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Abstract. Hyperfinite representation of distributions is studied following the method
introduced by Kinoshita [2, 3], although we use a different approach much in the vein
of [4]. Products and Fourier transforms of representatives of distributions are also
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1. Notation and preliminary results

A nonstandard treatment of the theory of distributions in terms of a hyperfinite representa-

tion has been presented in papers [2, 3] by Kinoshita. A further exploitation of this

treatment in an N-dimensional context has been given by Grenier [1]. In the present paper

we offer a different approach to the hyperfinite representation, based on the nonstandard

theory of distributions developed in [4]. Some basic acquaintance with nonstandard

analysis (NSA) is assumed. For the most part little more is needed than what is contained

in the description in [4] of an elementary ultrapower model of the hyperreals. For a more

detailed study of the fundamentals of NSA see, for example, Luxemburg [6] or

Lindstr�m [5].

Let � be any given infinite hypernatural number which, without any loss of generality,

will be supposed to be even; then define " � �ÿ1 � 0. Hence,
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n
is an (internal) hyperfinite set of hyperreal numbers with internal cardinality �2. � will be

referred to as the (unbounded) hyperfinite line. Given a standard point r 2 R, define the

�-monad of r by

mon��r� � stÿ1
� �r� � mon�r� \�;

where mon denotes the usual monad of a standard number in �R. Then the set

�b � [r2Rmon��r� � stÿ1
� �R� � � is the nearstandard hyperfinite line and �1 � �n�b

is the set of remote points of the hyperfinite line. For every subset A � R define
�A� � �A \ � and ns���A� � �A \�b � [a2Amon��a�. The notation throughout will be

the usual in the field.
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Now consider the basic set of internal functions

�F � fF : �! �C : F is internalg
and suppose, if necessary, that each F 2 �F is periodically extended to the infinite grid

" � �Z. Defining addition and scalar multiplication componentwise, �F is a �C-linear

space of hyperfinite dimension �2. Moreover, defining also componentwise the product of

two functions, �F is in fact an algebra. The operators D�;Dÿ : �F! �F defined, for

every function F and x 2 �, by

D�F�x� � "ÿ1�F�x� "� ÿ F�x�� and DÿF�x� � "ÿ1�F�x� ÿ F�xÿ "��
are called, respectively, the forward and the backward �-difference operators (of first

order). Iterating D� (or Dÿ) we obtain higher order �-difference operators: for every

(finite or infinite) n 2 �N0

Dn
�F�x� � D��Dnÿ1

� F�x��; x 2 �

and similarly for Dn
ÿ. It is easily seen that for any two functions F;G 2 �F we have (both

for D� and Dÿ),

D�F � G� � DF � DG and D�F � G� � �DF�G� F�DG� � "�DF��DG�;
where we take �" or ÿ" according as we use D� or Dÿ, respectively.

For every �; x 2 � define the �-intervals (containing only points in �) J�� �x� and

Jÿ� �x� as follows:

J�� �x� �
�x; ��� if x < �

�x; ��� if x > �

�
Jÿ� �x� �

��; x�� if x < �

��; x�� if x > �

�
while for x � � we have J�� �x� � ; � Jÿ� �x�. For any F 2 �F define the functions S�F

and SÿF to be the forward and backward �-sums of F which are zero at the origin and

which, for every x 2 �nf0g are defined by

S�F�x� �
X

t2 J�
0
�x�
"F�t� and SÿF�x� �

X
t2 Jÿ

0
�x�
"F�t�:

The �-sum operators S� and Sÿ both transform �F into �F. Moreover, for every F 2 �F,

we have

D�S�F � F and DÿSÿF � F

that is, S� and Sÿ are left inverses for D� and Dÿ, respectively.

1:1 S�-continuous functions

Given a (standard) function f : A! C defined on a subset A of R we always consider its

extension to the whole of R, denoted again by f , by setting f �x� � 0 on Ac � RnA. For

any such function consider the nonstandard extension ? f and then define ? f� to be the

restriction of ? f to � (periodically extended to " � �Z). Hence, for every standard function

f , we clearly have ? f� 2 �F.
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DEFINITION 1.1

An internal function F 2 �F is said to be S�-continuous on a nonempty subset 
 of � if

and only if

8x;y�x; y 2 
 and x � y) F�x� � F�y��:
From the nonstandard characterization of (standard) continuity and uniform continuity

there follows

Theorem 1.2. If f : R! C is a (standard) function which is continuous at a point r 2 R

then ? f� : �! �C is S�-continuous on mon��r�. If f is continuous on the set A � R

then ? f� is S�-continuous on ns��?A�. Moreover, if f is uniformly continuous on A, then
? f� is S�-continuous on ?A�.

The converse does not necessarily hold. The internal function ? f� may have infinitesimal

variation over the �-monad of a (standard) point, but this fact does not ensure that the

variation is kept at an infinitesimal level over the entire monad of the same point.

Consider, for example, the (standard) Dirichlet function

d�x� � 1 if x 2 �0; 1�nQ
0 otherwise:

�
Since � contains only hyperrational points, ?d� is zero for all x 2 � and it follows that
?d� is S�-continuous on �b while ?d is not S-continuous anywhere on ��0; 1� � �R.

Consider an internal function F 2 �F such that

(a) F�x� is finite on �b, and

(b) F is S�-continuous on �b.

Then it make sense to define the (standard) function st F : R! C by setting for every

t 2 R

st F�t� � �st � F��x�; for any x 2 mon��t�:
If � is any choice function picking up one and only one point from each set to which it is

applied then we may write st F � st � F � � � stÿ1
� .

Denote by SC� � SC��R� the set of all functions in �F which are finite and S�-

continuous on �b.

As the above example concerning the Dirichlet function shows we cannot expect in the

general case to recover the original function f : R! C from its �-extension. However, it

is not difficult to see that

Theorem 1.3. If f is a continuous function on a subset A of R then we have st�? f�� � f

on A.

and, more generally,

Theorem 1.4. If f is a function which is k times continuously differentiable on a subset A

of R then st D j
��? f�� � f � j�, j � 0; 1; 2; . . . ; k, hold on A. �The same holds if we consider

D j
ÿ instead of D

j
�.�
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2. S�-distributions

Given any F 2 SC�, the function S�F (or SÿF) is again in SC�. In fact, for any x 2 �b,

considering S�F for example, we have

jS�F�x�j �
X

t2J�
0
�x�
"jF�t�j � max

t2 J�
0
�x�
jF�t�j

( )
jxj

and thus S�F is finite on �b. Also, for any x; y 2 �,

jS�F�y� ÿ S�F�x�j �
X

t2 J�fx;yg

" jF�t�j � jyÿ xj � max
t2J�fx;yg

jF�t�j;

where J�fx;yg � J�
minfx;yg�maxfx; yg�. Hence, if x � y then S�F�x� � S�F�y� and therefore

S�F 2 SC�, as asserted.

The same result is not generally true for �-differences. If F 2 SC� then the most we

can say about the function D�F (or DÿF), in principle, is that it belongs to �F.

2:1 The �Cb-module �D1
For any F in SC�, st F is a (standard) continuous function on R which therefore defines a

(regular) distribution in D0. Denoting by �F either the function st F or the distribution it

generates as the context demands, we have

h�F; 'i �
Z

K

�F�t�'�t�dt �
Z

stÿ1
�
�K�
�st � F�'�d�L; �1�

where st � F and '� � st � ?'� are (external) functions defined on �, K is a compact of

R containing the support of ' and �L denotes the counting Loeb measure on �. Since

F � ?'� is an S�-lifting for the external function �st � F�'� we may replace the Loeb

integral in (1) by a proper �-sum to obtain

h�F; 'i � st
X

x2?K�

"F�x� ?'��x�
 !

:

It is easy to see that '??'� is a linear and continuous map and therefore every internal

function F 2 SC� generates in this way a regular distribution. Since the map f ?? f�
embeds C� C�R� into SC� and the distribution generated by f coincides with �? f� , the map

stD : SC� ! D0

defined by stD�F� � �F, establishes an onto correspondence between SC� and the sub-

space of D0 comprising all regular distributions generated by continuous functions on R.

Now, if F 2 SC� and ' 2 D is a function with support in the compact K@R then,

taking Theorem 1.4 into account, we getX
x2�

"D�F�x�?'��x� �
X
x2�

�F�x� "� ÿ F�x��?'��x�

�
X
x2�

"F�x��ÿDÿ?'��x�� �
Z

stÿ1
�
�K�
�st � F��ÿ'0��d�L

� h�F ;ÿ'0i � hD�F; 'i;
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where D�F is the (standard) distributional derivative of �F . Let D��SC�� be the set of

first order �-differences of all functions in SC�. Since for every F 2 SC� we have that

F � D��S�F� where S�F 2 SC� then SC� � D��SC��. Then the stD-mapping may be

extended onto D��SC��, by setting

stD�D�F� � D�F � D�stD�F��:
The same idea may be generalized to �-differences of any finite order of a function in

SC�. Hence, if F 2 SC� and ' 2 D, we obtain, for every j 2 N0,X
x2�

"Dj
�F�x�?'��x� �

X
x2�

"F�x���ÿ1� jD j
ÿ
?'��x��

�
Z

stÿ1
�
�K�
�st � F��ÿ'� j��� d�L

� h�F ; �ÿ1�j'� j�i � hD j��F�; 'i;
that is, stD�D j

�F� � D j�stD�F��.
Denoting by D

j
��SC��, for every j 2 N0, the set of D

j
�-differences of all functions in

SC�, then we have the inclusion D
j
��SC�� � D

j�1
� �SC��, and therefore

�D1 � �D1�R� �
[1
j�0

D
j
��SC��

is the (external) set of all finite-order �-differences of all functions in SC�. Since for

every F 2 SC� the translate �"F is also in SC� and, moreover, Dÿ � D� � �" then �D1
may be obtained using indifferently either D� or Dÿ. Hence we may also write, more

generally,

�D1 � �D1�R� �
[1
j�0

[1
k�0

D
j
�Dk
ÿ�SC��:

We may now extend the map stD to the whole of �D1 as follows: for every � 2 �D1
there exist F 2 SC� and j 2 N0 so that � � D

j
�F. Hence, stD��� � D j�F 2 D0. Note

that stD��� does not depend upon the representation of � as a finite order �-difference of

a function in SC�. In fact, suppose we also have � � Dm
�G with G 2 SC� and m 2 N0

(where, without any loss of generality we may assume m � j). Then from the equation

D
j
�F � Dm

�G it follows that S
mÿj
� F � Pm � G, where Pm is a polynomial of degree < m

(and coefficients in �C). Thus, for any ' 2 D, we get

hDm�G; 'i � h�G; �ÿ1�m'�m�i
�
X
x2�

"G�x���ÿ1�mDm
ÿ
?'��x��

�
X
x2�

"�Smÿj
� F�x� � Pm�x����ÿ1�mDm

ÿ
?'��x��

�
X
x2�

"F�x��ÿ1� jD j
ÿ
?'��x� �

X
x2�

"Dm
�Pm�x�?'��x�

� h�F ; �ÿ1�j'�j�i � hD j�F ; 'i
and therefore Dm�G � D j�F which proves the assertion made.

The D-standard part map stD : �D1 ! D0 is clearly linear; its kernel,

K1 � K1�stD�, comprises all internal functions in �D1 which generate the null
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distribution. These are all the functions which are finite order derivatives of infinitesimal

functions in SC�. The factor space �C1 � �D1=K1 is a C-vector space which may be

shown to be isomorphic to C1, the space of all finite order Schwartz distributions.

DEFINITION 2.1

The internal functions in �D1 � �F will be called finite order �-predistributions and the

classes ��� 2 �C1, with � 2 �D1, will be called finite order S�-distributions.

The �-predistributions are internal functions in �F which do not grow too fast on �b

according to the following result:

Theorem 2.2. For every internal function � 2 �D1 there exists a finite nonnegative

integer m � m� such that for every compact K of R

j��x�j � CK;� � �m; on �K� �2�
where CK;� is a finite positive constant �depending on K and �� .

Proof. The inequality (2) clearly holds for every � 2 SC� with m � 0. Now, if we have

� � D�F with F 2 SC�, then

��x� � D�F�x� � � �F�x� "� ÿ F�x��
and therefore, for every compact K@R, we obtain

max
x2?K�

j��x�j � 2 max
x2?K�

jF�x�j
� �

� �:

Hence the inequality holds with CK;� � 2 maxx2?K�
jF�x�j 2 �Rb and m � 1.

Suppose now that the inequality holds for all internal functions of the form D
j
�F with

F 2 SC�. If � � D
j�1
� F with F 2 SC� then we obtain,

max
x2?K�

j��x�j � 2 max
x2?K�

jD j
�F�x�j

� �
� � � C

� j�1�
K;� � � j�1;

where C
� j�1�
K;� is, for every fixed j 2 N0, a positive bounded constant. Therefore the result

follows by finite induction. Note that there are functions F 2 SC� such that D�F 2 SC�;

then, for a general function of the form � � D
j
�F with F 2 SC�, equation (2) may be

satisfied with m � j. &

Now, define �G1 to be the subset of �F comprising all internal functions � satisfying

(2) for some number m 2 N0 and every compact K of R with CK;� a bounded positive

constant. �G1 is a �-difference algebra which contains �D1. Within �G1 the ordinary

product of �-predistributions make sense although the product of two �-predistributions

is not generally a �-predistribution. By imposing appropriate restrictions on the factors,

however, the product of two elements in �D1 may still be a �-predistribution. In

particular, we have

Theorem 2.3. Let �;� 2 �D1 be such that Dm
�� 2 SC� and � 2 Dm

��SC�� for some

given m 2 N0. Then; � � Dm
�F with F 2 SC� ; and

stD �� ÿ Dm
�
Xm

j�0

m

j

� �
�ÿ1� jS

mÿj
� ��Dmÿj

� ��F�
 ! !

� 0;
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where G �Pm
j�0

m
j

� �
�ÿ1� jS

mÿj
� ��Dmÿj

� ��F� is a function in SC�.

Proof. For m � 1 we have

�D�F � D���F� ÿ �D���F ÿ "�D����D�F�
and therefore

stD ��ÿ D� �F ÿ S��D���F� �� � � stD ÿ"�D����D�F�� �:
For any ' 2 D, with support within the compact K@R, we have that

hstD�ÿ"�D����D�F��; 'i � st
X

x2?K�

"D���x� �F�x� "� ÿ F�x��
 !

and the result follows from the fact that F�x� "� � F�x� for all x 2 �K�. The proof now

proceeds by induction on m 2 N. &

This result allow us to introduce the notion of Schwartz product in �C1 by setting

� � ��� � ����;
where � and � are as above.

2:2 The �Cb-Module �D

For any subset A of R let ��A� be the family of all compact subsets of A. Denote by �D

the subset of all functions � 2 �F such that for each K 2 ��R� there exist �K 2 �D1 so

that � � �K on �K�. Every function in �D determines a family

f�KgK2��R�

which is such that

if K; L 2 ��R� and K � L then �K � �L on �K�:

Such a family of �D1-functions is said to be compatible. Moreover the converse also

holds, that is, if f�KgK2��R� is a compatible family of internal functions in �D1 then we

can define � 2 �D by setting

�j
K
� �K on �K�

for all K 2 ��R�. Hence � 2 �D.

If � 2 �D1 then the `constant' family f�gK2��R� is certainly a compatible family and

therefore defines an element in �D; hence �D1 � �D. Every function in �D will be

called a global �-predistribution. Finite order �-predistributions are global �-

predistributions, but the converse is not true, as the example that follows shows.

Example 2.4. Given the internal function

�0�x� � � if x � 0

0 otherwise

�
it is easy to see that for any m 2 �N0,
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Dm
��0�x� �

�ÿ1� j m
j

� �
�m�1 if x � ÿ�mÿ j�"; j � 0; 1; . . . ;m

0 otherwise:

8<:
Moreover, for any ' 2 D, we get

� X
x2�

"Dm
��0�x�?'��x�

 !
� �ÿ1�m'�m��0� � hDm�; 'i

and hence �0 is an hyperfinite representation of the (standard) delta distribution. Dm
��0

is, for every m 2 N0, a function in �D1 and so is any finite linear combination (over �Cb)

of these (finite order) �-differences of �0. However, the internal function

��x� �
X�=2ÿ1

n�ÿ�=2

D
jnj
��0�xÿ n� �

X�=2ÿ1

n�ÿ�=2

D
jnj
��n�x�

is not in �D1 although, as it will be seen shortly, it belongs to �D. To see this, note that

for finite n the function D
jnj
��0�xÿ n� is zero outside the �-monad of n and for infinite

n it is zero outside the �-interval �nÿ 1=2; n� 1=2�� which is completely contained

in �1. Thus for every compact K 2 ��R� the intersection of �K� with the support of

D
jnj
��0�xÿ n� is empty, provided that jnj 2 �N1. Hence, for every K 2 ��R� there is

only a finite number of finite-order �-differences of finite-translates of �0. Conse-

quently, the restriction of � to �K� is equal to a finite-order �-difference of a function in

SC�.

The mapping stD, defined on �D1, may now be extended to the whole of �D by

setting

stD��� � fstDK
��K�gK@R;

where stDK
��K� denotes the restriction of stD��K� to DK, for every K 2 ��R�. That is to

say, if ' 2 DK

hstD���; 'i � st
X

x2?K�

"�K�x�?'��x�
 !

:

stD is a linear map whose kernel, K � K�stD�, comprises all internal functions in �D

whose D-standard part is the null distribution. Hence �D=K is a linear space whose

elements will be called global S�-distributions.

Note that for each K 2 ��R� there exist mK 2 N0 and FK 2 SC� such that

�K � DmK� FK on �K�. Thus, from Theorem 2 it follows that if � 2 �D then for every

compact K 2 ��R� there exist a bounded positive constant C�;K and an integer mK 2 N0,

such that

max
x2?K�

j��x�j � C�;K � �mK : �3�

Define �G to be the set of all functions � 2 �F which satisfy the following property:

for every compact K 2 ��R� there exist an integer mK 2 N0 and a finite number C�;K

so that (3) holds. �G is a �-difference algebra which contains �D as a linear submodule

and �G1 as a subalgebra. Global �-predistributions may therefore be multiplied within
�G. The product of two global �-predistributions in general will not be a global
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�-predistribution. However, if � 2 �D is an internal function such that D
j
�� 2 SC�

for all (finite) j 2 N0, and if � 2 �D then �� is a global �-predistribution in the sense

that

stDK
��ÿ DmK�

XmK

j�0

mK

j

� �
�ÿ1�jSmKÿj

� ��DmKÿj
� ��F�

 ! !
� 0

for all compact K@R. Hence, we define the product ���� to be the global �-distribution

����.

3. The �-Fourier transform

If F is a function in �F then, for each y 2 �, the sum

F̂�y� �
X
x2�

"� exp��ÿ2�ixy�F�x� �4�

is a well-defined hypercomplex number. Thus, the right-hand side of (4) defines, for every

F 2 �F, the internal function F̂ : �! �C which is also in �F. Conversely, after some easy

manipulations, we obtain

F�x� �
X
y2�

"� exp��2�ixy�F̂�y� �5�

which allows us to recover F from F̂.

DEFINITION 3.1

Given F 2 �F, the function F̂ 2 �F, defined by (4), is called the �-Fourier transform of

F. Conversely F, as given by (5), is called the inverse �-Fourier transform of F̂.

Denoting the �-Fourier transforms by F� and �F�, respectively, then F̂ � F��F� and

F � �F��F̂�. F� and �F� are linear transformations of �F onto �F and, moreover,

F� � �F� � �F� � F� � id.

Nonstandard hyperfinite versions for many of the properties of the (standard) Fourier

transform and its inverse may be obtained. In particular, for any function F 2 �F, we

obtain

F��D�F��y� �
X
x2�

"? exp��ÿ2�ixy�D�F�x� � �ÿ��y��F̂�y�

and, more generally, for any j 2 ?N0,

F��D j
�F��y� � �ÿ��y��jF̂�y�; �6�

where � : �! ?C is the internal function defined by

��y� � 1

"
�? exp��2�i"y� ÿ 1�

and which is such that ��y� � 2�i�st y� for every y 2 �b. Also, for any j 2 ?N0, we get

D
j
�F̂�y� � F����jF��y� �7�
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and, therefore, from (6) and (7), by inversion we obtain

��j�x�F�x� � F��D j
�F̂��x�; �8�

D
j
�F�x� � �F���ÿ��jF��x�: �9�

Let F;G 2 �F be any two internal function. Then, by simple manipulation, we may

obtain the equationX
x2�

"F�x�Ĝ�x� �
X
y2�

"F̂�y�G�y� �10�

which is the �-Parseval formula in �F.

3:1 The �-Fourier transform as an extension of the classical Fourier transform

The (standard) classical Fourier transform is defined on L1, the space of all Lebesgue

integrable functions on R, by the integral

F� f ��!� �
Z

R

f �t�eÿ2�i!tdt; ! 2 R:

We denote by F 0 the restriction of that transformation to C0 \ L1 � L1, the subspace of

all continuous and integrable functions on R which tend monotonically to zero at infinity.

Now we want to show that F� is an extension of F 0 in the following sense:

Theorem 3.2. For every f 2 C0 \ L1 the equality

F 0� f ��st y� � st � F��? f���y�
holds for all y 2 �b.

Proof. For any (fixed) ! 2 R, let y be an arbitrarily given point in stÿ1
� �!�. Defining for

every t 2 R

fy�t� � f �t� exp�ÿ2�i�st y�t�
and extending this function to �R so that fy��1� � 0, consider the (external) function

fy � st1�x�, x 2 � (where st1x � st x if x 2 �b and st1x � �1 if x 2 ��1, respectively).

Then we have that

F 0� f ��!� �
Z

R

fy�t�dt �
Z

�

fy � st1�x�d�L�x�;

where the last integral is the Loeb integral with respect to the Loeb counting measure on

the hyperfinite grid. The proof will be complete provided it is shown that the equalityZ
�

fy � st1�x�d�L�x� � st
X
x2�

"? f��x�? exp��ÿ2�ixy�
 !

�11�

holds for all y 2 �b. For this purpose it is necessary to prove that the internal function

? f��x�? exp��ÿ2�ixy�
is an S�-integrable lifting for the external function fy � st1�x�, x 2 �.
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First, we have that

stf? f��x�? exp��ÿ2�ixy�g � st�? f��x�� � st�? exp��ÿ2�ixy��
and therefore:

� if x 2 �b then, from the continuity of the functions f and `exp', it follows that

stf? f��x�? exp��ÿ2�ixy�g � f �st x� exp�ÿ2�i�st x��st y�� � fy � st1�x�:
� if x 2 �1 then since f 2 C0 \ L1 we have ? f��x� � 0; moreover the function

? exp��ÿ2�ixy� is finitely bounded and therefore

stf? f��x�? exp��ÿ2�ixy�g � f �st x� exp�ÿ2�i�st x��st y�� � 0 � fy � st1�x�:
Now it remains to show that the internal function ? f��x�? exp��ÿ2�ixy� is, for every

(fixed) y 2 �b, an S�-integrable function, that is, satisfies the following requirements:

�a�
X
x2��

0

"j? f��x�j is finite;

�b� if A � � is internal and ��A� � 0 then
X
x2A

"j? f��x�j � 0;

�c� if A � � is internal and ? f��x� � 0; 8x2A then
X
x2A

"j? f��x�j � 0:

Since ? f��x� is finitely bounded, taking into account that

X
x2A

"? f��x�
�����

����� �X
x2A

"j? f��x�j � max
x2A
j? f��x�j

� �
� ��A�

shows that (b) follows immediately. We proceed now by proving the following lemma:

Lemma 3.3. The hyperfinite �-sumX
j
1j�x�j
2j

"j? f��x�j

is infinitesimal for every two remote points 
1; 
2 2 ��1 �or, alternatively, 
1; 
1 2 �ÿ1�
with j
1j � j
2j < �=2.

Proof of Lemma 3.3. Without any loss of generality we may take 
1 and 
2 to belong to

��1 \ ?N1. Then we have

X

1�x<
2

"j? f��x�j �
X
2�ÿ1

j�
1�

"j? f�� j"�j �
X
2

n�
1

X�ÿ1

m�0

"j? f��x�j
( )

and therefore, taking into account that j? f��x�j is monotonically decreasing, we obtain

X

1�x<
2

"j? f��x�j �
X
2

n�
1

j? f��x�j
X�ÿ1

m�0

"

( )
�
X
2

n�
1

j? f��n�j:
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From the integral test it follows that the (standard) seriesX1
n�1

j f �n�j

and the (standard) integralZ �1
1

j f jd�

both converge or both diverge. Since the integral, by the hypothesis, is convergent, then

the series also converges and therefore, from the nonstandard Cauchy convergence

criterion for series, it follows that the hyperfinite sumX
2

n�
1

j? f��n�j

is infinitesimal. &

Now, for any arbitrarily fixed real number e > 0, define

Ne � n 2 ?N :
X�2

2
ÿ1

j jj�n�

"j? f�� j"�j < e

8<:
9=;:

From Lemma 3.3, Ne contains arbitrarily small infinite numbers; since Ne is internal,

then by underflow it contains a finite number, say ne 2 N. That is,

8n n 2 ?N ^ ne � n � �=2)
X�2

2
ÿ1

j jj�n�

"j? f�� j"�j < e

24 35:
Hence, since we have

X
x2�

"j? f��x�j �
Xne�ÿ1

j jj�0

"j? f�� j"�j �
X�2

2
ÿ1

j jj�ne�

"j? f�� j"�j <
Xne�ÿ1

j jj�0

"j? f�� j"�j � e

and, moreover,Xne�ÿ1

j jj�0

"j? f�� j"�j � ne max
ÿne�x�ne

j? f��x�j
� �

< �1;

then (a) follows.

To prove (c) we reason as follows: (i) if ��A� is finite, then the result follows from the

fact that X
x2A

"j? f��x�j � max
x2A
j? f��x�j

� �
� ��A� � 0;

(ii) if ��A� is not finite then A certainly contains an infinite point in ��1. Again from

lemma 3.3 it follows that for any real e > 0 there exists (standard) ne 2 N such thatX
jxj2A\�ne;�=2ÿ"�

"j? f��x�j < e;

374 J Sousa Pinto and R F Hoskins



while X
jxj2A\�0;neÿ"�

"j? f��x�j � 0:

Thus, X
x2A

"j? f��x�j < e;

and, since e > 0 is arbitrary, the proof of (c) is complete.

Taking into account the definition of the (external) function f � st1, to prove the

equality sign in (11) we need yet to show that the equality

st
X
x2�

"? f��x�eÿ2�ixy

 !
� st

X
x2�

"? f��x�eÿ2�ix�st y�
 !

holds. For this it is enough to show that the internal function

F̂�y� �
X
x2�

"? f��x�eÿ2�ixy

is S�-continuous on �b. For y; y0 2 �b we have that

jF̂�y� ÿ F̂�y0�j �
X
x2�

"j? f��x�j j1ÿ eÿ2�ix�yÿy0�j:

From the fact that f 2 C0 \ L1 we have that, given a real number r > 0, the subset

fx 2 �b : j? f��x�j < r=3g
contains arbitrarily small infinite points; since the set is internal then by underflow there

exists xr 2 ��b such that

8x�x 2 � ^ jxj > xr ) j? f��x�j < r=3�:
Then

jF̂�y� ÿ F̂�y0�j �
X
jxj�xr

�
X
jxj>xr

8<:
9=;"j? f��x�j j1ÿ eÿ2�ix�yÿy0�j

�
X
jxj�xr

"j? f��x�j j1ÿ eÿ2�ix�yÿy0�j � 2
X
jxj>xr

"j? f��x�j

<
2r

3
�
X
jxj�xr

"j? f��x�j j1ÿ eÿ2�ix�yÿy0�j:

Now, if y � y0 and x is finite then 2�ix�yÿ y0� � 0 and thusX
jxj�xr

"j? f��x�j j1ÿ eÿ2�ix�yÿy0�j

� max
jxj�xr

j1ÿ eÿ2�ix�yÿy0�j
� � X

jxj�xr

"j? f��x�j � 0 <
r

3
:

Hence

jF̂�y� ÿ F̂�y0�j < r
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and, since this is true for all real r > 0, it follows that

8y;y0 �y; y0 2 �b ^ y � y0 ) F̂�y� � F̂�y0��
that is, F̂ is S�-continuous on �b and we have

f̂ �st y� � st�F̂�y��; y 2 �b:

The proof is thereby complete. &

Given f 2 C0 \ L1 we may therefore obtain the Fourier transform of f by

f̂ �st y� � st F̂�y�; y 2 �b

where F̂ is an S�-continuous function over �. Hence f̂ �st y� is a continuous (and even

uniformly continuous) function. Moreover, for every y 2 �,

jF̂�y�j �
X
x2�

"j? f��x�j

which, since the right-hand side is finite, allow us to conclude that F̂�y�, y 2 � and

f̂ �st y�, y 2 �b are bounded functions.

The function f̂ , in general, does not belong to L1 and therefore, the inverse Fourier

transform as defined by

�F��? f̂���x� �
X
y2�

"? f̂��y�? exp��2�ixy�

in general, does not allow us to recover the original function ? f� (and therefore f ). For

this purpose we have to take the inverse �-Fourier transform of the function F̂ � F��? f��
�F��? f̂���x� 6�

X
y2�

"F̂�y�? exp��2�ixy�

� F̂��F̂��x� � ? f��x�; x 2 �:

However, a nonstandard version of the Parseval's formula involving two functions

f ; g 2 C \ L1, of the formX
y2�

"? f̂��y�?g��y� �
X
x2�

"? f ��x�?ĝ��x� �12�

can be derived. Note that this is not the �-Parseval's formula (10). To prove (12) it is

enough to show thatX
x2�

"? f��x�Ĝ�x� �
X
x2�

"? f��x�?ĝ��x�;X
y2�

"F̂�y�?g��y� �
X
y2�

"??f��y�?g��y�:

We will prove, for example, the second one since the other may be obtained similarly.

Consider thereforeX
x2�

"fF̂�y� ÿ ? f̂��y�g?g��y�:
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For any y 2 �b we have that

? f̂��y� � f̂ �st y� � F̂�y�
and therefore the set

fy 2 � : jyj > 0 ^ jF̂�y� ÿ ? f̂��y�j < 1=jyjg
is internal and contains all finite y 2 �b, y 6� 0. By overflow it contains � 2 ��1 such that

8y�y 2 � ^ jyj � �) F̂�y� � ? f̂��y��:
This fact, however, does not imply that the difference F̂�y� ÿ ? f̂��y� is kept at an

infinitesimal level over the whole of the hyperfinite grid. Nevertheless, we have

X
y2�

"fF̂�y� ÿ ? f̂��y�g?g��y�
�����

����� � X
jyj��
�
X
jyj>�

8<:
9=;"fF̂�y� ÿ ? f̂��y�g?g��y�

������
������

� max
jyj��
jF̂�y� ÿ ? f̂��y�j

� �X
jyj��

"j?g��y�j

� max
jyj>�
jF̂�y� ÿ ? f̂��y�j

� �X
jyj>�

"j?g��y�j: �13�

Now, because g 2 C0 \ L1, thenX
jyj��

"j?g��y�j �
Z

R

jg�t�jdt < �1

and X
jyj>�

"j?g��y�j � 0:

Moreover, maxjyj��jF̂�y� ÿ ? f̂��y�j � 0 and maxjyj>�jF̂�y� ÿ ? f̂��y�j is finite. Using all

these facts in (13) we obtain finallyX
y2�

"fF̂�y� ÿ ? f̂��y�g?g��y� � 0

as asserted.
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