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Abstract. Sufficient conditions for boundary controllability of integrodifferential
systems in Banach spaces are established. The results are obtained by using the
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are provided to illustrate the theory.
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1. Introduction

Controllability of nonlinear systems represented by ordinary differential equations in

Banach spaces has been extensively studied by several authors. Balachandran et al [1]

studied the controllability of nonlinear integrodifferential systems whereas in [2] they have

investigated the local null controllability of nonlinear functional differential systems in

Banach spaces by using the Schauder fixed point theorem. Controllability of nonlinear func-

tional integrodifferential systems in Banach spaces has been studied by Park and Han [10].

Several abstract settings have been developed to describe the distributed control sys-

tems on a domain 
 in which the control is acted through the boundary ÿ. But in these

approaches one can encounter the difficulty for the existence of sufficiently regular

solution to state space system, the control must be taken in a space of sufficiently smooth

functions. Balakrishnan [3] showed that the solution of a parabolic boundary control equa-

tion with L2 controls can be expressed as a mild solution to an operator equation. Fattorini

[6] discussed the general theory of boundary control systems. Barbu and Precupanu [4]

studied a class of convex control problems governed by linear evolution systems covering

the principal boundary control systems of parabolic type. In [5] Barbu investigated a class

of boundary-distributed linear control systems in Banach spaces. Lasiecka [8] established

the regularity of optimal boundary controls for parabolic equations with quadratic cost

criterion. Recently Han and Park [7] derived a set of sufficient conditions for the

boundary controllability of a semilinear system with a nonlocal condition. The purpose of

this paper is to study the boundary controllability of nonlinear integrodifferential systems

in Banach spaces by using the Banach fixed point theorem.

2. Preliminaries

Let E and U be a pair of real Banach spaces with norms jj � jj and j � j, respectively. Let �
be a linear closed and densely defined operator with Dð�Þ � E and let � be a linear

operator with Dð�Þ � E and Rð�Þ � X, a Banach space.
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Consider the boundary control integrodifferential system of the form

_xðtÞ ¼ �xðtÞ þ f ðt; xðtÞ;
Z t

0

gðt; s; xðsÞÞdsÞ; t 2 J ¼ ½0; b�;

�xðtÞ ¼ B1uðtÞ;
xð0Þ ¼ x0; ð1Þ

where B1 : U ! X is a linear continuous operator, the control function u 2 L1ðJ;UÞ, a

Banach space of admissible control functions. The nonlinear operators f : J� E� E! E

and g : �� E! E are given and � ¼ fðt; sÞ; 0 � s � t � bg. Let A : E! E be the

linear operator defined by

DðAÞ ¼ fx 2 Dð�Þ; �x ¼ 0g; Ax ¼ �x; for x 2 DðAÞ:

Let Br ¼ fy 2 E : kyk � rg, for some r > 0. We shall make the following hypotheses:

(i) Dð�Þ � Dð�Þ and the restriction of � to Dð�Þ is continuous relative to graph norm of

DðAÞ.
(ii) The operator A is the infinitesimal generator of a C0 semigroup TðtÞ and there exists

a constant M > 0 such that kTðtÞk � M.

(iii) There exists a linear continuous operator B : U ! E such that �B 2 LðU;EÞ,
�ðBuÞ ¼ B1u, for all u 2 U. Also BuðtÞ is continuously differentiable and kBuk �
CkB1uk for all u 2 U, where C is a constant.

(iv) For all t 2 ð0; b� and u 2 U, TðtÞBu 2 DðAÞ. Moreover, there exists a positive func-

tion � 2 L1ð0; bÞ such that kATðtÞBk � �ðtÞ, a.e. t 2 ð0; bÞ.
(v) f : J � E2 ! E is continuous and there exist constants M1 and M2 such that for all

x1; x2 2 Br and y1; y2 2 E we have

k f ðt; x1; y1Þ ÿ f ðt; x2; y2Þk � M1½kx1 ÿ x2k þ ky1 ÿ y2k�

and

M2 ¼ max
t2 J
k f ðt; 0; 0Þk:

(vi) g : �� E! E is continuous and there exist constants L1; L2 > 0 such that for all

x1; x2 2 Br

kgðt; s; x1Þ ÿ gðt; s; x2Þk � L1kx1 ÿ x2k

and

L2 ¼ max
ðt;sÞ2�

kgðt; s; 0Þk:

Let xðtÞ be the solution of (1). Then we can define a function zðtÞ ¼ xðtÞ ÿ BuðtÞ
and from our assumption we see that zðtÞ 2 DðAÞ. Hence (1) can be written in terms of A

and B as

_xðtÞ ¼ AzðtÞ þ �BuðtÞ þ f t; xðtÞ;
Z t

0

gðt; s; xðsÞÞds

� �
; t 2 J;

xðtÞ ¼ zðtÞ þ BuðtÞ;
xð0Þ ¼ x0: ð2Þ
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If u is continuously differentiable on ½0; b�, then z can be defined as a mild solution to the

Cauchy problem

_zðtÞ ¼ AzðtÞ þ �BuðtÞ ÿ B _uðtÞ þ f t; xðtÞ;
Z t

0

gðt; s; xðsÞÞds

� �
;

zð0Þ ¼ x0 ÿ Buð0Þ

and the solution of (1) is given by

xðtÞ ¼ TðtÞ½x0 ÿ Buð0Þ� þ BuðtÞ

þ
Z t

0

TðtÿsÞ �BuðsÞÿB _uðsÞþ f s; xðsÞ;
Z s

0

gðs; �; xð�Þd�Þ
� �� �

ds: ð3Þ

Since the differentiability of the control u represents an unrealistic and severe require-

ment, it is necessary to extend the concept of the solution for the general inputs u 2 L1

ðJ;UÞ. Integrating (3) by parts, we get

xðtÞ ¼ TðtÞx0 þ
Z t

0

½Tðt ÿ sÞ�ÿ ATðt ÿ sÞ�BuðsÞds

þ
Z t

0

Tðt ÿ sÞf s; xðsÞ;
Z s

0

gðs; �; xð�ÞÞd�
� �

ds: ð4Þ

Thus (4) is well defined and it is called a mild solution of the system (1).

DEFINITION

The system (1) is said to be controllable on the interval J if for every x0; x1 2 E, there

exists a control u 2 L2ðJ;UÞ such that the solution xð:Þ of (1) satisfies xðbÞ ¼ x1.

We further consider the following additional conditions:

(vii) There exists a constant K1 > 0 such that
R b

0
�ðtÞdt � K1.

(viii) The linear operator W from L2ðJ;UÞ into E defined by

Wu ¼
Z b

0

½Tðbÿ sÞ�ÿ ATðbÿ sÞ�BuðsÞds

induces an invertible operator ~W defined on L2ðJ;UÞ= ker W and there exists a

positive constant K2 > 0 such that k ~Wÿ1k � K2. The construction of the bounded

inverse operator ~W
ÿ1

in general Banach space is outlined in the Remark.

(ix) Mkx0k þ ½bMk�Bk þ K1� K2½kx1k þMkx0k þ N� þ N � r, where N ¼ bM½M1½rþ
bðL1r þ L2Þ� þM2�.

(x) Let q ¼ bMM1K2½1þ bL1�ðbMk�Bk þ K1Þ be such that 0 � q < 1.

3. Main result

Theorem. If the hypotheses (i)–(x) are satisfied, then the boundary control integro-

differential system (1) is controllable on J.
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Proof. Using the hypothesis (viii), for an arbitrary function xð:Þ define the control

uðtÞ ¼ ~Wÿ1 x1 ÿ TðbÞx0 ÿ
Z b

0

Tðbÿ sÞf ðs; xðsÞ;
Z s

0

gðs; � ; xð�ÞÞd�Þds

� �
ðtÞ:

ð5Þ
Let Y ¼ CðJ;BrÞ. Using this control, we shall show that the operator � defined by

�xðtÞ ¼ TðtÞx0 þ
Z t

0

½Tðt ÿ sÞ�ÿ ATðt ÿ sÞ�B ~Wÿ1½x1 ÿ TðbÞx0

ÿ
Z b

0

Tðbÿ �Þ f ð�; xð�Þ;
Z �

0

gð�; �; xð�ÞÞd�Þd� �ðsÞds

þ
Z t

0

Tðt ÿ sÞf ðs; xðsÞ;
Z s

0

gðs; �; xð�ÞÞd�Þds

has a fixed point. First we show that � maps Y into itself. For x 2 Y,

k�xðtÞk � kTðtÞx0k þ
Z t

0

½Tðt ÿ sÞ�ÿ ATðt ÿ sÞ�B ~Wÿ1 x1 ÿ TðbÞx0

�




ÿ
Z b

0

Tðbÿ �Þ f ð�; xð�Þ;
Z �

0

gð�; �; xð�ÞÞd�Þd�
�
ðsÞds






þ
Z t

0

Tðt ÿ sÞ f ðs; xðsÞ;
Z s

0

gðs; �; xð�ÞÞd�Þds





 




� kTðtÞx0k þ

Z t

0

kTðt ÿ sÞkk�Bkk ~Wÿ1k kx1k þ kTðbÞx0k
�

þ
Z b

0

kTðbÿ �Þk f ð�; xð�Þ;
Z �

0

gð�; �; xð�ÞÞd�Þ




�

ÿ f ð�; 0; 0Þ




þ kf ð�; 0; 0Þk�d�

�
ds

þ
Z t

0

kATðt ÿ sÞBkk ~Wÿ1k kx1k þ kTðbÞx0k
�

þ
Z b

0

kTðbÿ �Þk f ð�; xð�Þ;
Z �

0

gð�; �; xð�ÞÞd�Þ




�

ÿ f ð�; 0; 0Þ




þ kf ð�; 0; 0Þk�d�

�
ds

þ
Z t

0

kTðt ÿ sÞk f ðs; xðsÞ;
Z s

0

gðs; �; xð�ÞÞd�Þ




�

ÿ f ðs; 0; 0Þ




þ k f ðs; 0; 0Þk

�
ds

� Mkx0k þ bMk�BkK2½kx1k þMkx0k
þ bM½M1½r þ bðL1r þ L2Þ� þM2�
þ K1K2½kx1k þMkx0k þ bM½M1½r þ bðL1r þ L2Þ� þM2�
þ bM½M1½r þ bðL1r þ L2Þ� þM2�
� Mkx0k þ ½bMk�Bk þ K1�K2½kx1k þMkx0k þ N� þ N

� r:
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Thus � maps Y into itself. Now, for x1, x2 2 Y we have

k�x1ðtÞ ÿ �x2ðtÞk �
Z t

0

½kTðt ÿ sÞkk�Bk þ kATðt ÿ sÞBk�k ~Wÿ1k

Z b

0

kTðbÿ �Þk f ð�; x1ð�Þ;
Z �

0

gð�; �; x1ð�ÞÞd�Þ




�

ÿf ð�; x2ð�Þ;
Z �

0

gð�; �; x2ð�ÞÞd�Þ




d�

�
ds

þ
Z t

0

kTðt ÿ sÞk f ðs; x1ðsÞ;
Z s

0

gðs; �; x1ð�ÞÞd�Þ






ÿf ðs; x2ðsÞ;
Z s

0

gðs; �; x2ð�ÞÞd�Þ




ds

�
Z t

0

½Mk�Bk þ �ðtÞ�K2½bMM1ðkx1ð�Þ ÿ x2ð�Þk

þ bL1kx1ð�Þ ÿ x2ð�ÞkÞ�ds

þ bMM1ðkx1ðsÞ ÿ x2ðsÞk þ bL1kx1ð�Þ ÿ x2ð�ÞkÞ
� qkx1ðtÞ ÿ x2ðtÞk:

Therefore, � is a contraction mapping and hence there exists a unique fixed point x 2 Y

such that �xðtÞ ¼ xðtÞ. Any fixed point of � is a mild solution of (1) on J which satisfies

xðbÞ ¼ x1. Thus the system (1) is controllable on J.

4. Applications

Example 1. Let 
 be a bounded and open subset of Rn and let ÿ be a sufficiently smooth

boundary of 
 (say of class C1).

Consider the boundary control integrodifferential system,

@yðt; xÞ
@t

ÿ�yðt; xÞ ¼ �ðt; yðt; xÞ;
Z t

0

�ðt; s; yðs; xÞÞdsÞ; in Y ¼ ð0; bÞ � 
;

yðt; 0Þ ¼ uðt; 0Þ; on � ¼ ð0; bÞ � ÿ; t 2 ½0; b�;
yð0; xÞ ¼ y0ðxÞ; for x 2 
; ð6Þ

where u 2 L2ð�Þ, y0 2 L2ð
Þ, � 2 L2ðYÞ and � 2 Y .

The above problem can be formulated as a boundary control problem of the form (1)

by suitably taking the spaces E, X, U and the operators B1; � and � as follows:

Let E ¼ L2ð
Þ, X ¼ Hÿ
1
2ðÿÞ, U ¼ L2ðÿÞ, B1 ¼ I, the identity operator and Dð�Þ ¼

fy 2 L2ð
Þ; �y 2 L2ð
Þg, � ¼ �. The operator � is the ‘trace’ operator such that

�y ¼ yjÿ is well defined and belongs to Hÿ
1
2ðÿÞ for each y 2 Dð�Þ (see [5]) and the

operator A is given by

A ¼ �; DðAÞ ¼ H1
0ð
Þ [ H2ð
Þ:

(Here Hkð
Þ;H�ðÿÞ and H1
0ð
Þ are usual Sobolev spaces on 
, ÿ.)
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Let us assume that the nonlinear functions � and � satisfy the following Lipschitz

condition:

k�ðt; v1;w1Þ ÿ �ðt; v2;w2Þk � K1½kv1 ÿ v2k þ kw1 ÿ w2k�;
k�ðt; s; v1Þ ÿ �ðt; s; v2Þk � K2kv1 ÿ v2k;

where K1, K2 > 0, v1, v2 2 Br and w1, w2 2 
.

Define the linear operator B : L2ðÿÞ ! L2ð
Þ by Bu ¼ wu where wu is the unique

solution to the Dirichlet boundary value problem,

�wu ¼ 0 in 
;

wu ¼ u in ÿ:

In other words (see [9])Z



wu� dx ¼
Z

ÿ

u
@ 

@n
dx; for all  2 H1

0ð
Þ [ H2ð
Þ; ð7Þ

where @ =@n denotes the outward normal derivative of  which is well defined as an

element of H
1
2ðÿÞ. From (7), it follows that,

kwukL2ð
Þ � C1kuk
H
ÿ1

2ðÿÞ
; for all u 2 Hÿ

1
2ðÿÞ

and

kwukH1ð
Þ � C2kuk
H

1
2ðÿÞ

; for all u 2 H
1
2ðÿÞ;

where Ci, i ¼ 1; 2 are positive constants independent of u.

From the above estimates it follows by an interpolation argument [12] that

kATðtÞBkLðL2ðÿÞ;L2ðÿÞÞ � Ctÿ
3
4; for all t > 0 with �ðtÞ ¼ Ctÿ

3
4:

Further assume that the bounded invertible operator ~W exists. Choose b and other

constants such that the conditions (ix) and (x) are satisfied. Hence, we see that all the

conditions stated in the theorem are satisfied and so the system (6) is controllable on

½0; b�.

Example 2. Consider the boundary control system,

@yðt; xÞ
@t

ÿ�yðt; xÞ ¼ f ðt; yðt; xÞ;
Z t

0

gðt; s; yðs; xÞÞds in Q ¼ ð0; bÞ � 
;

@yðt; 0Þ
@n

þ �yðt; 0Þ ¼ uðt; 0Þ; in ð0; bÞ � ÿ; t 2 ½0; b�; ð8Þ

yð0; xÞ ¼ y0ðxÞ; x 2 
;

where y0 2 L2ð
Þ, f 2 L2ðQÞ, g 2 Q and u 2 L2ðÿÞ. Here � is a nonnegative constant.

Let us assume that the nonlinear functions f and g satisfy the Lipschitz condition:

kf ðt; v1;w1Þ ÿ f ðt; v2;w2Þk � M1½kv1 ÿ v2k þ kw1 ÿ w2k�;
kgðt; s; v1Þ ÿ gðt; s; v2Þk � M2kv1 ÿ v2k;

where M1;M2 > 0, v1; v2 2 Br and w1;w2 2 
.
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Take E ¼ L2ð
Þ, U ¼ X ¼ L2ðÿÞ, B1 ¼ I, �y ¼ �y, �y ¼ �yþ ð@y=@nÞ and

Dð�Þ ¼ H2ð
Þ.
The operator A is given by

Ay ¼ �y;DðAÞ ¼ y 2 H2ð
Þ; �yþ @y

@n
¼ 0

� �
:

Now the problem (8) becomes an abstract formulation of (1).

Define the linear operator B : L2ðÿÞ ! L2ð
Þ by Bu ¼ zu where zu 2 H1ð
Þ is the

unique solution to the Neumann boundary value problem,

zu ÿ�zu ¼ 0 in 
;

�zu þ
@zu

@n
¼ u in ÿ:

Consider on the product space H1ð
Þ � H1ð
Þ, the bilinear functional

hðy;  Þ ¼
Z




ðy þ grad y grad Þdxÿ
Z

ÿ

ðuÿ �yÞ d�; ð9Þ

where u 2 Hÿ
1
2ðÿÞ (here

R
ÿ u d� is the value of u at  2 H

1
2 ðÿÞ. Since h is coercive, there

is a zu 2 H1ð
Þ satisfying hðzu;  Þ ¼ 0 for all  2 H1ð
Þ. Hence zu ¼ Bu is the solution

to (8). From (9) we see that

kwukH1ð
Þ � C1kuk
H
ÿ1

2ðÿÞ
:

Since the operator ÿA is self-adjoint and positive, we haveZ b

0

kATðtÞy0k2
L2ð
Þdt � Cky0k2

DððÿAÞ
1
2Þ

for all y0 2 DððÿAÞ
1
2Þ ¼ H1ð
Þ:

ð10Þ

Let � be the scalar function defined by

�ðtÞ ¼ lim
n!1

inf kAnTðtÞkLðH1ð
Þ;L2ð
ÞÞ; t 2 ½0; b�;

where An ¼ AðI þ nÿ1AÞÿ1
for n ¼ 1; 2; . . .: Obviously,

kATðtÞkLðH1ð
Þ;L2ð
ÞÞ � �ðtÞ for t 2 ð0; b�: ð11Þ

Also we find that (10) implies thatZ b

0

kAnTðtÞy0k2
LðH1ð
Þ;L2ð
ÞÞdt � C for all n:

Therefore by Fatou’s lemma it follows that � 2 L2ð0; bÞ and hence from (10) and (11)

we have

kATðtÞBukL2ð
Þ � C�ðtÞkukL2ðÿÞ; for all t 2 ð0; bÞ; u 2 L2ðÿÞ

with �ðtÞ ¼ C�ðtÞ 2 L2ð0; bÞ. Further assume that the bounded invertible operator ~W
exists. Choose b and other constants in such a way that the conditions (ix) and (x) are

satisfied. Thus we find that all the conditions stated in the theorem are satisfied. Hence

the system (8) is controllable on ½0; b�.
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Remark (see also [11]). Construction of ~Wÿ1.

Let Y ¼ L2½J;U�=ker W . Since ker W is closed, Y is a Banach space under the norm

k½u�kY ¼ inf
u2½u�
kukL2½J;U� ¼ inf

Wû¼0
kuþ ûkL2½J;U�;

where ½u� are the equivalence classes of u.

Define ~W : Y ! X by

~W ½u� ¼ Wu; u 2 ½u�:

Now ~W is one-to-one and

k ~W ½u�kX � kWkk½u�kY :

We claim that V = Range W is a Banach space with the norm

kvkV ¼ k ~Wÿ1vkY :

This norm is equivalent to the graph norm on Dð ~Wÿ1Þ = Range W , ~W is bounded and

since Dð ~WÞ ¼ Y is closed, ~Wÿ1 is closed and so the above norm makes Range W ¼ V , a

Banach space.

Moreover,

kWukV ¼ k ~Wÿ1WukY ¼ k ~Wÿ1 ~W ½u�k
¼ k½u�k ¼ inf

u2½u�
kuk � kuk;

so

W 2 LðL2½J;U�;VÞ:

Since L2½J;U� is reflexive and ker W is weakly closed, so that the infimum is actually

attained. For any v 2 V, we can therefore choose a control u 2 L2½J;U� such that

u ¼ ~Wÿ1v.
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