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Abstract. An analysis of exchangeable sequences of coin tossings leads to inversion
formulae for Laplace transforms of probability measures.
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1. Introduction

There is an intimate relationship between the Laplace transform

���� �
Z 1

0

eÿ�td��t�; � � 0 �1:1�

of a probability measure � on �0;1� and the moment sequence

c�n� �
Z 1

0

xnd��x�; n � 0; 1; 2; . . . �1:2�

of a probability measure � on �0; 1� via the obvious change of variables eÿt � x: An

inversion formula for � in terms of its moments yields an inversion formula for � in terms

of the values of its Laplace transform at n � 0; 1; 2; . . . and vice versa. In our discussion

we allow � (respectively �) to have positive mass at 0 (respectively 1).

Let X1;X2; . . . be 0; 1-valued random variables; one can identify 1 with `heads' and 0

with `tails'. These variables are said to be exchangeable if their joint distribution is

invariant under finite permutations. Such variables can be generated in the following

manner: first choose p at random according to a probability law � on �0; 1� and then let

X1;X2; . . . be results of i.i.d tosses of a coin having probability p for `heads'. The

resulting measure

P��� �
Z 1

0

Pp���d��p� �1:3�

on f0; 1gN
is a mixture of i.i.d probabilities Pp.

Then under P the process of coordinate functions is exchangeable. By a theorem of De

Finetti, any exchangeable sequence of 0; 1-valued random variables arises in this manner

for a suitable �. The strong law of large numbers takes the form

Yn :� X1 � X2 � � � � � Xn

n
ÿ!Y1 a.s. �P�: �1:4�

Here the limit Y1 is a random variable. Further,

Y1 � � and L�Yn��)�; �1:5�
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where L�Yn� stands for the probability law of Yn; n � 1 and `�)' denotes weak conver-

gence. If f�ngn�1 is a sequence of stopping times such that

�n !1 a.s �P�; �1:6�
then

Y�n
! Y1 a.s. �P� and Fn�)F; �1:7�

where F;F1;F2; . . . are the p.d.f.'s of �; Y�1
; Y�2

; . . . respectively. In the coin tossing

situation many choices of f�ngn�1 exist for which (1.6) holds and Fn can be explicitly

written down in terms of c�k�, k � 1; 2; . . . : Thus we get a host of inversion formulae for

� in terms of its moments.

The classical inversion formulae, e.g., those due to Hausdorff, Widder, and Feller can

be obtained in the above manner. The methods of these authors were analytical although

Feller was motivated by problems arising in stochastic theory of telephone traffic as he

mentions in the introduction of his paper [2]. It is therefore satisfying to see that some of

the results of Widder and Feller are consequences of the strong law of large numbers,

conditioning and stopping times, ideas which are central to probability theory.

This paper is organized as follows. Section 1 deals with the 1-dimensional case while

x 2 briefly deals with the 2-dimensional case; the generalization to higher dimensions is

straightforward.

2. Coin tossing and inversion formulae

Exchangeable probabilities on the coin-tossing space

Let E1 � f0; 1g and 
 � EN
1 where N � f1; 2; 3; . . .g; the space 
 is sometimes called

the coin-tossing space. Let ! � �!1; !2; . . .� be a generic point of 
 and X1;X2; . . . be the

coordinate variables, i.e., Xn�!� :� !n, n � 1; 2; . . .. Let F n � �hX1;X2; . . . ;Xni and

F � �hXn : n � 1i be the �-fields of subsets of 
: Let � be the group of all permutations

of natural numbers which shift only finitely many of them and let �n � f� 2 � : ��i� � i

for i > ng: For � 2 �, let T� : 
! 
 be defined by T��!1; !2; . . .� :� �!��1�; !��2�; . . .�.
Let Sn � fA 2 F : Tÿ1

� A � A for all � 2 �ng and S � fA 2 F : Tÿ1
� A � A for all � 2

�g: Clearly Sn # S. A probability P on �
;F� is said to be exchangeable if PTÿ1
� �

P for all � 2 �: For each p, 0 � p � 1, let Pp be the product probability on 
 under

which Pp�Xi � 1� � 1ÿ Pp�Xi � 0� � p, i � 1; 2; . . .. By a theorem of De Finetti, see,

e.g., Meyer [7], under an exchangeable P on �
;F�, X1;X2; . . . are conditionally

independent given the symmetric �-field S. As a consequence, corresponding to an

exchangeable P there exists a probability � on �0; 1� such that

P�F� �
Z 1

0

Pp�F�d��p�; F 2 F : �2:1�

The probability measure � is called the mixing probability corresponding to P:

Inversion formulae

We fix a probability measure � on �0; 1� and the associated exchangeable probability P on

�
;F�: Let

�c�k� � c�k � 1� ÿ c�k�; �2:2�
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where c�k�, k � 0; 1; 2; . . . are given by (1.2). Then

�ÿ1�nÿk�nÿkc�k� �
Z 1

0

�1ÿ x�nÿk
xkd��x�; k � 0; 1; 2; . . . ; n � k: �2:3�

The atoms of Sn are

�n;k � f! 2 
; #�i : 1 � i � n; !i � 1� � kg �2:4�
and

P��n;k� � �ÿ1�nÿk n

k

� �
�nÿkc�k�: �2:5�

It is easily seen that the mixing probability � is uniquely determined by P��n;k�, n �
1; 2; . . . ; k � 1; 2; . . . ; n:

As Sn # S; by the reverse martingale convergence theorem, we have

Yn :� E�X1kSn� � X1 � X2 � � � � � Xn

n
ÿ!Y1 :� E�X1kS� a.s. �P�: �2:6�

Further, for k � 1; 2; . . . ;

Yk
1 � E�X1kS� � E�X2kS� . . . E�XkkS� a.s. �P�
� E�X1X2 . . . XkkS� a.s. �P� by De Finetti's theorem

� P�X1 � X2 � � � � � Xk � 1kS� a.s. �P�
and consequently,

E�Yk
1� �

Z 1

0

pkd��p� � c�k�:

Thus

Y1 � �: �2:7�
Now let f�ngn�1 be a sequence of stopping times with respect to fF ngn�1 such that

�n !1 a.s. �P�: �2:8�
Then

Y�n
! Y1 a.s. �P�: �2:9�

By the compactness of �0; 1�, it follows by Prokhorov's theorem, see, e.g., [1], that the

sequence of probability laws of Y�n
converges in the weak �-topology to �: Thus

Fn�)F; �2:10�
where F;F1;F2; . . . are the p.d.f.'s of �; Y�1

; Y�2
; . . . respectively.

For each choice of f�ngn�1 for which (2.8) holds, we get an inversion formula for �. We

give some examples.

Example 1. Take �n � n. Then (2.8) holds and

P Yn � k

n

� �
� P��n;k� � �ÿ1�nÿk n

k

� �
�nÿkc�k� by (2.5):
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Thus

Fn�t� �
X

k:k��nt�
�ÿ1�nÿk n

k

� �
�nÿkc�k� ! F�t�

at the points of continuity of F: This is the inversion formula of Hausdorff [3].

Example 2. Let �n be the waiting time for the appearance of the nth tail, i.e.,

�n�!� � inffm : X1�!� � X2�!� � � � � � Xm�!� � mÿ ng;
we adopt the convention that the infimum of the empty set is1. Here �n�!� � n for all !
and (2.8) holds. Further,

Pp��n � n� k� � n� k ÿ 1

k

� �
pk�1ÿ p�n; k � 0; 1; 2; . . . ; 0 < p < 1;

P0��n � n� � 1 and P1��n � 1� � 1:

Also,

Pp Y�n
� k

n� k

� �
� n� k ÿ 1

k

� �
pk�1ÿ p�n; k � 0; 1; 2; . . . ; 0 < p < 1;

P0�Y�n
� 0� � 1 and P1�Y�n

� 1� � P1�Y1 � 1� � 1

by the strong law of large numbers. Thus, by (2.1), the distribution function Fn places

mass �ÿ1�n n�kÿ1
k

ÿ �
�nc�k� at k

k�n
, k � 0; 1; 2; . . . and the remaining mass ��f1g� � c�1�

at 1.

This is essentially the inversion formula derived by Widder ± see Theorem 42 and the

footnote on p. 193 of [8]. The nth approximant of Widder places mass �ÿ1�n�1 n�k
k

ÿ �
�n�1c�k� at k

k�n
, k � 0; 1; 2; . . . and mass c�1� at 1 which agrees with our Fn�1 except

that k
k�n

is replaced by k
k�n�1

; which hardly matters. It may be observed that Fn contains

infinitely many jumps, they cluster at 1 and their amount uses differences of a fixed order.

Example 3. Let �n be the waiting time for the appearance of the nth head, i.e.,

�n�!� � inffm : X1�!� � X2�!� � � � � � Xm�!� � ng;
the infimum of the empty set being1: Here �n�!� � n for all ! and (2.8) holds. Further,

Pp��n � n� k� � n� k ÿ 1

k

� �
pn�1ÿ p�k; k � 0; 1; 2; . . . ; 0 < p < 1;

P1��n � n� � 1 and P0��n � 1� � 1:

Also,

Pp Y�n
� n

n� k

� �
� n� k ÿ 1

k

� �
pn�1ÿ p�k; k � 0; 1; 2; . . . ; 0 < p < 1;

P1�Y�n
� 1� � 1 and P0�Y�n

� 0� � 1:

Thus, by (2.1), Fn places mass �ÿ1�k n�kÿ1
k

ÿ �
�kc�n� at n

n�k
, k � 0; 1; 2; . . . and the

remaining mass ��f0g� � 1ÿ �1k�0�ÿ1�k n�kÿ1
k

ÿ �
�kc�n� at 0. It may be observed that Fn

contains infinitely many jumps, they cluster at 0 and their amount uses differences belong-

ing to a fixed point.
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The above formula was derived by very different methods by Feller ± see theorem 5

and remark on pages 673±74 of [2]; in his case � is supported on �0; 1� so that

��f0g� � 0.

Example 4. Let �n � �n ^ �n where �n and �n are as in examples 2 and 3 respectively.

Then �n�!� � n for all ! and (2.8) holds. Further, Pp��n � n� k� � n�kÿ1
k

ÿ �fpnqk�
pkqng; k � 0; 1; 2; . . . ; nÿ 1 and it is easily seen that Fn places mass �ÿ1�k n�kÿ1

k

ÿ �
�kc�n�

at n
n�k

and mass �ÿ1�n n�kÿ1
k

ÿ �
�nc�k� at k

n�k
, k � 0; 1; 2; . . . ; nÿ 1.

The reader is invited to choose his favourite f�ngn�1 satisfying (2.8) and write down

the corresponding sequence of approximants of the d.f. F of �:

3. Inversion formulae in higher dimensions

We restrict ourselves to two dimensions; the generalization to higher dimensions is

straightforward. The problem of inversion of the Laplace transform

���1; �2� �
Z 1

0

Z 1
0

eÿ��1t1��2t2�d��t1; t2�; �i � 0; i � 1; 2 �3:1�

of a probability measure � on �0;1� � �0;1� in terms of ��k; `�; k; ` � 0; 1; 2; . . . is

same as that of finding an inversion formula for a probability measure � on �0; 1� � �0; 1�
in terms of its moments

c�k; `� �
Z 1

0

Z 1

0

xk
1x`2d��x1; x2�: �3:2�

In our discussion we consider probability measures � on I2 :� �0; 1� � �0; 1�.
To do an analysis similar to the 1-dimensional case, we introduce a special kind of

exchangeable probability on the space of a sequence of tosses of a pair of coins. First we

set up the notation. Let E2 � f�00�; �01�; �10�; �11�g, 
 � EN
2 , ! � �!1; !2; . . .� with

!i � �!i1 !i2�, i � 1; 2; . . . ; be a generic point of 
 and Xn � �Xn1;Xn2� with Xn1�!�
� !n1; Xn2�!� � !n2; n � 1; 2; . . . ; be the coordinate variables. Let F n;F ;�; �n;
T�;Sn and S be defined as before. For p � �p1; p2� 2 I2 let �p be the probability on E2

defined by

�p�00� � �1ÿ p1��1ÿ p2�; �p�01� � �1ÿ p1�p2;

�p�10� � p1�1ÿ p2� and �p�11� � p1p2 �3:3�
and let Pp � �p � �p � . . . be the corresponding product probability on 
. We fix a

probability � on I2 and introduce the exchangeable probability P on �
;F� by

P�F� �
Z

I2

Pp�F�d��p�; F 2 F : �3:4�

Let

�1c�k; `� :� c�k � 1; `� ÿ c�k; `� and

�2c�k; `� :� c�k; `� 1� ÿ c�k; `�; �3:5�
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where c�k; `�; k; ` � 0; 1; 2; . . . are given by (3.2). We have

�ÿ1�2nÿkÿ`�nÿk
1 �nÿ`

2 c�k; `� �
Z

I2

xk
1x`2�1ÿ x1�nÿk�1ÿ x2�nÿ`d��x1; x2�:

�3:6�
The probability of the atoms of Sn can be written in terms of these differences and it is

easily seen that the mixing probability � is uniquely determined by the values of P on the

atoms of Sn; n � 1.

By De Finetti's theorem, under P;Xn; n � 1 are conditionally independent given S;

further, by our construction, the mixing probability � is supported on the set of probabi-

lities of type �p on E2 as given in (3.3). Therefore

(a) for almost all !�P�; �E�Xn1kS��!�;E�Xn2kS��!��; n � 1; 2; . . . are like tosses of a pair

of coins having probability of `heads', say p1�!� and p2�!�, all the tosses being

independent and

(b) �p1; p2� � �.

By the reverse martingale convergence theorem,

Yn1 :� E�X11kSn� � X11 � X21 � � � � � Xn1

n
! Y11 :� E�X11kS� a.s. �P�

Yn2 :� E�X12kSn� � X12 � X22 � � � � � Xn2

n
! Y12 :� E�X12kS� a.s. �P�:

�3:7�
Further, by (a) and (b) above, for k; ` � 0; 1; 2; . . . ; we have

Yk
11Y`

12 � f�k
i�1E�Xi1kS�gf�`

j�1E�Xj2kS�g a.s. �P�
� Ef��k

i�1Xi1���`
j�1Xj2�kSg a.s. �P�

� P�X11�X21�� � � � Xk1 � X12 � X22 � � � � � X`2 � 1kS� a.s. �P�
� pk

1p`2

and

E�Yk
11Y `

12� �
Z

I2

pk
1p`2d��p�

� c�k; `�:
Thus

�Y11; Y12� � �: �3:8�
Now let f�ngn�1 and f�ngn�1 be two sequences of stopping times with respect to fF ngn�1

such that

�n !1 a.s. �P�; �n !1 a.s. �P�: �3:9�
Then, by (3.7) and (3.9),

�Y�n1; Y�n2� ! �Y11; Y12� a.s. �P�: �3:10�
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By (3.8), (3.10) and the compactness of I2 it follows that the sequence of probability laws

of �Y�n1; Y�n2� converges in the weak �-topology to �. Thus

Gn�)G; �3:11�
where G;G1;G2; . . . are the p.d.f.'s of �; �Y�11; Y�12�; �Y�21; Y�22�; . . . respectively.

For each choice of f�ngn�1 and f�ngn�1 for which (3.9) holds we get an inversion

formula for �. We give some examples.

Example 1. Let �n � n and �n � n. Then (3.9) holds and

P Yn1 � k

n
; Yn2 � `

n

� �
� �ÿ1�2nÿkÿ`�nÿk

1 �nÿ`
2 c�k; `� by �3:6�;

k; ` � 0; 1; 2; . . . ; n. Thus

Gn�s; t� �
X

k:k��ns�
`:`��nt�

�ÿ1�2nÿkÿ`�nÿk
1 �nÿ`

2 c�k; `� ! G�s; t�

at the points of continuity of G. This inversion formula can be found in [6]; also see [4]

and [5].

Example 2. Let �n (respectively �n) be the waiting time for the appearance of the nth tail

for the first (respectively second) coin, i.e.,

�n�!� � inffm : X11�!� � X21�!� � � � � � Xm1�!� � mÿ ng;
�n�!� � inffm : X12�!� � X22�!� � . . .� Xm2�!� � mÿ ng;

the infimum of an empty set being 1. Then (3.9) holds and for k; ` � 0; 1; 2; . . . ;

P�p1;p2� Y�n1 � k

n� k
; Y�n2 � `

n� `
� �

� P�p1; p2�f�n � n� k; �n � n� `g

� n� k ÿ 1

k

� �
n� `ÿ 1

`

� �
pk

1p`2�1ÿ p1�n�1ÿ p2�n; 0 � p1; p2 < 1;

P�1; p2� Y�n1 � 1; Y�n2 � `

n� `
� �

� P�1; p2�f�n � 1; �n � n� `g

� n� `ÿ 1

`

� �
p`2�1ÿ p2�n; 0 � p2 < 1;

P�p1;1� Y�n1 � k

n� k
; Y�n2 � 1

� �
� P�p1;1�f�n � n� k; �n � 1g

� n� k ÿ 1

k

� �
pk

1�1ÿ p1�n; 0 � p1 < 1

and

P�1;1�fY�n1 � 1; Y�n2 � 1g � P�1;1�f�n � 1; �n � 1g � 1:

The p.d.f. Gn of �Y�n1; Y�n2� places mass �ÿ1�2n n�kÿ1
k

ÿ �
n�`ÿ1
`

ÿ �
�n

1�n
2c�k; `� at k

n�k
; `

n�`
� �

,

�ÿ1�n n�`ÿ1
`

ÿ �
�n

2c�1; `� at 1; `
n�`

� �
, �ÿ1�n n�kÿ1

k

ÿ �
�nc�k;1� at k

n�k
; 1

� �
and c�1;1� at
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(1,1). Here c�1; `� stands for limm!1 c�m; `�, c�k;1� for limm!1 c�k;m� and c�1;1�
� limm!1 c�m;m�. This gives an inversion formula which is a 2-dimensional analogue of

Widder's formula.

Example 3. Let �n (respectively �n� be the waiting time for the appearance of nth head or

tail, whichever is earlier, for the first (respectively second) coin. Then (3.9) holds and it is

easily seen that Gn places mass

�ÿ1�k�` n� k ÿ 1

k

� �
n� `ÿ 1

`

� �
�k

1�`
2c�n; n� at

n

n� k
;

n

n� `
� �

;

�ÿ1�k�n n� k ÿ 1

k

� �
n� `ÿ 1

`

� �
�k

1�n
2c�n; `� at

n

n� k
;

`

n� `
� �

;

�ÿ1�n�` n� k ÿ 1

k

� �
n� `ÿ 1

`

� �
�n

1�`
2c�k; n� at

k

n� k
;

n

n� `
� �

and

�ÿ1�2n n� k ÿ 1

k

� �
n� `ÿ 1

`

� �
�n

1�n
2c�k; `� at

k

n� k
;

`

n� `
� �

;

k; ` � 0; 1; 2; . . . ; nÿ 1:

The reader is invited to choose his favourite f�ngn�1 and f�ngn�1 for which (3.9) holds

and write down the corresponding inversion formula.
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