That the converse is not necessarily true is evident from the example of the
series

1-1+1-1...

whichis summable (A) té, but not convergent. The question naturally arises as to whether
one can determine a suitable restriction or restrictions on the generatteothat) | a,

will be convergent ta whenever it is summable (A). The first answer to this question was
given by Tauber in 1897 in the form of the following theorem.

Theorem A [7]. If Y a, is summablgA) to s andna, = o(1), then)_ a, is convergent
tos.

A generalization of Theorem A to the set-up of summability, A,,) was proved by
Landau [4].

Another significant generalization of Theorem A was obtained by Littlewood in 1910 in
the form of

Theorem B. If }_ a, is summabldgA) to s, andna, = O(1), then}_ a, is convergent
tos.
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In fact Littlewood proved the following more general theorem.

Theorem C [5]. If Y u, is a series of positive terms such thatyas> oo,
Anp=p1tp2+ -+ pun —> 00, Un/rn — 0,
> a,e** — sasx — 0, and

A — An—
a,,:O(n nl>’
An

then)_ a, is convergent ta.

Littlewood had stated that Theorem C is true even without the restrictipf,, — 0.
This result is stated below as Theorerh @ was proved in 1928 by Ananda-Rau [1]. A
simple alternative proof was supplied by Bosanquet (see Hardy [2]).

Theorem C*. If )_ u, is aseries of positive terms such that= pw1+pu2+- - -+py — 00
asn — o0, Y a,e~* — s asx — Oand

An — Ay

a4, =0 (n—"l) (1.1)
An

then)_ a, is convergent ta.

Littlewood also conjectured [5] that the following theorem is true.
TheoremD. If A1 >0, Ay41/2y >0 >1 (n=1,2,...),and
o
fx) = Zane_’\”)‘ —s asx — 0,
n=1
then)_ a, converges ta.

The truth of this conjecture was proved by Hardy and Littlewood.[$heorems of this
kind are called ‘high indices’ theorems, as distinguished from ‘Tauberian’ theorems, since
in such theorems no restriction is needed to be imposed upon the general, tefrihe
series in question, excepting, of course, that,e~** is convergent for every > 0.
Such a theorem shows that the metlidd A,,) with the type ofa,, involved does not sum
any series which is not convergent, and therefore shows the ‘ineffectiveness’ of the method
(A, Ap).

Hardy and Littlewood first established Theorem D in the special case in which

ap = 0(1)
and then, by further analysis, derived Theorem D itself. This is an instance of a Tauberian

theorem leading to a high indices theorem. Thus Hardy and Littlewood first established
the following Tauberian theorem.

TheoremE. If A1 > 0, Apy1/Ap >0 >1 n=1,2,..)),
o0
fx) = Zane_’x"x — s as x —> 0,
n=1

1 For a proof of Theorem D du®tA E Ingham, see [2], proof of Theorem 114, where too, the result has been
obtained via a Tauberian theorem.
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anda, = O0(1), then)_ a, is convergent ta.

It should be observed that Theorem E is included in the theorem of Ananda-Rau, in which
no extra restriction is imposed o, in view of the fact that whenever, 1/, >0 > 1,

anda, = O(1),a, = O (%) On the other hand, under the hypotheses of Theorem

C*, (1.1) implies:s, = O(1), and hence,, = O(1) (see Lemma 2 in the sequel).

The object of the present paper is to give an alternative proof of Theorem E which is
quite straightforward, not requiring Lemmas 1 and 2 of Hardy and Littlewood [3].

2. Lemmas
We shall need the following lemmas.

Lemmal [5]. If,asy — 0, ¥ (y) — s, and for every positive integer

Yy ) =0,
then for every positive integet y" v (y) = o(1).

Lemma2 [4].2 If O<Xi <X2<,...,Ay = 00,aSn — 00, f(x) = Z;’ozlane_)‘"" =

0O() asx — 0, and
ay = 0 <)"n - An—l) ’
An

Sy =a1+ax+---+a, = O(1).

then

Lemma3 [3]. If A1 > Oand
A
;—+139>1 n=12.)

n

then, forr =1, 2, ...,

o0
Z)\;e—w =0(x™").
n=1

3. Proof of Theorem E

We may assume, without loss of generality, that 0. Thusf (x) = o(1) asx — 0. Also,
sincea, = O(1),forr =1, 2, ...,

o
X fFOw) = (—1)rx’ZanAZe_)‘"x
n=1

00
— A
o)
n=1

o),

2 As remarked by Ananda-Rau in [1], the argument in Landau [4], pp. 13-14, has only to be slightly modified to
yield the result of Lemma 2.
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by Lemma 3. Hence, by Lemma 1,

X" O (x) = o(D).

Since
e o0 o0 )\)H»l
F0 = ane i =3 s, (64 — e hnar) = x an/ e,
n=1 n=1 n=1 An
we have
0 Ant1 0 Ant1
(-D'x" fOx) = A an/ u e du —rx” anf u e dy
n=1 A n=1 n

= V,—rV,_1, say

Hence, by Lemma 1,
Vi = rVe_1+0Q)

r(r—=1)V,_2o+0@) +0(1)
= rr—=Dr—-2)V,_3+o0@(r—1)+o0@r)+o0(1)

rlfx)+or(r—21)...2)+---+0(1),

so that
V, 1 1 1
i f(X)+0<1+§+§+~-~+ﬁ>
fx) +o()

This can be explicitly written as

n+1

A
xr+12sn/ t"e ¥ dr
n

asx — 0. If s, does not converge to zero, there exists a positive constanth that
|s,| > h for an infinite number of values af. Letm be any one of these values. We shall
show that, whem exceeds a sufficiently large positive integer

Lirwy=1 S0G=12.) (32
r! r!

— 1
Ilmxﬁ0_||F(x)| >46>0,
r:

wheres is a positive constant. This will contradict (3.2), and hence we will conclude that
> a, converges to zero, which is required to be proved.

\A
31n Hardy and Littlewood [3], (2.41) should be replaced by our (3{:): 0(1); line 4 from the top on p. 225
r:

o0 o0
\% L. . .
should be replaced by:! anw,, =V, so thatz SpWy = —Ir = o(1). For similar alterations needed in the
r:

n=0 n=0
papers [1], [5] and [8], see Pati [6].
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Now, by the hypotheses of Theorem E and Lemmg, 2 O (1) and hence

1 o0 )\n+l
IFOI = fswl™ 1) f e dr —
n=1%""n

1 o0 Ant1 1 0 Ant1
> splx"t Zf re¥dr — Kx't Zf tre ¥ dr
n=1 An n

1 o0 Antl
x'T Z(S” — Sm) e M dt
n=1 A

m+1
m—1 An+l
—Kx'tt Z/ e dt, (3.3)
n=1°""
whereK is a positive constant. We choose
. 2r
)‘m+l + Am '

Then, for fixedr, x — 0 iff m — oo. Since ([5], p. 440)

. 1 o0 )Ln+1
lim x"* Z/ e Mdr = rl,
n=1 A

x—0
1 — o0 A+l
Zlim,—o Ism|xr+12/ f"e ¥ dr > h. (3.4)
r! A
n=1"""
We now use the transformation= x¢, so that, for = 1,11,
2Am-}—l
u=r———=r(1+n),
Am+1+ Am
where
A — A
_ m+1 m . (35)
)\m+1 + Am
Thus the second term in (3.3) gives
. ° Antl oo
lim,_ox t1 Z e Mdr < / u e "du. (3.6)
1 A r(1+n)
The third term in (3.3) gives
S m—1 Ant1 r(1-n)
im,_ox"*t Z/ f"e ¥ dr < / u" e du, (3.7)
0

wheren is as defined in (3.5).
Combining (3.4), (3.6) and (3.7) we have

1__ k[ pran 00
—limy_olFx)| > h — — / u' e du +/ uedu|. (3.8)
r! rtJo r(1+41)

We show below that

r(1=m)
L= / uedu < Kyr'e™” (3.9
0
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and
o0
L= / u'edu < Kor'e™", (3.10)
r(1+n)
where thekK in each inequality denotes a positive constant, independent of
Proof of(3.9). We have

r(1-n)
I = —ure_”]g(l_n) + r/ u e~ du.
0

Hence

rd-n
[ (- aywertae = prereon.
0 u

Now, since O< n < 1,u < r(1 — n) implies:

£ — 1> L7
u “1-—19
so that
I <r'e’ [(l — n)e”]r <r'e ",
1-19
since
5 1
e <1+77+77 G+ = —.
1-19
Thus
I < Kir'e™”,
where
1- 2 2
Kj=—1~= m__ < © > 1).

n )¥m+l_)¥m_9_1

Proof of(3.10). We have

o0
I = —u’e_“]f?lﬂ) + r/ u " le~tdu.
r(1+n)
Hence
00 r 1 r
/ (1 — —) uetdu = r'e” (ﬂ>
r(14) u el
< r'e™”;
since
>r(1+n) implies: 1 r. 1
u=r l-—-z
- d P u_ l+n
we have

L <r'e™,
1479



Tauberian theorem of Hardy and Littlewood 227

so that
L < Kor'e ™",
where
1+ 2hm+1 2 20
K2: :)\‘ _}L = _ Am Sg_l (9>1).
n m—+1 m 1 Toi1

Hence, from (3.8), (3.9) and (3.10), we have

— 1 0+1r'e "
Mo = |FCo)| = h— 2K o=
rl -1 r!

Since by Stirling’s theorem,

rre”” 1

~

r b
r! 2T

takingr > ro, a sufficiently large positive integer, we have

NI

— 1
lim, o —<|F(x)[ =46 >0,
r:
which contradicts (3.2). Hence our assumption {hat does not converge to 0O is false.

This completes the proof of Theorem E.
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