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On (N, p, q) summability factors of infinite series
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Abstract. 1In this paper a necessary and sufficient condition has been obtained for
Y aye, to be summable |N, g| whenever X a, is bounded (N, p, q).
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1. Introduction

Let Y a, be a given infinite series with s, for its nth partial sum. Let {#,} denote the
sequence of (N, p,q) mean of the sequence {s,}. The (N, p, q) transform of
sy = 20 _qa, is defined as follows:

1 n
Iy =— Pn—vqu Sy, (1)
0

r
ny=

where
Fa = Podn + -+ + Pago (#0)
p-1=q-1=r_1=0.

Necessary and sufficient conditions for the (N, p, ¢) method to be regular, that is for
sy — s to imply s, — s(N, p, q) are

(1) pn—vqy/rn — 0 for each integer v > 0 as n — oo and
(1) >0 | Pn-vgyv| < H|rs|, where H is a positive number independent of n.

Let {T,} denote the sequence of (N, q) mean of the sequence {s,} defined by
1 n
T, = —ZQVSV; (Qn 7é 0) (2)
n =0

where 0, = >0 g, — 00, asn — oo(Q_; =q_; =0,i > 1).
We define the sequence of constants {c,} formally by means of the identity

00 -1 00
(Zp,pc”) = chx”, c;i=0, i>1. (3)
n=0 n=0

We also write c,(ll) =co+ci+-+c,.

We denote by M, the class of sequences {p, } for which the following holds:

pa>0, Pl P2 o201, ). (4)
Pn Pn+1
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Let {p,} and {q,} be positive sequences. A series X a, is said to be bounded (N, p, g) or
Ya, = 0(1)(N7 p; q) if

an,,,q,,s,, =0(ry), asn— 0. (5)

v=I

If X and Y are any two methods of summability, we say (¢,) belongs to the class [X, Y], if
Y a,€, is summable — Y whenever ¥ g, is summable X.

Recently Mishra [7], Sarigol and Bor [8] and Sulaiman [9] have obtained summability
factor theorems of the type [|N, pn'k? N, Qthk]a [IN, pal, IN, qn‘k]’ [N, pn|k7 IN, gul].

In 1966 Das [2] has proved the following theorem:

Theorem A. Let {p,} € M, g, > 0. Then if ¥ a,, is summable |N, p, q|, it is summable
N, 4.

It is therefore, natural to find a summability factor ¢, so that 3 a,¢, is summable |N , 4
whenever ¥ a, is bounded (N, p, g).

Mazur and Orlicz [5] stated that, if a conservative (i.e. convergence preserving) matrix
sums a bounded nonconvergent sequence, then it must sum an unbounded sequence.
Zeller [10] obtained a proof of this theorem as a consequence of his study of the sum-
mability of slowly oscillating sequences whereas the proof of Mazur and Orlicz [6] was
functional analytic, based on rather deep topological properties of FK-spaces. A simple
direct proof of this theorem was also given by Fridy [3] which used only the well known
Silverman-Toeplitz conditions for regularity.

In view of this remark we state and prove the following summability factor theorem.

Theorem 1. Let {p,} €M, go >0, g, > 0 and let {q,} be monotonic non-increasing

sequence for n > 0. The necessary and sufficient condition that Y aye, should be
summable |N, q|, whenever

Zan:O(l)(N7p7Q)7 (6)

=
nzoalenl < 00, (7)
f: |Aey| < o0, (8)
n=0
:_OO%|A%”| < o0, ()
is that
oIl en] < oo (10)

n=1

Our theorem generalizes and unifies several known results of Mazhar [4], Daniel [1]
and others.

2. Lemmas

We need the following lemmas for the proof of our theorem.
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Lemma 1 [1]. Let {q,} be positive and monotonic non-increasing sequence. If {€,} is
such that

(i) Ae, =o0(1), as n — oo, and

(i) 30 20 |A%, | < oo,
then

nA n
ZQ 4 |Ae,| < 0.
dnqn+1

Remark. This lemma holds only if {g,} is monotonic non-increasing.
If {g,} is not monotonic non-increasing then conclusion of the lemma may not be true.

Lemma 2 [2]. Let {p,} € M. Then
(i) ¢g >0, ¢, <0 (n=1,2,...),

o0
(iv) Z cyX" is absolutely convergent for |x| < 1,
n=0

o0
W) D >0,
n=0
o0
except when Z Pn = 00, in which case
n=0
o0
Vi) > e =0.
n=0

Lemma 3 [2]. If

1
I, = 7an—uqul/-

ny=0
then
1 n
Sp = — Cp—yltyly.
4n 5
Lemma 4 [2].
n
1
Zcﬁzjurﬂ = Oy,

n=0

where c,, 1, and Q, are defined as above.

3. Proof of theorem 1

Let

1 &
I, = _an—u(bsua
Tn v=0
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and
= Z qv Z ar€r
ny=0
1 &
= (Qn - Ql/*l)allell’
On v=0
Then for n > 1, we have
q n
Tn Tnfl - Qnanfl ; Ql/flallel/

Using Abel’s transformation, we get

n—1
Z SI/A(leflez/) + Snenanl

4n
T, — Ty =
! ! QnQn—l =0

n—1
4qn 4dn qn
= qusvey +——— ) 0Ous,Ac, + —s,6,.
QnQn IZ e Qnanl ; o Y Q "

n

Let

Tn—Tn,lzz:—i-Z—i—Z, say. (11)
3

1 2

The theorem is proved if we show that ¥ |X | and X |X ;| are convergent.
Now

Z _ dn GuEss
- v&uvdy
Qnanl

1
Gn 1
:—Q 0 E ql,el,—g Co—plply
n n—

N
Il
- o
Q9
N
=
Il
=}

3
|
<

= n E € c r,t
- v v—plptu
Qnanl

v=0 1=0
n—1 n—1
4dn
= - Q Q § rpt/l, Cv—n€v
n¥n—1 =0 v=p
q n—1 n—1 p—1
n
:—Q 0 g Tty g E Ch—p | A€y + € g Chep — g Ch—p€p
n<n—1 1=0 =
q n—1 n—1 ( )
n (1)
=00 E Tuty c! MAGV + €y 1,
nn—1 1=0 =
n—1 n—1 n—1
- ryut M Aey— I N~ Dy
- Q Q nEp v v Q Q nEp—l—p’ HQ
n¥n—1 =0 =) n¥n—1 1=0
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Then as f, = O(1), using lemmas 2, 3 and 4,

)Y

n=1 n=1

KZQ

n=1

n—1 n—1

nn—1 Zr#“#'ZCV AL|A€V| since C
Z‘AG |Zc

"”IV()

11

0 n—1
=K B0 2yl
= N o qn
—K2 laele 3 60

e8]
Z AEV‘ < 00.
v=0

Similarly,

K> 5o

i 0.0
iz—

n=1

|€"|Z - p

2/

65

>0 by Lemma 2.

6n| < oQ.
Hence
o0
D [2o] <o
n=1]| 1
Again,
Z B Q Z Q”Ae” ZCV*#’"/JM
2 n¥n—17=0 qv =0
n—1 Q
14
"l Aec rut Ly, say
wuhp VCypy = "
QninZl VZ“ qv Qninz ) s
where
1
L= Z Ae,,cu u
=4

QV—H

qu+1

>A+

AEV+QV+1A( )AG,;F
qv

Qv+

Qi1 p2,

qu+1

V=l

:|+ AGankﬂ

:|+ AE,IZC]( "
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_Z{ %HA +C Qu+1A<

XQV+]A2 :|+QnA€n;<1>1 e
quv+1 q

)Aey + chu

v

So

(1) CII/+1

r,t

; QnQn INZO o voe qv
q n—1

+ 2 r,t

00, 2

' p=0 V=

S
v=p
ZCE,I #QVJr]A( )Ae,,

n—1 n—1

n L Qu ; 0,
* Qnén—l Z Tl VZM CV H q‘/:] Az Qnén : Z rl,,l‘l,,CSlljlfﬂ q—nA
S D S0 35 S

Therefore to show that

| <o

1] 2

o0

n

it is enough to show that

Y l<oo, i=1,234
n=1]| 2i

Now as c,({l) >0 for k >0 and as 1, = O(1)

>|<3 G Zmlmzc,} WA

1[]s

21 n=0
n—1 G
v+
<k|y Zmz el T
n—= lQl’lQn 1 =
n— lq |
v+
= Ae r
K3 g o ael Y nel! ]
00 n— lq )
_K v+ A Q
;QnQn 1; qv | V| v

- qv+1 qn
N KZ QV|A€U|n;1 Qnanl

qui1 qQv+1
:KZ; Q,,|Ae,,|—_KZ; |Ae,|

v=0 1V v

< KZ |Ae,| < oo, as {g,} is non-increasing.
v=0

Note that K is a positive constant not necessarily same at each occurance.



Similarly

and

Hence
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o0

D

n=1

2 |<

22

14 A v
2 oSSy, St

u=0 v=/[i

qn = = (1) QJ/+1A6]1/
< K r, c,’ Ae
o QnQn 1 ZO ! Z s qvqv+1 | D‘

0, A v
ZQnQn lZ o |A6V|Zrﬂ - H

=0 qvqv+1

=

nEiQu+1QVAQV |AE |
QnQn | — qvqv+1 Y

_KZQVHQVAQV V| Z

| |
M

=0 qvqv+1 n=v+1 QnQn 1
A
ZQ”H v |Ae,| < 0o, by Lemma 1,
=0 qvqv+1
00 n—1 Q 1
v+l
RS wer D O SIS
n=1| 23 n=1 =n=n—1 V=4
DI I S
—1 QnQn 1,20 qv+1 1=0 vor
)
:KZQV+1Q1/|A2 1/| «
=0 qv+1 v
0
:KZ A%, | < oo
=0 quv+1
00 00 q n—1 )
<K S A6 Y rue,
o0
= KZ ‘A€n|Qn71
n=1 On-

and the proof of the theorem is completed.

Theorem 2. Let {p,} € M,qy > 0,q, > 0 and let {q,} be monotonic non-increasing
sequence for n > 0. The necessary and sufficient condition that ¥ aye, should be
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summable | N, q| whenever

Zanzo(ﬂn)(NapaQ)7 (12)

where {u,} is positive and monotonic non-decreasing and {e,} is such that

o0

Aqn
== lenlpn < o0, (13)
n=0 Qn
o0
Z | A, |ptn < 00, (14)
n=0
%|A26n|un < 00, (15)
n=0 qn+1
is that
00 n
ZQ—|S,1||6,,\ < o0. (16)

n=1

The proof of theorem 2 is similar to that of theorem 1.
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