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Abstract. In this paper, the author has investigated necessary and sufficient condi-
tions for the absolute Euler summability of the Fourier series with miltipliers. These
conditions are weaker than those obtained earlier by some workers. It is further shown
that the multipliers are best possible in certain sense.
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1. Definitions and notations

Let
∑∞

n=0
wn be a given infinite series and letq be a real or complex number such that

q 6= −1. Then we write

w
q
n = (1 + q)−n−1

n∑
m=0

(
n

m

)
qn−mwm; w0

n = wn. (1.1)

Following Chandra [2],
∑

wn is said to be absolutely summable by(E, q) means (or

Euler means) or simply
∑∞

n=0
an ∈ |E, q| if

∞∑
n=0

|wq
n | < ∞. (1.2)

For q > 0, a reference may be made to Hardy ([9]; p. 237). It may be observed that the
method|E, q| (q > 0) is absolutely regular.

LetL2π be the space of all 2π -periodic and Lebesgue-integrable functions over [−π, π ].
Then the Fourier series off ∈ L2π atx is given by

1

2
a0 +

∞∑
n=1

(an cosnx + bn sin nx) =
∞∑

n=0

An(x), (1.3)

wherean andbn are the Fourier coefficients off .
Throughout the paper, we assume that the constant terma0 = 0. For realx, q > 0 and

δ ≥ 0, we write

φ(t) = 1

2
{ f (x + t) + f (x − t)} , (1.4)

φ1(t) = 1

t

∫ t

0
φ(u)du, (1.5)
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P(t) = φ(t) − φ1(t), (1.6)

y(t) = (1 + q)−1(1 + q2 + 2q cos t)1/2, (1.7)

V
q
m(n) = (1 + q)−n−1

(
n + 1

m + 1

)
qn−m (m ≤ n), (1.8)

sm(t) =
m∑

r=1

V
q
r (n) sin rt, (1.9)

dn = log−δ(n + 1), (1.10)

1dn = dn − dn+1, (1.11)

g(t) = P(t) log−δ k

t
, (1.12)

b(t) = t logδ k

t
, (1.13)

Hn(t) = b(t)
sin nt

nt
+

∫ c

t

sin nu

nu
db(u), (1.14)

where 0< c ≤ π andk is a suitable positive constant taken for the convenience in the
analysis and possibly depending uponδ.

2. Introduction

In 1968, Mohanty and Mohapatra [12] began the study of absolute Euler summability of
Fourier series by proving the following:

Theorem A. Let

φ(t) log
1

t
∈ BV (0, c), 0 < c < 1. (2.1)

Then ∑
An(x) ∈ |E, q| (q > 0). (2.2)

Among other results the above result was also proved by Kwee [10] independently. He
also proved that the condition (2.1) cannot be replaced by the weaker condition

φ(t) logη 1

t
∈ BV (0, c), 0 < η < 1, (2.3)

in Theorem A. This result of Kwee [10] was further improved by the present author and
Dikshit [7].

In 1978, the present author [4] proved the following:

Theorem B. Let

φ(t) ∈ BV (0, π). (2.4)

Then

∞∑
n=1

An(x)

log(n + 1)
∈ |E, q| (q > 0). (2.5)
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Recently, Ray and Sahoo [15] have not only bridged the gap in between Theorems A and
B but they have also improved Theorem B by proving the following:

Theorem C. Let0 ≤ δ ≤ 1 and let

φ(t) log1−δ k

t
∈ BV (0, c), 0 < c < 1. (2.6)

Then

∞∑
n=1

An(x)

logδ(n + 1)
∈ |E, q| (q > 0). (2.7)

It may be remarked that in Theorem C,δ has been restricted to be in [0,1] since forδ > 1,
(2.6) implies the absolute convergence of

∞∑
n=1

An(x)

logδ(n + 1)
. (2.8)

A reference may be made to Chandra [1]; Theorem 2 on page 6, and hence (2.8) is neces-
sarily summable|E, q| (q > 0).

In a different setting, very recently, Dikshit [8] has obtained a few more results concerning
the absolute Euler summability factors for Fourier series.

One of the main objects of the present paper is to improve Theorem C on replacing (2.6)
by the following weaker condition:

(i) P (t) log1−δ k

t
∈ BV (0, c)

(ii ) t−1P(t) log−δ k

t
∈ L(0, c)


 , (2.9)

where 0≤ δ ≤ 1 and 0< c < 1. The above claim that (2.9) is weaker than (2.6) has been
settled in Lemma 1 of the present paper.

Secondly, we investigate necessary and sufficient conditions, imposed upon the gener-
ating functions of the Fourier series off at x, for the truth of (2.7). Before we give the
statement of the theorem to be proved, we give the following equivalent form of (2.9),
which follows from Lemma 2 of the present paper:

(i)

c∫
0

log
k

t
|dg(t)| < ∞, 0 < c < 1

(ii ) g(0+) = 0




. (2.10)

Precisely, we prove the following:

Theorem. Let δ ≥ 0 and let (2.10) (i) hold. Then in order that(2.7) should hold, it is
necessary and sufficient that(2.10) (ii) must hold. Further, the condition(2.10) (i) is best
possible in the sense that it cannot be replaced by

π∫
0

logη k

t
|dg(t)| < ∞ (0 < η < 1). (2.11)
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3. Estimates

To prove the theorem, we shall require the following estimates forδ ≥ 0 but proved for
realδ: uniformly in 0 < t < c,

Hn(t) = O(1)

(
b(t) + b

(
1

n + 1

))
, (3.1)

Hn(t) = b(t)
sin nt

nt
+ O(1)n−2t−2b(t), (3.2)

sn(t) ≤ yn(t) +
(

q

1 + q

)n

. (3.3)

Proof of(3.1). We have

Hn(t) = b(t)
sin nt

nt
+

c∫
0

sin nu

nu
db(u) −

t∫
0

sin nu

nu
db(u).

Now, sinceb(u) is monotonic increasing therefore∣∣∣∣∣∣
t∫

0

sin nu

nu
db(u)

∣∣∣∣∣∣ ≤
t∫

0

db(u) = b(t)

and ∣∣∣∣∣∣
c∫

0

sin nu

nu
db(u)

∣∣∣∣∣∣ ≤
n−1∫
0

db(u) +

∣∣∣∣∣∣∣
c∫

n−1

sin nu

nu
db(u)

∣∣∣∣∣∣∣
.

Also u−1 d

du
b(u) decreases therefore, we have, by the second mean value theorem

c∫

n−1

sin nu

nu
db(u) =

[
u−1 d

du
b(u)

]
u=n−1

∫ θ

n−1

sin nu

n
du (n−1 < θ < c)

= O(1)b

(
1

n + 1

)
.

Collecting the results, we get (3.1).

Proof of (3.2). Sinceu−1 d

du
b(u) decreases, therefore, by the second mean value

therorem

c∫
t

sin nu

nu
db(u) = (nt)−1 d

dt
b(t)

c′∫
t

sin nu du (t < c′ < c)

= O(n−2t−2b(t)).

Using this estimate in the definitionHn(t), we get (3.2).
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Proof of(3.3). We have

sn(t) = imaginary part of
n∑

k=0

V
q
k (n) exp(ikt),

where

n∑
k=0

V
q
k (n) exp(ikt)

= e−it
n∑

k=0

V
q
k (n) exp(i(k + 1)t)

= e−it
n+1∑
m=1

V
q

m−1(n) exp(imt)

= e−it
n+1∑
m=0

V
q

m−1(n) exp(imt) − e−itV
q

−1(n)

= e−it (q + exp(it))n+1

(1 + q)n
− e−it qn+1

(1 + q)n+1

= e−it Rn+1

(1 + q)n+1
(cosθ + i sin θ)n+1 − e−it

(
q

1 + q

)n+1

=
(

R

1 + q

)n+1

ei(n+1)θ−it − e−it

(
q

1 + q

)n+1

,

whereR cosθ = q + cost, R sinθ = sint and

θ = tan−1
(

sinθ

q + cosθ

)
.

Hence imaginary part of

n∑
k=0

V
q
k (n) exp(ikt) =

(
R

1 + q

)n+1

sin[(n + 1)θ − t ] +
(

q

1 + q

)n+1

sint,

where

R =
√

1 + q2 + 2q cost = y(t)(1 + q).

Hence

|sn(t)| ≤ yn(t) +
(

q

1 + q

)n

.

This completes the proof.

4. Lemmas

We require the following lemmas for the proof of the theorem:
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Lemma1. For 0 ≤ δ ≤ 1,

(2.6) ⇒ (2.9) (4.1)

but its converse is not true in general.

Proof. It has been observed (Chandra [5]; p. 19) that (2.6) withδ = 1 holds if and only if

(i) P (t) ∈ BV (0, c), (ii ) t−tP t ∈ L(0, c), (4.2)

which is stronger than (2.9) withδ = 1.
We now consider the case 0≤ δ < 1. In this case, we observe that

(2.6) ⇒ φ(t) ∈ BV (0, c)

⇒ t−1P(t) ∈ L(0, c) (see(4.2) (ii ))

⇒ t−1P(t) log−δ k

t
∈ L(0, c).

Hence (2.9) (ii) holds. Now for the truth of (2.9) (i), we write

h(t) = φ(t) log1−δ k

t
and h1(t) = 1

t

t∫
0

h(u) du.

Thenh1(t) ∈ BV (0, c), where

th1(t) =
t∫

0

φ(u) log1−δ k

u
du

= tφ1(t) log1−δ k

t
+ (1 − δ)

t∫
0

φ1(u) log−δ k

u
du.

Hence

h1(t) = φ1(t) log1−δ k

t
+ (1 − δ)

1

t

t∫
0

φ1(u) log−δ k

u
du

from which one gets

P(t) log1−δ k

t
= h(t) − h1(t)

+ 1 − δ

t

t∫
0

φ1(u) log−δ k

u
du. (4.3)

Observe that

h(t) ∈ BV (0, c) ⇒ φ1(t) log−δ k

t
∈ BV (0, c)

⇒



1

t

t∫
0

φ1(u) log−δ k

u
du


 ∈ BV (0, c).
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Hence using these results in (3.3), we get

P(t) log1−δ k

t
∈ BV (0, c).

To prove that converse is not true in general, letf be even function andx = 0. Then
φ(t) = f (t) in [0, π ]. We define

f (t) =




(
log

k

t

)− 1
2 (1−δ)

in (0, c)

0 elsewhere.

Then (2.6) does not hold.
On the other hand, sinceφ(t) ∈ BV (0, c), therefore

P(t) = 1

t

t∫
0

u dφ(u) = 1

2
(1 − δ)

1

t

t∫
0

(
log

k

u

)(δ−3)/2

du (4.4)

and hence

c∫
0

∣∣∣∣∣
P(t)

t logδ k
t

∣∣∣∣∣ dt <
1

2

c∫
0

dt

t2 logδ k
t

t∫
0

(
log

k

u

)(δ−3)/2

du

= 1

2

c∫
0

(
log

k

u

)(δ−3)/2

du

c∫
u

t−2

logδ k

t

dt

<

c∫
0

du

u log(3+δ)/2
(

k

u

) < ∞,

which proves (2.9) (ii). Also from (4.4)

P(t) log1−δ k

t
= 1

2
(1 − δ)t−1 log1−δ k

t

t∫
0

log(δ−3)/2
(

k

u

)
du

= 1

2
(1 − δ) log− 1

2 (1+δ)

(
k

t

)
+ 1

2
(1 − δ)

δ − 3

2
t−1 log1−δ

(
k

t

) t∫
0

log(δ−3)/2(ku)du.

Now it may be observed that each of the term on the right above is of bounded variation on
(0, c) and hence

P(t) log1−δ

(
k

t

)
∈ BV (0, c),

which proves (2.9) (i).
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This completes the proof of the lemma.

Lemma2 [11]. If η > 0, then necessary and sufficient conditions that(i) h(t) log
k

t
∈

BV (0, η) and(ii ) t−1h(t) ∈ L(0, η) are that

h(0+) = 0 and

η∫
0

log

(
k

t

)
| dh(t)| < ∞.

Lemma3 [15]. Let, for0 < c < π ,

αn = 2

π

π∫
c

φ(t) cosnt dt.

Then
∑∞

n=1
αndn ∈ |E, q| (q > 0).

This is really proved for0 ≤ δ ≤ 1 but the same arguments hold forδ ≥ 0.

Lemma4. Let0 < β ≤ π andδ ≥ 0. Then uniformly in0 < t < β

n∑
m=1

V
q
m(n) dm exp(imt) = O

{
n−1/2t−1 log−δ

(
k

t

)}
.

The caseδ = 1 is dealt with in Lemma 2 of Chandra[4]. The general case may be
obtained similarly.

Lemma5. For 0 < c < π and for all realβ

2

π

c∫
0

sinnu

u
logβ k

u
du ∼ logβ n.

The caseβ = 1 with c = π was dealt with by Mohanty and Ray[13] and for all realβ
with c = π , references may be made to Ray[14] or Chandra[6]. Since the same arguments
hold if we replaceπ byc in Ray[14] or Chandra[6], therefore one can get the above result
from either Ray[14] or Chandra[6].

Lemma6. Uniformly in0 < t < π ,

n∑
m=1

V
q
m(n) dm sinmt

= O(t−1)1dn + O
{
dny

n(t)
} + O

{(
dn

) (
q

1 + q

)n}
.

Proof. LetN denote the integral part of
n + 1 − q

1 + q
for n > 2q. Then we first observe that

V
q
m(n) increases monotonically withm ≤ N and decreases withm > N . And, by Abel’s

transformation
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n∑
m=1

V
q
m(n)dm sinmt

=
n−1∑
m=1

sm(t)1dm + sn(t)dn

=
N∑

m=1

sm(t)1dm +
n−1∑

m=N+1

sm(t)1dm + sn(t)dn

=
N∑

m=1

sm(t)1dm +
n−1∑

m=N+1


sn(t) −

n∑
k=m+1

V
q
k (n) sinkt


 1dm + sn(t)dn

=
N∑

m=1

sm(t)1dm + dN+1sn(t) −
n−1∑

m=N+1

1dm

n∑
k=m+1

V
q
k (n) sinkt

=
∑

1
+

∑
2
+

∑
3
, say. (4.5)

However, by Abel’s lemma

|sm(t)| ≤ V
q
m(n) max

1≤m′<m′′≤m

∣∣∣∣∣∣
m′′∑

k=m′
sinkt

∣∣∣∣∣∣ (for m < N)

= O(t−1)V
q
m(n).

Hence

∑
1

= O(t−1)

N∑
m=1

1dmV
q
m(n)

= O(t−1)

n∑
m=1

1dmV
q
m(n)

= O(t−1)n21dn

n∑
m=1

m−2V
q
m(n)

= O(t−1)1dn, (4.6)

sincem21dm is increasing and
n∑

m=1

m−2V
q
m(n) = O(n−2).

And by (3.3)

∑
2

= O
{
dny

n(t)
}

+ O

{
dn

(
q

1 + q

)n}
. (4.7)

Finally, once again by applying Abel’s lemma in the inner sum of
∑

3
, we get

∑
3

=
n−1∑

m=N+1

1dmO(t−1)V
q
m(n)
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= O(t−1)

n∑
m=1

V
q
m(n)1dm

= O(t−1)1dn, (4.8)

as in
∑

1
.

Combining (3.5) through (4.8), we get the required result.

Lemma7. There exists anf ∈ L2π for which (2.10) (i) and (2.11) hold but the series
(2.8)at x = 0 diverges properly for every realδ and hence not summable by any regular
summability method.

Proof. Let f be even and letx = 0. Thenφ(t) = f (t). Definef by periodicity. We first
consider the caseδ = 0 for which we define

f (t) =



log log

(
k

t

)
, 0 < t ≤ π

0, t = 0
(4.9)

wherek ≥ πe2. Then

g(t) = φ(t) − φ1(t)

= − 1

log

(
k

t

) + 1

t

t∫
0

log−2
(

k

u

)
du,

which is of bounded variation andg(0+) = 0. Hence
π∫

0

logη k

t
| dg(t)| <

π∫
0

t−1 logη−2 k

t
dt,

which converges whenever 0< η < 1. This proves that (2.10) (i) and (2.11) hold. However

An(x) = 2

π

π∫
0

log log
k

t
cosnt dt

= 2

π

π∫
0

sin nt

nt
log−1 k

t
dt

∼ 1

n log n
,

by using Lemma 5. Thus
∞∑

n=1

An(x) diverges properly and hence it cannot be summable by

any absolutely regular summability method and,a fortiori, (2.8) withδ = 0 is not|E, q|
(q > 0) summable.

In the case whenδ is non-zero real number, we define

f (t) =



logδ k

t
,

(
0 < t ≤ π

)
0, t = 0

. (4.10)
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Then sinceφ(t) = f (t), we have

P(t) = δ
1

t

t∫
0

logδ−1
(

k

u

)
du

= δ logδ−1
(

k

t

)
+ δ(δ − 1)

t

t∫
0

logδ−2
(

k

u

)
du

and hence

g(t) = P(t) log−δ

(
k

t

)

= δ

log

(
k

t

) + δ(δ − 1)

t logδ

(
k

t

)
t∫

0

logδ−2
(

k

u

)
du,

which shows thatg(0+) = 0 and

d

dt
g(t) = δ2

t log2
(

k

t

) + δ(δ − 1)




δ

t2 log1+δ

(
k

t

) − 1

t2 logδ

(
k

t

)



×
t∫

0

logδ−2
(

k

u

)
du

and for all realδ 6= 0

t∫
0

logδ−2
(

k

u

)
du ≤ Mt logδ−2

(
k

t

)
,

whereM is a positive constant not necessarily the same at each occurrence and possibly
depending uponδ. Therefore

π∫
0

logη k

t
|dg(t)| ≤ M

π∫
0

t−1 logη−2 k

t
dt,

which converges for 0< η < 1. This proves that (2.10) (i) and (2.11) hold for all real
δ 6= 0. But for the function defined by (3.10)

An(x) = 2

π

π∫
0

logδ

(
k

t

)
cosnt dt (δ 6= 0)

= 2δ

nπ

π∫
0

sin nt

t
logδ−1

(
k

t

)
dt

∼ δ

n
logδ−1 n,
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by Lemma 5 and hence,

An(x)

logδ(n + 1)
∼ δ

n log(n + 1)
.

This shows that for every realδ 6= 0, (2.8) is not|E, q| (q > 0) summable since
∑ 1

n log(n + 1)
= ∞.

This completes the proof of the lemma.

5. Proof of the theorem

In view of the inclusion:|E, q| ⊂ |E, q ′| (q ′ > q > −1) (see Chandra [2]; Corollary 2)
we assume 0< q < 1 for the proof of the theorem, without any loss of generality.

Let (2.10) (i) hold. Then proceeding as in Chandra ([3], p. 388–9), we have forn ≥ 1

An(x) = 2

π

π∫
c

φ(t) cosnt dt + 2

π
φ1(c)

sin nc

n

+ 2

π

c∫
0

tP (t)
∂

∂t

(
sin nt

nt

)
dt (5.1)

and integrating by parts, we get
c∫

0

tP (t)
∂

∂t

(
sin nt

nt

)
dt

=
c∫

0

g(t)b(t)
∂

∂t

(
sin nt

nt

)
dt

= g(0+)

c∫
0

b(u)
∂

∂u

(
sin nu

nu

)
du +

c∫
0

dg(t)

c∫
t

b(u)
∂

∂u

(
sin nu

nu

)
du (5.2)

and for 0≤ t < c

c∫
t

b(u)
∂

∂u

(
sin nu

nu

)
du = b(c)

sin nc

nc
− b(t)

sin nt

nt
−

c∫
t

sin nu

nu
db(u). (5.3)

Using (5.3) in (5.2), we get
c∫

0

tP (t)
∂

∂t

(
sin nt

nt

)
dt

= g(0+)


b(c)

sin nc

nc
−

c∫
0

sin nu

nu
db(u)


 +

c∫
0

b(c)
sin nc

nc
dg(t) −

c∫
0

Hn(t) dg(t)

= g(c)b(c)
sin nc

nc
− g(0+)

c∫
0

sin nu

nu
db(u) −

c∫
0

Hn(t) dg(t). (5.4)
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And using (5.4) in (5.1), we get

An(x) = 2

π

π∫
c

φ(t) cosnt dt + 2

π
φ(c)

sin nc

n

− 2

π
g(0+)

c∫
0

sin nu

nu
db(u) − 2

π

c∫
0

Hn(t) dg(t)

= αn + βn − γn − δn, say. (5.5)

SinceA0 = 1
2a0 = 0, therefore

∞∑
n=1

An(x)dn ∈ |E, q| (q > 0)

if and only if

∞∑
n=1

1

(q + 1)n+1

∣∣∣∣∣
n∑

m=1

(
n

m

)
qn−mdmAm(x)

∣∣∣∣∣ < ∞. (5.6)

However, it follows from Lemma 3 that

∞∑
n=1

αndn ∈ |E, q| (q > 0) (5.7)

and since

βn = 2

π
φ(c) sinnc

[
1

n + 1
+ 1

n(n + 1)

]

and
∞∑

n=1

∣∣∣∣ 2

π
φ(c)dn

sinnc

n(n + 1)

∣∣∣∣ < ∞.

Therefore, in view of absolute regularity of|E, q| (q > 0) method,

∞∑
n=1

βndn ∈ |E, q| (q > 0) (5.8)

if
∞∑

n=1

1

(q + 1)n+1

∣∣∣∣∣
n∑

m=1

(
n

m

)
qn−mdm

sinnc

m + 1

∣∣∣∣∣
=

∞∑
n=1

1

n + 1

∣∣∣∣∣
n∑

m=1

V
q
n (m)dm sinnc

∣∣∣∣∣ < ∞,

which holds by Lemma 4. Now

∞∑
n=1

δndn ∈ |E, q| (q > 0) (5.9)
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if and only if

Q = 2

π

∞∑
n=1

1

(q + 1)n+1

∣∣∣∣∣∣
n∑

m=1

(
n

m

)
qn−mdm

c∫
0

Hm(t)dg(t)

∣∣∣∣∣∣ < ∞.

Clearly

Q ≤ 2

π

c∫
0

| dg(t)|
∞∑

n=1

1

(q + 1)n+1

∣∣∣∣∣
n∑

m=1

(
n

m

)
qn−mdmHm(t)

∣∣∣∣∣
and since by (2.10) (i),

c∫
0

log
k

t
| dg(t)| < ∞

therefore for the proof of (5.9) it is suffiecient to prove that

Z =
∞∑

n=1

1

(q + 1)n+1

∣∣∣∣∣
n∑

m=1

(
n

m

)
qn−mdmHm(t)

∣∣∣∣∣ = O

(
log

k

t

)
, (5.10)

uniformly in 0 < t < c.

ForT = [k/t ], the integral part ofk/t , we write

Z =
∑
n≤T

+
∑
n>T

say. (5.11)

By (3.1), we get

∑
n≤T

= b(t)

T∑
n=1

1

(q + 1)n+1

n∑
m=1

(
n

m

)
qn−mdm

+O(1)

T∑
n=1

1

(q + 1)n+1

n∑
m=1

(
n

m

)
qn−m 1

m + 1

= O(1)b(t)

T∑
n=1

dn

n∑
m=1

V
q
m(n) + O(1)

T∑
n=1

1

n + 1

n∑
m=1

V
q
m(n)

= O(1)b(t)

T∑
n=1

dn + O(1)

T∑
n=1

1

n + 1

= O

(
log

k

t

)
, (5.12)

uniformly in 0 < t < c, since
∑n

m=1
V

q
m(n) ≤ 1. And by (3.2)

∑
n≥T

= logδ

(
k

t

) ∞∑
n=T

1

(q + 1)n+1

∣∣∣∣∣
n∑

m=1

(
n

m

)
qn−mdm

sinmt

m

∣∣∣∣∣
+O

(
t−1 logδ k

t

) ∞∑
n=T

1

(q + 1)n+1

n∑
m=1

(
n

m

)
qn−m dm

m(m + 1)
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= logδ k

t

∞∑
n=T

1

(q + 1)n+1

∣∣∣∣∣
n∑

m=1

(
n

m

)
qn−mdm

sinmt

m + 1

∣∣∣∣∣
+O

(
t−1 logδ k

t

) ∞∑
n=T

1

(q + 1)n+1

n∑
m=1

(
n

m

)
qn−m dm

m(m + 1)

= R(t) logδ k

t
+ O

(
t−1 logδ k

t

)
W(t), say, (5.13)

where

W(t) =
∞∑

n=T

1

(q + 1)n+1

n∑
m=1

(
n

m

)
qn−m dm

m(m + 1)
.

Now, by using repeatedly the relation:(
r

s

)
= s + 1

r + 1

(
r + 1

s + 1

)
,

wherer ands are integers such thatr ≥ s ≥ 0, we get

n∑
m=1

(
n

m

)
qn−m dm

m(m + 1)

= 1

n + 1

n∑
m=1

(
n + 1

m + 1

)
qn−m dm

m

= 1

n + 1

n∑
m=1

(
n + 1

m + 1

)
qn−m

(
2

m
+ 1

)
dm

m + 2

= 1

(n + 1)(n + 2)

n∑
m=1

(
n + 2

m + 2

)
qn−m

(
2

m
+ 1

)
dm

<
3

n2

n∑
m=1

(
n + 2

m + 2

)
qn−mdm

= 3

n2(n + 3)

n∑
m=1

(
n + 3

m + 3

)
qn−m(m + 3)dm.

However, the function(x + 2) log−δ x increases withx > exp(3δ), therefore

W(t) = O(1)

∞∑
n=T

(q + 1)−n−1n−2dn

n∑
m=1

(
n + 3

m + 3

)
qn−m

= O(1)

∞∑
n=T

(q + 1)−n−1n−2dn

m+3∑
m=0

(
n + 3

m

)
qn−m

= O(1)

∞∑
n=T

(q + 1)2 dn

n2
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= O(1)

∞∑
n=T

dn

n2

= O

(
t log−δ

(
k

t

))
, (5.14)

uniformly in 0 < t < c. And, by Lemma 6,

R(t) =
∞∑

n=T

1

n + 1

∣∣∣∣∣
n∑

m=1

V
q
m(n)dm sinmt

∣∣∣∣∣
= O(t−1)

∞∑
n=T

1dn

n + 1
+ O(1)

∞∑
n=T

dn

n + 1
yn(t)

+O(1)

∞∑
n=T

dn

n + 1

(
q

1 + q

)n

= O(1) log−δ k

t
+ O(1) log−δ

(
k

t

) ∞∑
n=1

yn(t)

n

+O(1)t log−δ

(
k

t

) ∞∑
n=0

(
q

1 + q

)n

= O(1) log1−δ

(
k

t

)
, (5.15)

uniformly in 0 < t < c, since
∞∑

n=1

yn(t)

n
= log

1

1 − y(t)

and

1

1 − y(t)
= O

(
k

t

)2

(t → 0+).

Combining (5.11) through (5.15) we get (5.10). Also in view of (5.5) through (5.9),∑∞
n=1

An(x)dn ∈ |E, q|(q > 0) if and only if

∞∑
n=1

γndn ∈ |E, q| (q > 0), (5.16)

where

γndn = 2

π
g(0+)dn

c∫
0

sinnu

nu
db(u)

and, by Lemma 5,

2

π

c∫
0

sinnu

nu
db(u) ∼ 1

n
[logδ(n + 1) − δ logδ−1(n + 1)]

∼ 1

n
logδ(n + 1)
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and hence

2

π
dn

c∫
0

sinnu

nu
db(u) ∼ 1

n
.

Thus in order that (5.16) should hold it is necessary and sufficient that

∞∑
n=1

g(0+)

n
∈ |E, q| (q > 0)

for which it is necessary and sufficient that (2.10)(ii) must hold, since
∑∞

n=1
1/n diverges

strictly.
The fact that the condition (2.10)(i) cannot be replaced by (2.11) follows by Lemma 7.
This proves the theorem completely.
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