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Abstract. Sufficient conditions for boundary controllability of integrodifferential
systems in Banach spaces are established. The results are obtained by using the
strongly continuous semigroup theory and the Banach contraction principle. Examples
are provided to illustrate the theory.
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1. Introduction

Controllability of nonlinear systems represented by ordinary differential equations in
Banach spaces has been extensively studied by several authors. Balachandran et al [1]
studied the controllability of nonlinear integrodifferential systems whereas in [2] they have
investigated the local null controllability of nonlinear functional differential systems in
Banach spaces by using the Schauder fixed point theorem. Controllability of nonlinear func-
tional integrodifferential systems in Banach spaces has been studied by Park and Han [10].

Several abstract settings have been developed to describe the distributed control sys-
tems on a domain €2 in which the control is acted through the boundary I'. But in these
approaches one can encounter the difficulty for the existence of sufficiently regular
solution to state space system, the control must be taken in a space of sufficiently smooth
functions. Balakrishnan [3] showed that the solution of a parabolic boundary control equa-
tion with L? controls can be expressed as a mild solution to an operator equation. Fattorini
[6] discussed the general theory of boundary control systems. Barbu and Precupanu [4]
studied a class of convex control problems governed by linear evolution systems covering
the principal boundary control systems of parabolic type. In [5] Barbu investigated a class
of boundary-distributed linear control systems in Banach spaces. Lasiecka [8] established
the regularity of optimal boundary controls for parabolic equations with quadratic cost
criterion. Recently Han and Park [7] derived a set of sufficient conditions for the
boundary controllability of a semilinear system with a nonlocal condition. The purpose of
this paper is to study the boundary controllability of nonlinear integrodifferential systems
in Banach spaces by using the Banach fixed point theorem.

2. Preliminaries

Let E and U be a pair of real Banach spaces with norms || - || and | - |, respectively. Let o
be a linear closed and densely defined operator with D(o) C E and let 7 be a linear
operator with D(7) C E and R(7) C X, a Banach space.
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Consider the boundary control integrodifferential system of the form

x(1) = ox(t) + f(t,x(1), /Otg(t,&x(s))ds), t€J=10,b],
7x(t) = Byu(r),
x(0) = xo, (1)

where By : U — X is a linear continuous operator, the control function u € L'(J, U), a
Banach space of admissible control functions. The nonlinear operators f : JX EX E — E
and g: A x E — E are given and A = {(z,5);0 <s <t <b}. Let A: E — E be the
linear operator defined by

D(A) ={x € D(o);7x =0}, Ax=ox, for xé€ D(A).

Let B, = {y € E : ||y|| < r}, for some r > 0. We shall make the following hypotheses:

(i) D(0) C D(7) and the restriction of 7 to D(o) is continuous relative to graph norm of
D(A).

(ii) The operator A is the infinitesimal generator of a Cy semigroup 7'(¢) and there exists
a constant M > 0 such that ||7(z)|| < M.

(iii) There exists a linear continuous operator B: U — E such that oB € L(U,E),
7(Bu) = Byu, for all u € U. Also Bu(z) is continuously differentiable and ||Bul|| <
C||Bul| for all u € U, where C is a constant.

(iv) Forall r € (0,b] and u € U, T(t)Bu € D(A). Moreover, there exists a positive func-
tion v € L'(0,b) such that ||AT(£)B|| < v(t), ae. t € (0,b).

(v) f:J x E? — E is continuous and there exist constants M; and M, such that for all
X1,X € B, and y;,y, € E we have

£, x1,31) = (1,52, y2)[| < Mi[llxy = xof| + [y = 2]
and
M = max||(1,0,0)]|.
(vi) g: A X E — E is continuous and there exist constants L;, L, > 0 such that for all
X1,Xx € B,
18(t,s,x1) — g(t,5, %) || < Lillxi — x|
and

L, = t,5,0)|.
2= max [lg(,s5, 0)]
Let x(¢) be the solution of (1). Then we can define a function z(z) = x(¢) — Bu(r)
and from our assumption we see that z(r) € D(A). Hence (1) can be written in terms of A
and B as

1) = Az(t) + oBu(t) +f(t,x(t), /Olg(t7 s,x(s))ds), rel,
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If u is continuously differentiable on [0, 5], then z can be defined as a mild solution to the
Cauchy problem

(1) = A<(r) + oBu(t) — Bi(t) + f(t, x(1), /O glt,s, x(s))ds) ,
2(0) = xp — Bu(0)

and the solution of (1) is given by
x(t) = T(t)[xo — Bu(0)] + Bu(r)

t N
+/ T(t—s) |:O'BM(S)—BI;£(S)+f(S,x(S),/ g(S,T,x(T)dT))] ds. (3)

0 0
Since the differentiability of the control u represents an unrealistic and severe require-
ment, it is necessary to extend the concept of the solution for the general inputs u € L!

(J, U). Integrating (3) by parts, we get

x(t) = T(t)xo + /Ot[T(t —s)o — AT (t — 5)|Bu(s)ds

~—

+/’ T([s)f<s7x(s)7/Osg(S,T,x(T))dT>dS. (4

0

Thus (4) is well defined and it is called a mild solution of the system (1).

DEFINITION

The system (1) is said to be controllable on the interval J if for every xo,x; € E, there
exists a control u € L*(J, U) such that the solution x(.) of (1) satisfies x(b) = x;.

We further consider the following additional conditions:

(vii) There exists a constant K; > 0 such that fé’ v(t)dt < K.
(viii) The linear operator W from L*(J, U) into E defined by

b
Wu = /0 [T(b— s)o—AT(b — 5)|Bu(s)ds

induces an invertible operator W defined on L*(J,U)/ker W and there exists a
positive constant K; > 0 such that |[W~!|| < K,. The construction of the bounded
inverse operator W in general Banach space is outlined in the Remark.

(ix) M|xo]| + [pbM||oB|| + Ki1] Ka[||x1]| + M||x0|| + N] + N < r, where N = bM[M,[r+
b(Lir + Lp)] + Ms].

(x) Let ¢ = bMM,K,[1 + bL,|(bM||oB|| + K;) be such that 0 < g < 1.

3. Main result

Theorem. If the hypotheses (1)—(x) are satisfied, then the boundary control integro-
differential system (1) is controllable on J.
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Proof. Using the hypothesis (viii), for an arbitrary function x(.) define the control

b K
u(t) =w! {xl —T(b)xy — /0 T — s)f(s,x(s),/o g(s,7,x(7))dr)ds| (¢).

(5)
Let Y = C(J, B,). Using this control, we shall show that the operator ® defined by

Ox(r) = T(t)xo + /OI[T(I —8)o — AT(t — 5)]BW ' [x; — T(b)xo
b T
—/ T - T)f(T,x(T),/ g(7,0,x(6))do)dr](s)ds
0 0
+ /0 T(t — s)f (s, x(s), / g(s,0,x(0))dd)ds

0
has a fixed point. First we show that & maps Y into itself. For x € Y,

[@x(0)]| < [T (0)xoll + \ / 70— s)o— AT (¢ — 5))BW! [ T

_ /0 "Il — ) (o), /0 "o, 9,x(0))d0)dr] (s)ds

+

[ ra=956556). [t 0500010
< oyl + [ 17—V |l + 170l
+ [ 1=, [ str0.x0a0
- 17:0,0)| + 170,01 aras
+ [ 1A= 9B ) + 17l
v [ o= |rxto). [ etr. 0,000

7f(7—7070

~

’ + W(T,o,oﬂ df} ds
+ /0, IT(t —s)|| :Hf(s,x(S),/Osg(sﬁ,x(g))dg)

~ f(s.0, o>\ (5.0, o>||}ds

< M|xo|| + bM || oB|| Kz [|x1 || + M |lxoll
+ bM[M,[r+ b(Lir + Ly)] + M3]
+ K Ko [||x1 || + M| |xol] + BM[M,[r 4+ b(Lyr + Ly)] + M;)
+ bM[M,\[r+ b(Lir + Ly)] + M>]
< Mxo|| + [bM||oB|| + Ki]Ka[[lxi || + Mlxol| + N] + N
<r.
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Thus ® maps Y into itself. Now, for x;, x, € ¥ we have

(1) — Bxa(r)| < / T = 5)lloB] + AT — ) BII|

{/0” 1T(b— T)||H f(T,x1(T)7ATg(T7 6,x1(0))do)

(o), [ . 0(0)0)

dT:| ds
+ /Of IT(t - s)| Hf@,xl (S)7/0Sg(s>97xl (6))do)

Slsox2s) [ e(s.0.020)a0) o

< / (M||oB]| + v(2)| Kz [bMM i ([lx1 (1) — x2(7) |
0

+ bLi[[x1(6) — x2(0)[])]ds
+ MM ([[x1(s) = xa(s)[| + bLi[}x1 (6) = x2(6)]])
< gl (1) = x2(1)]-
Therefore, ® is a contraction mapping and hence there exists a unique fixed point x € Y

such that ®x(¢) = x(¢). Any fixed point of ® is a mild solution of (1) on J which satisfies
x(b) = x;. Thus the system (1) is controllable on J.

4. Applications

Example 1. Let € be a bounded and open subset of R" and let I be a sufficiently smooth
boundary of € (say of class C®).
Consider the boundary control integrodifferential system,

oy(t,x)
ot

— Ay(t,x) = u(t,y(t,x),/O[n(t,s,y(s,x))ds), in Y=(0,b) xQ,

y(#,0) = u(¢,0), on X =(0,b)xT, re€]0,b],
y(0,x) = yo(x), for xe€Q, (6)

where u € L*(X), yo € L*(Q), p € L*(Y) and n € Y.

The above problem can be formulated as a boundary control problem of the form (1)
by suitably taking the spaces E, X, U and the operators B, o and 7 as follows:

Let E = L*(Q), X = H3('), U = L*("), By = I, the identity operator and D(c) =
{y € L*(Q); Ay € L*(Q)}, o = A. The operator 7 is the ‘trace’ operator such that
7y = y|p is well defined and belongs to H*(T") for each y € D(c) (see [5]) and the
operator A is given by

A=A, D(A)=H)(Q)UHQ).
(Here H*(Q), H*(T') and H} () are usual Sobolev spaces on , T.)
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Let us assume that the nonlinear functions p and 7 satisfy the following Lipschitz
condition:

(2, 01, w1) = (e, v, wa) || < Ki[[lor — va| 4 [jwy — wall],
In(t,s,v1) = 0,5, )| < Kaflvr — va|,

where K, K, > 0, v;, v» € B, and wy, w, € (.
Define the linear operator B : L*(T') — L*(2) by Bu = w, where w, is the unique
solution to the Dirichlet boundary value problem,

Aw, =0 in €,

w,=u in T.
In other words (see [9])
_ [ 9 | 2
wyApdx = [ u——dx, forall o € Hy(Q2) UH(Q), (7)
Q r On
where 9v/0n denotes the outward normal derivative of ¢ which is well defined as an
element of H2(T'). From (7), it follows that,

[Wallp20) < Cil forall ueH(T)

|u||H7%(F)7
and
1
walli ey < Callull o forall we HAT),

where C;, i = 1,2 are positive constants independent of u.
From the above estimates it follows by an interpolation argument [12] that

AT ()B| 22 (r) 22(r)) < Cri, forall >0 with v(t)=Cr.

Further assume that the bounded invertible operator W exists. Choose b and other
constants such that the conditions (ix) and (x) are satisfied. Hence, we see that all the
conditions stated in the theorem are satisfied and so the system (6) is controllable on
[0,D].

Example 2. Consider the boundary control system,

8yg;x) — Ay(t,x) = f(t,y(t,x),/Otg(t,s,y(s,x))ds in Q=(0,b) xQ,
w-i—ﬂ)’(t, 0) =u(r,0), in (0,b)xT, re€]0,b], (8)

y(0,x) = yo(x), x€Q,

where yo € L*(Q), f € L*(Q), g € Q and u € L*(T"). Here 3 is a nonnegative constant.
Let us assume that the nonlinear functions f and g satisfy the Lipschitz condition:

1 (2, 01, w1) = (1, 02, w2) | < Mi[flor — vl + [lwi = wal],
llg(2,s,01) = g(t,5, v2)|| < Mooy — va],

where M{,M, > 0, vy, v, € B, and wi,w, € €.
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Take E=1I1*(Q), U=X=L1*T), Bi=1I1, oy=Ay, 7y=py+(dy/0n) and
D(o) = H*(9).
The operator A is given by

%)
Ay =Ay,D(A) = {y CH'(Q); By + a—i = 0}-
Now the problem (8) becomes an abstract formulation of (1).
Define the linear operator B : L*(I') — L*(Q)) by Bu = z, where z, € H'(Q) is the
unique solution to the Neumann boundary value problem,

Zw—Az, =0 in €,

0z,
on
Consider on the product space H'(Q2) x H'(), the bilinear functional

Bz + =u in T.

) = [ 0+ gradyerad )ax — [ (= vy )
where u € H%(T") (here Jr utpdo is the value of u at ¢ € H:(T). Since & is coercive, there

is a z, € H'(Q) satisfying h(z,, ) = 0 for all y» € H'(Q). Hence z, = Bu is the solution
to (8). From (9) we see that

Il < Collal

Since the operator —A is self-adjoint and positive, we have

b
1
/ IAT(t)yollf2oydt < Cliyoll?, 4 forall yo € D((—A)?) = H' ().
0 D((-AP)

(10)
Let 6 be the scalar function defined by
6(r) = lim inf A, T(0) |l ar10) 220> 1 € [0,8],
where A, = A(I + n’lA)_1 forn=1,2,.... Obviously,
IAT ()l a1 (0.2 < 6(2)  for 1€ (0,b]. (11)

Also we find that (10) implies that

b
/0 AT (2)y0ll7 11 (0 12y dE < € for all n.

Therefore by Fatou’s lemma it follows that § € L?(0,5) and hence from (10) and (11)
we have

IAT (£)Bul| 20 < CO(t)|ull 2y, forall ¢€(0,b), wueL*(T)

with v(t) = C8(t) € L*(0,b). Further assume that the bounded invertible operator W
exists. Choose b and other constants in such a way that the conditions (ix) and (x) are
satisfied. Thus we find that all the conditions stated in the theorem are satisfied. Hence
the system (8) is controllable on [0, b].
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Remark (see also [11]). Construction of w1l
Let Y = L?[J, U]/ker W. Since ker W is closed, Y is a Banach space under the norm

[u]lly = 1nf ||”HL21U = mf ||"‘+”HLZJU

where [u] are the equivalence classes of u.
Define W : Y — X by

Wlu] = Wu, u € [u].
Now W is one-to-one and

W]l < W]y

We claim that V = Range W is a Banach space with the norm
lolly = [IW™"lly-

This norm is equivalent to the graph norm on D(W~') = Range W, W is bounded and
since D(W) = Y is closed, W~! is closed and so the above norm makes Range W = V, a
Banach space.

Moreover,

IWally = W= Wully = W= W[u]|
= [[fu]ll = inf flul] < [luf,
ueul

SO
W e L(L*[J,U],V).

Since L?[J, U] is reflexive and ker W is weakly closed, so that the infimum is actually
attained. For any v € V, we can therefore choose a control u € L?[J, U] such that
u=wly
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