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Abstract. We prove an equisummability result for the Fourier expansions and
Hermite expansions as well as special Hermite expansions. We also prove the uniform
boundedness of the Bochner-Riesz means associated to the Hermite expansions for
polyradial functions.
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1. Introduction

This paper is concerned with a comparative study of the Bochner-Riesz means associated
to the Hermite and Fourier expansions. Recall that the Bochner-Riesz means associated to
the Fourier transform on R" are defined by

5 —n/2 x-y \y|2 6A
s = [ e (1-80) ey
y|<t

where

F0) = (@m) / e f(x)dx

is the Fourier transform on R". Let ®,,« € N" be the n-dimensional Hermite functions
which are eigenfunctions of the Hermite operator H = —A + |x\2 with the eigenvalue
(2|a| + n) where |a] = aj + -+ a,. Let P; be the orthogonal projection of L?(R")
onto the kth eigenspace spanned by ®,, |a| = k. More precisely,

PLf(x) = HZ( / f(y)%(y)dy) Do ).

Then the Bochner-Riesz means associated to the Hermite expansions are defined by

Spf () = Z(l Rt ”)5Pkf<x>.

+

For the properties of Hermite functions and related results, see [6].
In our study of the Bochner-Riesz means associated to Hermite and special Hermite
expansions we make use of a transplantation theorem of Kenig-Stanton-Tomas [2]. Let us

95



96 E K Narayanan and S Thangavelu

briefly recall their result. Let P be a differential operator acting on C°(R") C L(R")
which is self adjoint. Let

Pf = / ME)

be the spectral resolution of P. Let m be a bounded function on R and define

me(P) = / m (%) dE,.

Let K be a subset of R" with positive measure and define the projection operator Q; on
L*(R") by

Ocf(x) = xx(x) f(x),

where y(x) is the characteristic function of K. Let p(x, £) be the principal symbol of P.
Since P is symmetric p is real valued. Then we have the following theorem.

Theorem 1.1. Assume 1 < p < oo and that there is a set of positive measure Ky for
which the operators Qg,mg(P)Qk, are uniformly bounded on L?(R"). If xo in Ko is any
point of density, then m(p(xo,&)) is a Fourier multiplier of L?(R").

Let B be any compact set in R" containing origin as a point of density and let y 3 be the
operator

xS (x) = xz(x)f(x).

Then from Theorem 1.1 it follows that the uniform boundedness of ypS%xp on L”(R")
implies the uniform boundedness of S’ on LP(R"). Thus once we have the local
summability theorem for Hermite expansions then a global result is true for the Fourier
transform. At this point a natural question arises, to what extend the converse is true? In
this paper we answer this question in the affirmative in dimensions one and two and
partially in higher dimensions. We also study the equisummability of the special Hermite
expansions, namely the eigenfunction expansion associated to the operator

| 0 0

on C". In this case we show that the local uniform boundedness of the Bochner-Riesz
means for the special Hermite operator is equivalent to the uniform boundedness of Sf on
R*". Using a recent result of Stempak and Zienkiewicz [4], on the restriction theorem we
study the Bochner-Riesz means associated to the Hermite expansions on R>" for functions
having some homogeneity. We also prove a weighted version for the Hermite expansions
which slightly improves the local estimates proved in [5]. Eigenfunction expansions
associated to special Hermite operator L has been studied by Thangavelu [6].

2. Hermite expansions on R"

The Hermite functions /; on R are defined by

o df
dx*

(e )er.

he(x) = 2%1/m) (= 1)
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In the higher dimensions the Hermite functions are defined by taking tensor products:
Do (x) = hoy (x1) .. ho, (x5).

Given f € L?(R) consider the Hermite expansion

o0

f(x) = Z(fﬂ hk)hk(x)v

k=0
where (f,h) = [ f(x)he(x

Let Syf(x) = S0 (f, hk)hk(x) be the partial sums associated to the above series. In
1965, Askey-Wainger [1] proved the following celebrated theorem.

Theorem 2.1. Sy f — f in the L? norm iff ‘3—‘ <p<4

Let S; be the partial sum operator associated to the Fourier transform on R. Then it is
well known that S; f — f in L? norm for all 1 < p < oo. In this section we show that on a
subclass of L”(R) the same is true for the Hermite expansions.

In the higher dimensions it is convenient to work with Cesaro means rather than Riesz
means. These are defined by

0% f(x) = ZA Prf(x)

N k=0

wéhere A‘S are the binomial coefficients defined by A(S % It is well known that

o}, are uniformly bounded on L”(R") iff S5 are uniformly bounded. We have the
following equisummability result. Let E stand for the operator Ef(x) =e —5hl? S ().

Theorem 2.2. EO’NE are uniformly bounded on L”(R") iff Sf are uniformly bounded,
provided 6 > max{0,5 — 1}.
As a corollary we have the following.

COROLLARY 2.3

Let 1 < p < oco. Then for the partial sum operators associated to the one dimensional
Hermite expansion we have the uniform estimate

/ Sy f(x)Pe ¥ dx < € / [f()Pe"dy.

Thus for f € Lp(egyzdy)7 1 < p < oo the partial sums converge to f in Lp(e’g)‘zdx).
For a general weighted norm inequality for Hermite expansions, see Muckenhoupt’s

paper [3].
The celebrated theorem of Carleson-Sjolin for the Fourier expansion on R? says that if
§>2(;—3) —4, 1 <p <3 then S are uniformly bounded on L”(R?). As a corollary to

this we obtain the followmg result for the Cesaro means afv on R2.
COROLLARY 24
Letn=2, 1 <p<%and §>2(1—13) — 1. Then for f € L"(R?)

[1aswretta<c [iroredta.
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It is an interesting and more difficult problem to establish the above without the
exponential factors.

We now proceed to prove Theorem 2.2. It is a trivial matter to see that uniform
boundedness of Eo4E implies the same for xpoyxs for any compact subset B of R”. In
fact, if Eo}E are uniformly bounded then

/ Ixpoyxsf|"dx
:/B eI o (e (af ()e )P
<C / B E(xsf (7)etT) Pdx
<c [Irwpras

which proves the one way implication, by the transplantation theorem [2]. To prove the
converse we proceed as follows. Let

= ()P

la|=k

be the kernel of the projection operator P;. Then the kernel a}sv (x,y) of the Cesaro means
is given by

N
:TZ A i (x,y)-
N =0

We first obtain a usable expression for this kernel in terms of certain Laguerre functions.
Let L{(z) be the Laguerre polynomials of the type o > —1 defined by

—l.yo ] d - o
TOLY (1) = (— l)kk'dtk(e ey, 1> 0.

We have the following expression.

PROPOSITION 2.5

1 N k O+2 1 ) R TN | 1 ) . o
O’}i,(x,y) Y (—1)"Ly % §|x7y\ e il L i‘ery‘ i
N k=0

Proof. The generating function identity for the projection kernels ®;(x,y) reads

o0

) 122 2y, 2
§ r*®y(x,y) = 7 5(1 — r2)F e TRl DS
k=0

Since

(1—r)" ZA%*
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the generating function for o2 (x,y) is given by

}:W@%xy (1 — P31 4 )8 eaiel b HEs

The right hand side of the above expression can be written as

fuad
1

(1 —r) 3 e s Bl (1 )8 entiRn T,

Now the generating function for the Laguerre polynomials L is

o kra 1 2 —12 —a—1 1lirg2
S (52 ) e = (1) e
=0 2

Therefore, we have

1
Z AL (x.) (Z Lf*2(2| y|2)eux.v2>

J=0

> | 1 1 2
N (' (2|x+y|2>ezlx+y .
i=0

Equating the coefficients of ¥ on both sides we obtain the proposition.
The Laguerre functions Li are expressible in terms of Bessel functions J,. More
precisely, we have the formula

a 1 o a
C_XXELEV(X) = m/o e_ltk+7.]a(2\/i;)dt

Using this, the kernel e’%p"zaﬁ,(x, y) eI’ of the operator EoyE is given by.

et 5 8 (x,y)e” W —
crr e (90" s g1 oss VI =D I (V3D
Nt (Varle =)™ (Vs

where C depends only on . Now the kernel of the Bochner-Riesz means S¢ on R” is
given by

o Jos(tlx — y[)
S;S(X,y) =1 2—§+%
(te =y

When n =1,

and hence

Eo)Ef(x) / / et —s) £ _7T5f(x)dtds,
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where

TS f(x) = / §° (6, ¥) cos(v2sbx + ) £ (3)dy

and C an absolute constant.
By Minkowski’s integral inequality we get

lEerl, < s [ [ e WS 7 s
< C|fll,

/ / e e |t — s|Ni%s 2 dr ds
o Jo
t o0 !
g/ e_’tﬁ(/ et “ds—&—/ e_sst_fds>dt
0 0 '
o0 1 o0
gC/ ettﬁlNdl‘+P(N+)/ e "1 dr
0 2) Jo

< CNIN?

since

which proves the theorem in one dimension.
When n > 2 we have the Bessel functions J:_; inside the integral. If dy is the surface
measure on the unit circle |x| = 1 in R" then we have

Jo_1(|x .
c2 IE(J |) :/ e”"ydu(y),
lyl=1

!

where C is an absolute constant. If we use this in the above we get Eaf\,E f(x) equals
—t,—s\° S 2 iV 2sy. iv2sx.
al L[ e PSS (F(3) ) (e drdsdp(€).
l¢]=1 N!

As before, using Minkowski’s inequality we get

|EayEf], < ClIfIl,

/ / et — 5|V P55 deds
n o0 n
§/ e 't (/ e_Sthi_'ds+/ e_"'sN+7_'ds)dt
0 0 t
< C/ efttbktth—l—F(N—Fﬁ)/ e "10dr
0 2 0

< CT(N+6+1)

since

provided 6 > % — 1. This completes the proof.
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3. Special Hermite expansions

Let @3, o, 5 € N", be the special Hermite functions on C" which form an orthonormal
basis for L2(C"). The special Hermite expansion of a function f in L?(C") is given by

F=Y0 (f®ap)®us.

The functions ®,4 are the eigenfunctions of the operator L with eigenvalues (2|3] + n).

Let
Ouf = D) (fPap)Pas
la|=k B

be the projection onto the kth eigenspace. Then we have

Oif(z) = 2m) " f % wk(2),

2 . . .
where ¢(z) = LZ’I(%|z|2)e’%‘Z‘ are the Laguerre functions and f x g is the twisted
convolution

fxglz / Flz = w)g(w)er™dw.
The special Hermite expansion then takes the compact form

=0y fxar
k=0

The Cesaro means are then defined by

Ulév = A(S ZA _if X k().

In this section we prove the following theorem.
Let S¢ be the Bochner-Riesz means for the Fourier transform on R*" = C".

Theorem 3.1. Let B be any compact subset of C" containing the origin. Then XB(I?\,XB
are uniformly bounded on L?, 1 < p < oo if and only if Sf are uniformly bounded on the
same LP.

Proof. The kernel af\,(z) of O';SV is given by

N vz

Using the formula
ZA ry L;\x[+(5+l (l)

we have

. (271')7” i 12\ _i.p
o'fv(z) = A§ L?V+ 5|Z| e 112l .
N
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As in the previous section we can express the Laguerre function in terms of the Bessel
functions, thus getting

ol [T,
0

Ay T(N+1 (\/Z|Z|)5+"

oy(z) =
Now, o4 f = f X o4 so that

Af@) = [ ohlew) fwia,
where

on (e, w) = Mo (= w).
Writing |z — w|> = |z]° + |w|* + 2Rez - we have

1 o —t 54n+N Jg+n(\/2_l|Z — Wl) Hwp
S e e e dr
ART(N+1) Jo (V2t]z — wl)

1 | (Z-W)a o 1
- <Za <_2> al >e4 ALD(N + 1)
t

» /oo o0t tN J5+n(\/Z|z - WD
0 (V2t]z — w|)*™"

where (z-w)" = (z1wy)™ -+ - (z,w,)™. Therefore,

1 NG
5 —t O+N it
S § - = T dr
xBoyxsf(2) AZ{,F(N 1 : ( 2) 04!/0 € rvﬁf(z) )

1.2 L3
0% (z,w) = el eV

%\W\zd
e dr,

where
a2z = w)
(V2i[z = w])"™
If we assume that S are uniformly bounded we get
1T 5£1l, < CRPI£],,
when B is contained in the ball {z: |z| < R}. Using this in the above equation we get
Ixsorxafll, < Collfll,-

The converse is the transplantation theorem of Kenig-Stanton-Tomas.
In [5], Thangavelu has established the following local estimates for the Cesaro
means.

Té.ﬁf(z) = X}B(Z)Zaeﬂz‘2 /@n XB(W)WQCHlef(W)dW.

Theorem 3.2. Let % <p<ooandb>bp)= 2n(117 — %) — % then for any compact
subset B of C"

/B 0% f(2)["dz < Cp / |f(2)[dz.
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Recently Stempak and Zienkiewicz have proved the global estimate

/ o8 f(2)Pdz < € / Pz
c" c"

for the above range. The key point is the restriction theorem namely, the estimate

which they established in the range 1 <p < <2"+1) In the next section we use this

restriction theorem in order to prove a positive result for the Hermite expansions on R>".

4. Hermite expansions on R*"

In this section we consider the operator —A + § \z| rather than the operator —A+ |z\ If
®,(x,y),n € N are the eigenfunctions of the operator —A + |z|* then W u(z) =
(% v \%) are the eigenfunctions of —A + 7 |z| with eigenvalues (|| + n). The operator
—A +13 |z| has another family of elgenfunctlons namely the spe(:1al Hermite functions.
In fact, ®,5 are eigenfunctions of the operator —A + 1 \z| with eigenvalue (|o|+
|8] + n); here a, B € N™.

In this section we study the expansion in terms of ¥, for functions having some
homogeneity. The torus 7'(n) = {(e?', e ... e): 0 € R"} acts on functions on C" by
10f(2) = f(ez) where ez = (e?z;, 6’9212 ,ez,). We say that a function is m-
homogeneous if 7 f(z) = ™ f(z), here m € Z” and m.0 = my.0; + - +m,-0,. Itis a
fact that ®,3 is (8 — ) homogeneous. 0-homogeneous functions are also called
polyradial.

The operator —A + % |z|2 commutes with 7y for all 6, therefore Py7yf = 9Py f which
shows that P f is m-homogeneous if f is . In particular, Py f is polyradial if f is.
Therefore, for such functions L(Pyf) = (—A + |2|*)Pif = (k + n)Pif. This shows that
P.f is an eigenfunction of L with eigenvalue k + n. But the spectrum of L is
{2k+n:k=0,1,...} which forces P,f = 0 when k is odd.

PROPOSITION 4.1
Let f be polyradial on C". Then Py f =0 and Py f = f X ¢

Proof. We show that when f is polyradial the operators Py f and f X ¢, have the same

kernel. Let
w) = Z Wu(2)Wu(w)
[ul=k

be the kernel of P;. Then by Mehler’s formula

1

o0 k 2\ — I+12(72
E FU(z,w) =7 (1 —17) e -2 "
k=0

(z.w)

so that

IR REET) () gy,

Ztkpkf — (=) / e
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Let w; = u; + iv; = r;e”’i. When f is polyradial f(w) = fo(ri,72,...,r,) and so we
have

ZtkPkf / / (s, 1) fo(r1,...,r)rra, ... rpdridr .. dry,
0

where s = (s1,52,...,8,),5 = |z] and U is given by
U(s,r) = (1—£2)" / e R0k T g 6, .. 46,
10,27
Now Re z; - W; = r;s;cos(0; — ;) where z; = s;e™, w; = r;e. Consider the integral

27 .
/ e i cos(6—w) do;
0

which equals, if we recall the definition of the Bessel functions, Jo(li# r;s;). Thus we
have proved

_ P n it
W(s,r) = (1 - £) e HE 110(1 - )
On the other hand when f is polyradial f x ¢, reduces to the finite sum

fxX o= Z(f’ Poa)Paa(2)

|a|=k
= Z(/ / fo(rl,...,rn)‘l)w(rl,...,rn)rl,...,rndrl,...,drn>
la|=k 0 0
X Do (81,0 y8)

where we have written

Do(2) = Poa(ry, - 1)

as it is polyradial. Then f X ¢y is given by the integral operator

fX(,Dk(Z):/ / Z(ba,a(rla--~7rn)(ba,a<slv-~~7sn)
0 0 \Jal=k
Jo(riy o osr)rt, ... radry, ... dry,.

We have the formula (see [6])
7% n 1 2 le'lz
®,(z) = (2m) 21, Ly, §|Zj| e &

Recalling the generating function identity for the Laguerre polynomials of type O,

L)L) = (1 —w) e =00y, (2(_’0’“’)7)
)

1—w

o0

k=(
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we get, if Si(r,s) is the kernel for f x ¢y

s _ 41 it
$ b = 0 - et (),
k=0

Comparing the two generating functions we see that

Z 58S (r,s) = Z U (r,s)
=0 k=0

from which follows Wy (r,s) = Sk(r,s) and this proves the proposition.
Consider now the Bochner-Riesz means associated to the expansions in terms of ¥, (z)
defined by

)
S0 =3 (1 - ('“'“) ()0,

Iz R +

For these means we have the following result.

Theorem 4.2. Let 1 < p <2(3H), 6> 6(p) = 2n(1]—)— 1) —% and let f € LP(C") be
polyradial. Then

15211, < ClIf,
where C is independent of f and R.

The key ingredient in proving the above theorem is the L”? — L? estimates

which now follows from the corresponding estimates for f X . We omit the details.

We conclude this section with the following remarks. As we have observed, P;f
is m-homogeneous whenever f is and so P f can be obtained in terms of f X ¢, when
f is m-homogeneous. So an analogue of the above theorem is true for all m-homo-
geneous functions. More generally, let us call a function f of type N if it has the Fourier
expansion

f(Z) = Z fm(Z)a

|m|<N

where
fu(2) = /f(eiaz)e*imﬂdel .- db,.

Note that f,, is m-homogeneous. We can show that when f is of type N then

IS /11, < CnlI1],»

under the conditions of the above theorem on p and 6 where now Cy depends on N. We
leave the details to the interested reader. It is an interesting problem to see if the theorem
is true for all functions.
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