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Abstract. This paper is a first attempt at classifying connections on small vertex
models i.e., commuting squares of the form displayed in (1.2) below. More precisely,
if we let B�k; n� denote the collection of matrices W for which (1.2) is a commuting
square then, we: (i) obtain a simple model form for a representative from each
equivalence class in B�2; n�, (ii) obtain necessary conditions for two such `model
connections' in B�2; n� to be themselves equivalent, (iii) show that B�2; n� contains a
�3nÿ 6�-parameter family of pairwise inequivalent connections, and (iv) show that
the number �3nÿ 6� is sharp. Finally, we deduce that every graph that can arise as the
principal graph of a finite depth subfactor of index 4 actually arises for one arising
from a vertex model corresponding to B�2; n� for some n.
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1. Introduction

We first recall certain facts about commuting squares and biunitaries. These facts can be

found in [USC] or [JS].

1.1 Consider the following commuting square:

A1
0 �L A1

1

K[ [H

A0
0 �G A0

1

: �1:1�

Then the following are equivalent. (i) G � L � �n� and H � K � �k�; (ii) the square

(1.1) is isomorphic to a commuting square of the form

W�1
Mk�C��W� � Mn�C� 
Mk�C�
[ [
C � Mn�C� 
 1

; �1:2�

where W � ��W�a
�b ��2 Mn�C� 
Mk�C� is unitary. �We use the convention that 1 � �,

� � n, 1 � a, b � k:�
1.2 If W � ��W�a

�b �� 2 Mn�C� 
Mk�C�, then the square (1.2) is a commuting square

iff W is biunitary i.e., both W and ~W given by ~W�a
�b � W

�a
�b are unitary.

We shall use the symbol B�k; n� to denote the set of such biunitary matrices.

1.3 Two biunitary matrices W and W 0 are said to be equivalent if the corresponding

commuting squares are isomorphic. It is true that if W ;W 0 2B�k; n�, then W and W 0 are
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equivalent if and only if there exists unitary matrices U;U0 2 Mn, A;A0 2 Mk such that

�U 
 A�W � W 0�U0 
 A0�.
1.4 Given W 2 B�k; n�, the basic construction yields a grid of commuting squares and

consequently, a horizontal (respectively vertical) subfactor A0
1 � A1

1 (respectively

A10 � A11 ) with index k2 (respectively n2). This construction is canonical, and so,

isomorphic commuting squares (i.e., equivalent biunitary matrices) yield isomorphic

horizontal (respectively vertical) subfactors.

1.5 When n � k � 2, any W 2 B�2; 2� is equivalent to a biunitary matrix of the form

W�!� �
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 !

0BB@
1CCA;

where ! 2 T � fz 2 C : jzj � 1g. Further neither the vertical nor the horizontal subfactor

is irreducible. It is in fact true, although not mentioned in [USC], that W�!� is equivalent

to W�!0� if and only if Re�!� � Re�!0�.

2. A model form for a matrix in B�2; n�
In this section we prove that every biunitary matrix in B�2; n� is equivalent to a biunitary

matrix in a model form with �3nÿ 5� independent parameters.

PROPOSITION 2.1

Any biunitary matrix W 2 B�2; n� is equivalent to a matrix of the form

C US

VS ÿUVC

� �
;

where U;V are diagonal unitary matrices and C; S are positive diagonal matrices such

that C2 � S2 � 1.

Proof. Let W � a b

c d

� �
, so that ~W � a c

b d

� �
where a; b; c; d 2 Mn. Then W is a

biunitary matrix if and only if both W and ~W are unitary matrices. The unitarity of W

and ~W (i.e. the relation WW� � 1 � ~W ~W�) implies the following equations:

aa� � bb� � 1; cc� � dd� � 1

a�a� c�c � 1; b�b� d�d � 1

aa� � cc� � 1; bb� � dd� � 1

a�a� b�b � 1; c�c� d�d � 1:

By premultiplying by u
 1, where u 2 Mn is a suitable unitary matrix (i.e. by working

with an equivalent biunitary matrix), we may assume, without loss of generality, that a is

positive. Then it follows from the above equations that 0 � a � 1. Let C � a. So there

exist a unique positive matrix S 2 Mn such that, 0 � S � 1 and C2 � S2 � 1. Then from

the above equations we can conclude that b; c; d are normal and also that bb� � cc� � S2

and dd� � C2. So there exist unitary matrices U;V ; T 2 Mn such that b � US; c � VS and

d � TC, and such that U and V commute with S (hence, also with C) and T commutes

with C (hence, also with S).
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So we find that W is equivalent to the biunitary matrix

C US

VS TC

� �
;

where C; S;U;V and T are as above.

The biunitarity of W (i.e. the relation WW� � ~W ~W� � 1) also implies the following

equations:

SC�V � TU�� � 0; SC�U � V�T� � 0;

SC�U � TV�� � 0; SC�V � U�T� � 0: �2:3�
Since U;V and T leave the eigenspaces fHigi2I of C invariant, we may, by conjugating W

by a unitary matrix of the form ÿ
 1 (where ÿ is a unitary matrix which diagonalises C),

assume that

C � �i2Ici1Hi
; S � �i2Isi1Hi

U � �i2IUi; V � �i2IVi; T � �i2ITi;

where 1Hi
denotes the identity in L�Hi�; 0 � ci; si � 1 and Ui;Vi; Ti 2 L�Hi�.

Thus we see that W � �i2I Wi, where Wi is a biunitary matrix in Mni

M2 and ni is the

dimension of Hi, and that

Wi � ciIni
Uisi

siVi ciTi

� �
:

Note that in order to complete the proof of this proposition it is enough if we prove that

each of this Wi is equivalent to a biunitary matrix of the form presented in the proposition

by pre- and post-multiplying by unitary matrices of the form ui 
 1 (then by pre- and

post-multiplying W by matrices of the form ��i2Iui� 
 1 one may prove that W is

equivalent to a matrix of the required form). To prove this we now consider two cases

depending on whether ci is zero or non-zero.

Suppose ci � 0, then, by pre-multiplying Wi by the unitary matrix U�i 
 1, we may

assume that Ui � 1Hi
. Now, by conjugating Wi by a unitary matrix p
 1, where p is a

unitary matrix which diagonalises Vi, we can conclude that Wi is equivalent to a matrix of

the desired form.

Suppose that ci 6� 0. If si � 0 we can assume, by conjugating by a unitary matrix p
 1

(where p is a unitary matrix which diagonalises Ti), that the matrix Wi is in the required

form. If si is also non-zero, then first conclude from the set of equations (2.3) that

Ti � ÿUiVi � ÿViUi. Now, by conjugating Wi by a unitary matrix of the form p
 1,

where p is a unitary matrix which simultaneously diagonalises the commuting unitaries

Ui;Vi; Ti, we may conclude that Wi is equivalent to a matrix of the desired form.

Hence, in any case, we find that W is equivalent to a matrix of the form

C US

VS ÿUVC

� �
;

where U;V are diagonal unitary matrices and C; S are positive diagonal matrices such

that C2 � S2 � 1. &

It is proved in [USC] that when n � k � 2, any W 2 B�2; 2� is equivalent to a biunitary

matrix of the form
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W�!� �
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 !

0BB@
1CCA;

where ! 2 T � fz 2 C : jzj � 1g. Further neither the vertical nor the horizontal subfactor

is irreducible. We explicitly point out the ambiguity in such a representation.

PROPOSITION 2.2

W�!� is equivalent to W�!0� if and only if Re�!� � Re�!0�.

Proof. Let

U � 0 1

1 0

� �
; A0 � 1 0

0 !

� �
; and A � 1 0

0 1

� �
:

Then it can be easily verified that �U 
 A�W�!� � W��!��U 
 A0�.
Conversely suppose

�U 
 A� I 0

0 D

� �
� I 0

0 D0

� �
�U0 
 A0�;

where D � 1 0

0 !

� �
, D0 � 1 0

0 !0

� �
, A � a b

c d

� �
, A0 � a0 b0

c0 d0

� �
. Then the follow-

ing equations hold:

aU � a0U0; �2:4�
bUD � b0U0; �2:5�

cU � c0D0U0; �2:6�
dUD � d0D0U0: �2:7�

Suppose a 6� 0. Then a0 6� 0 by eq. (2.4), and so also d0 6� 0 (as D;D0;U;U0 are unitary

matrices). From eqs (2.4) and (2.7), we see that d0ÿ1daÿ1a0U0DU0� �D0. Now by compar-

ing the eigenvalues (as U0 is an unitary matrix), we conclude that fd0ÿ1daÿ1a0,
d0ÿ1daÿ1a0!g� f1; !0g. Hence either ! � !0 or ! � �!0. Suppose that a � 0, then as A is

an unitary matrix, it is the case that b 6� 0. Exactly in a similar way, using eqs (2.5) and

(2.6), we can again conclude that either ! � !0 or ! � �!0. &

PROPOSITION 2.3

Any W 2 B�2; n� is equivalent to a biunitary matrix of the form

W�!; �; �;C� �

1 0 0 0 0 0

0 1 0 0 0 0

0 0 C 0 0 �S
0 0 0 1 0 0

0 0 0 0 ! 0

0 0 �S 0 0 ÿ��C

0BBBBBB@

1CCCCCCA;

where �� diag��1; �2; . . . ; �nÿ2�, �� diag��1; �2; . . . ; �nÿ2�, C� diag�C1;C2; . . . ;Cnÿ2�,
S � diag�S1; S2; . . . ; Snÿ2�, �i; �i; ! 2 fz 2 C : jzj � 1g, Im�!� � 0; 0 � Ci; Si � 1, and

C2
i � S2

i � 1.
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Proof. From Proposition 2.1, we may assume that W �Pn
i�1 Eii 
Wi (where Wi is a

2� 2 unitary matrix and fEij : 1 � i; j � ng denotes ± here and elsewhere ± the usual

system of matrix units in Mn), and that Wi has the form

Wi � Ci �iSi

�iSi ÿ�i�iCi

� �
;

where �i; �i are complex numbers of unit modulus, and 0 � Ci; Si � 1 and C2
i � S2

i � 1.

Note next that if D � diag�d1; . . . ; dn� 2 Mn is a diagonal unitary matrix, and if W ;Wi

are as above, and if V1;V2 2 M2 are unitary, then

�D
 V1�W�1
 V2� �
Xn

i�1

di�Eii 
 V1WiV2�: ���

Set V1 � 1;V2 � W�1 ; if the �1; 1� entry of WiW
�
1 is !i

~Ci, with ~Ci � 0 and j!ij � 1,

define di � �!i. We may now deduce from equation ��� that we may reduce to the case

where W1 is the identity matrix, and Wi are as above.

Next, let U be the unitary matrix which diagonalises (the new) W2. Then, by setting

di � !i if !i
~C0i is the �1; 1� entry of U�WiU, with ~C0i � 0 and j!ij � 1, and by setting

U � V�1 � V2, we find that we may reduce to the case where W is as above, and in

addition, W1 � 1 and W2 � diag�1; !�, where ! is a complex number of unit modulus.

If Im�!�� 0, the proof of the Proposition is complete. If Im�!�< 0, then set

V1 � V2 � 0 1

1 0

� �
;

and d1 � 1, d2 � �!; di � ÿ�i�i 8i � 3; . . . ; n, to conclude that W is indeed equivalent to

a biunitary matrix of the prescribed form. &

3. Classification of B�2; n�
We shall use the notation 
�2; n�� T� � Tnÿ2 � Tnÿ2 � �0; 1�nÿ2

, where T is the unit

circle in the complex plane and T�� f! 2 T : Im�!�� 0g; we shall denote a typical pair

of points of 
�2; n� by P � �!; �; �;C� and P0 � �!0; �0; �0;C0� and the corresponding

biunitary matrices by W and W 0. Also we shall denote the matrices
1 0

0 !

� �
and

1 0

0 !0

� �
by D and D0 respectively.

We isolate a simple assertion as a lemma, since we will need to repeatedly use it.

Lemma 3.1. Suppose a; b; c; d are non-zero complex numbers, and suppose �; �; !j,

j � 0; 1; 2 are complex numbers of unit modulus, and suppose C and S are non-negative

real numbers satisfying C2 � S2 � 1. Assume that Im�!2�> 0 and that the following

equations are satisfied:

a�C ÿ !0� � b�S � 0; �3:8�
a�Sÿ b���C � !0!1� � 0; �3:9�
c�C ÿ !0!2� � d�S � 0; �3:10�
c�Sÿ d���C � !0!1!2� � 0: �3:11�
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Then, S 6� 0;C 6� 1 and

Re�!2� � ÿ�S2 � Re��!1���C2�: �3:12�

Proof. If S � 0, then the eqs (3.8) and (3.10) would imply that !0 � !0!2 � 1. Hence, as

we have assumed that !2 6� 1, conclude that S 6� 0. Now, deduce from (3.8) and (3.9) that

�!0 ÿ C����C � !0!1� � ��S2; �3:13�
similarly, deduce from eqs (3.10) and (3.11) that

�!0!2 ÿ C����C � !0!1!2� � ��S2:

These equations may be re-written as

!2
0!1 � !0���ÿ !1�C � ��S2;

!2
0!

2
2!1 � !0!2���ÿ !1�C � ��S2;

from which we may deduce that

!2
0�1ÿ !2

2�!1 � !0�1ÿ !2����ÿ !1�C � 0: �3:14�
As we have assumed that Im�!2� > 0, we may infer from eq. (3.14) that

!0 � �!1 ÿ ���C
!1�1� !2� :

Substituting this expression for !0 into eq. (3.13), we find that

�!0 ÿ C����C � !0!1� � C

!1�1� !2� �!1 ÿ ��ÿ !1�1� !2��

� C

!1�1� !2� ���!1�1� !2� � !1�!1 ÿ ����

� ÿ C2

�1� !2�2
�!1��� !2��!1 � ��!2�;

and hence,

��S2ÿ�!0ÿ C����C� !0!1���� S2� C2

�1� !2�2
�!1��� !2��!1��� !2�

" #
:

Thus we find that the equation �!0 ÿ C����C � !0!1� � ��S2 will be satisfied precisely

when

0 � �1� !2�2S2 � C2�!1��� !2��!1��� !2�
� !2

2�S2 � C2� � !2�2S2 � 2C2 Re�!1���� � �S2 � C2�
� !2

2 ÿ 2�!2 � 1; �say�;
where � � ÿ�S2 � C2Re�!1����:

On the other hand, it is clear that if a complex number ! satisfies the equation

!2ÿ2�!� 1� 0, where � is real and j�j�1, then ! � �� i
�������������
1ÿ �2
p

, so that Re�!�� �,

and hence eq. (3.12) is satisfied. &
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In the next proposition we give a partial classification of B�2; n�. B�2; 3� is completely

classified in [Sr].

PROPOSITION 3.2

Let n be arbitrary. Assume that Im�!�; Im�!0�> 0, and Ci; Si;C
0
i; S
0
i 6� 0 for all i.

(a) If W�!; �; �;C� is equivalent to W�!0; �0; �0;C0�, then one of the following relations

holds:

(0) ! � !0, and there exists a permutation � 2 Snÿ2 such that

Ad�P���C� � C0; Ad�P����� � ��0; and Ad�P����� � ��0;
where � is some complex number of unit modulus, P� denotes the permutation matrix

corresponding to �, and we write Ad�P�� � P����Pÿ1
� .

(1) ! � !0, and there exists a permutation � 2 Snÿ2 such that

Ad�P���C� � C0; Ad�P����� � ��0�; and Ad�P����� � !��0�;
where � is some complex number of unit modulus.

(2) There exist i, i0 such that �Re�!0�; Re�!��2�i� �0i0 , where �i �fÿ�S2
i � Re��i�i�C2

i �,
ÿ�S2

i � Re��! �i�i�C2
i �g and �0i �fÿ�S 02i � Re��0i�0i�C02i �, ÿ�S02i � Re��!0�0i�0i�C02i �g.

(3) There exist i, j; i0; j0 such that �Re�!0�; Re�!�� � �ÿmi; j;ÿm0i0; j0 � where mi; j � 1ÿ
�1� Re��i�i

��j
��j��C2

i C2
j ÿ �1� Re��i�j

��j
��i��S2

i S2
j ÿ 2�Re��i�j� � Re��i

��j��CiCjSiSj,

and m0i; j is the corresponding `primed' expression.

(b) In (a), conditions (0) and (1) are also sufficient conditions for W�!; �; �;C� to be

equivalent to W�!; �0; �0;C0�.
(c) (i) The vertical subfactor associated with W�!; �; �;C� is always reducible.

(ii) The horizontal subfactor associated with W�!; �; �;C� is reducible if and only if

either of the following two conditions holds:

(1) S � 0;

(2) ! � 1 and there exists scalars �12 T and �22 C such that �S � �1�S and

�1� ���C � �2�S.

Proof. First we write the condition for P;P0 2 
�2; n� to afford equivalent connections,

as a set of equations. Thus, in order for W to be equivalent to W 0, i.e. �U 
 A�W
�!; �; �;C� � W�!0; �0; �0;C0��U0 
 A0�, where

A � a b

c d

� �
; A0 � a0 b0

c0 d0

� �
2 U�2�;

U �
u1;1 u1;2 Pt

u2;1 u2;2 Qt

X Y Z

0B@
1CA; U0 �

u01;1 u01;2 P0t

u02;1 u02;2 Q0t

X0 Y 0 Z 0

0B@
1CA2 U�n�;

P;Q;X; Y ;P0;Q0;X0; Y 0 2 M�nÿ2��1 and Z;Z 0 2 Mnÿ2, where Xt denotes the matrix tran-

spose of X, it is necessary and sufficient that the following set of equations holds.

u1;1A � u01;1A0; �3:15�
u1;2AD � u01;2A0; �3:16�

Pt�aC � b�S� � a0P0t; �3:17�
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Pt�a�Sÿ b��C� � b0P0t; �3:18�
Pt�cC � d�S� � c0P0t; �3:19�

Pt�c�Sÿ d��C� � d0P0t; �3:20�
u2;1A � u02;1D0A0; �3:21�

u2;2AD � u02;2D0A0; �3:22�
Qt�aC � b�S� � a0Q0t; �3:23�

Qt�a�Sÿ b��C� � b0Q0t; �3:24�
Qt�cC � d�S� � c0!0Q0t; �3:25�

Qt�c�Sÿ d��C� � d0!0tQ0t; �3:26�
aX � �a0C0 � c0�0S0�X0; �3:27�
bX � �b0C0 � d0�0S0�X0; �3:28�
cX � �a0�0S0 ÿ c0�0�0C0�X0; �3:29�
dX � �b0�0S0 ÿ d0�0�0C0�X0; �3:30�
aY � �a0C0 � c0�0S0�Y 0; �3:31�

b!Y � �b0C0 � d0�0S0�Y 0; �3:32�
cY � �a0�0S0 ÿ c0�0�0C0�Y 0; �3:33�

d!Y � �b0�0S0 ÿ d0�0�0C0�Y 0; �3:34�
Z�aC � b�S� � �a0C0 � c0�0S0�Z 0; �3:35�

Z�a�Sÿ b��C� � �b0C0 � d0�0S0�Z 0; �3:36�
Z�cC � d�S� � �a0�0S0 ÿ c0�0�0C0�Z 0; �3:37�

Z�c�Sÿ d��C� � �b0�0S0 ÿ d0�0�0C0�Z 0: �3:38�
Now we consider cases depending on whether various entries of U are zero or non-

zero.

Case (1): u1;1 6� 0. The unitarity of A and A0, together with eq. (3.15) imply that ju1;1j �
ju01;1j. Let u1;1 � zu01;1 where jzj � 1; it follows that A0 � zA. So (by replacing the pair

�A;U� by �zA; zÿ1U�, in case z 6� 1) we may assume, without loss of generality, that

A � A0 and u1;1 � u01;1.

Since A is a unitary matrix deduce from (3.16) that u1;2D � u01;2I2, where I2 denotes the

identity matrix in M2. The assumption ! 6� 1 now implies that u1;2 � u01;2 � 0.

Similarly eq. (3.21) implies that u2;1I2 � D0u02;1. Again the assumption that !0 6� 1

implies that u2;1 � u02;1 � 0.

We consider two sub-cases depending upon whether the entry u2;2 is non-zero or

zero.

Case (1.1): u2;2 6� 0. As Im�!�; Im�!0�> 0. First we deduce from eq. (3.22) that either

a � 0 or b � 0: But a � d � 0 implies that ! � �!0. But as we have assumed that

Im�!�; Im�!0�> 0, it is the case that b � c � 0, and that ! � !0, and u2;2 � u02;2. We will

show that the relation (0) is satisfied in this case.

As Si 6� 0 for all i (by the assumption in the statement of the Proposition), we find from

eq. (3.18) and (3.24) that Pt � Qt � 0. At the same time eqs (3.17) and (3.23) imply that

P0t � Q0t � 0. Also by the assumption S0i 6� 0 for all i, we find from eqs (3.28) and (3.32)
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that X0 � Y 0 � 0, while the eqs (3.27) and (3.31) imply that X � Y � 0. The unitarity of

U and U0 is now seen to imply that Z and Z 0 also are unitary.

Equations (3.35) and (3.38) may be rewritten as

ZC � C0Z 0; �3:39�
ZC�� � �0�0C0Z 0: �3:40�

Since C and C0 are invertible positive operator (as follows from the assumption in the

statement of the Proposition that Ci 6� 0 for all i) and since eq. (3.39) may be re-written as

�ZZ 0���Z 0CZ 0�� � C0;

we may deduce from the uniqueness of polar decomposition that Z � Z 0:
Next, we may deduce from eqs (3.39) and (3.40) ± using the invertibility of the matrix

C0 ± that Z��Z� � �0�0.
Thus,

ZC � C0Z �hence also ZS � S0Z� and Z�� � �0�0Z:
Notice now that

Z�S � Z������S
� ��0�0�Z��S
� ��0�0��Z��Z��ZS

� ��0�0��Z��Z��S0Z:
Hence, we may deduce from (3.36) that

a��0�0��Z��Z��S0Z � d�0S0Z;

deduce from the invertibility of S0Z that

Z��Z� � ��0�;
where � � d=a. Since Z��Z� � ��0�0�, we thus find that

Z�Z� � ��0:
Let A (resp., A0) denote the �-subalgebra of Mnÿ2 generated by f�; �;Cg �resp.,

f�0; �0;C0g�. The preceding analysis shows that the map Ad�Z� � Z���Z� maps A onto A0
(since it carries the generators to non-zero multiples of the generators).

Note now that A and A0 are contained in the algebra of diagonal matrices. If

fe� : � 2 �g denotes the set of minimal projections in the abelian C�-algebra A, and if

Ze�Z�� e0�, then clearly fe0� : � 2 �g is the set of minimal projections inA0. The fact that

some unitary matrix i.e., Z ± simultaneously conjugates each e� into e0�, clearly implies

now that we can find some permutation � 2 Snÿ2 such that Ad�P�� maps each e� into e0�.

It follows easily now from the construction that

Ad�P����� � ��0;Ad�P����� � ���0; and Ad�P���C� � C0:

Case (1.2): u2;2 � 0. We will prove that the relation (2) is satisfied in this case. From the

eq. (3.22) we conclude that u02;2 � 0. Suppose Qt � �q1; q2; . . . ; qnÿ2�: As u2;1 � u2;2 � 0,

we find that Q is a unit vector; hence there exists an index i such that qi 6� 0. Then, we
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find from eqs (3.23)±(3.26) that

qi�aCi � b�iSi� � aq0i; �3:41�
qi�a�iSi ÿ b�i�iCi� � bq0i; �3:42�

qi�cCi � d�iSi� � c!0q0i; �3:43�
qi�c�iSi ÿ d�i�iCi� � d!0q0i: �3:44�

The unitarity of the matrix
Ci �iSi

�iSi ÿ�i�iCi

� �
would imply necessarily that jq0ij�jqij 6� 0.

Also, as Si 6� 0, we may infer from eqs (3.41) and (3.42) that a; b; c; d 6� 0. Let

Yt � �y1; y2; . . . ; ynÿ2�. Since u1;2 � u2;2 � 0, we find that Y is a unit vector; hence there

exists an index i0 such that yi0 6� 0. Then, we find from eqs (3.31)±(3.34), that the

following equations hold:

ayi0 � �aC0i0 � c�0i0S
0
i0 �y0i0 ;

b!yi0 � �bC0i0 � d�0i0S
0
i0 �y0i0 ;

cyi0 � �a�0i0S0i0 ÿ c�0i0�
0
i0C
0
i0 �y0i0 ;

d!yi0 � �b�0i0S0i0 ÿ d�0i0�
0
i0C
0
i0 �y0i0 : �3:45�

Again, using the unitarity of the matrix
C0i0 �0i0S

0
i0

�0i0S
0
i0 ÿ�0i0�0i0C0i0

� �
, deduce that yi0 and y0i0

have the same absolute value.

Let !0 � q0iq
ÿ1
i and !00 � y0i0y

ÿ1
i0 . Now, first by re-writing the above two equations in the

form as in eqs (3.8)±(3.11), and then by applying Lemma 3.1 separately to the two sets of

equations above conclude that

�Re�!0�; Re�!�� � �ÿ�S2
i � Re��i�i�C2

i �;ÿ�S02i0 � Re��0i0�0i0 �C02i0 ��:
Hence the relation (2) is satisfied in this case.

Case (2): u1;1 � 0:

Case (2.1): u1;2 6� 0. Using (3.16) and the unitarity of A and A0, we can assume without

loss of generality that AD � A0 and u1;2 � u01;2. Also as !0 6� 1, we find from (3.22) that

u2;2 � u02;2 � 0: There are two cases now, depending on whether u2;1 is not or is 0, which

we consider separately.

Case (2.1.1): u2;1 6� 0. As Im�!�; Im�!0� > 0 we may deduce from (3.21) that a � d � 0,

! � !0, and u2;1 � !u02;1. We will show that the relation (1) is satisfied in this case.

As S is invertible, (i.e. Si 6� 0 for all i) we find from (3.17) and (3.23) that Pt � Qt� 0.

From (3.18) and (3.24), we get P0t � Q0t � 0. As S0 is invertible, we find from (3.27) and

(3.31) that X0 � Y 0 � 0, and then from (3.28) and (3.32) we get X � Y � 0. Now it

follows that Z and Z 0 are unitary.

From (3.36) and (3.37) we have

ÿZ��C � !C0Z 0;
ZC � ÿ�0�0C0Z 0:

It follows (as before, from the uniqueness of polar decomposition and the invertibility of

the positive operators C;C0� that Z�� � ÿ!Z 0 and Z � ÿ�0�0Z 0. These equations

together with the equation bZ�S � c�0S0Z 0 (which is a consequence of (3.35)) are seen to
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imply (after some minor manipulations) that

Ad�Z 0��C� � C0; Ad�Z 0���� � ��0�; and Ad�Z 0���� � !���0�;

where � is some scalar of unit modulus.

Arguing exactly as in the proof of Case (1.1), we may deduce the existence of a

permutation � 2 Snÿ2 such that

Ad�P���C� � C0; Ad�P����� � ��0�; and Ad�P����� � !���0�:

Case (2.1.2): u2;1 � 0. It follows from (3.21) that u02;1 � 0. Using the unitarity of U and

the fact that �u2;1; u2;2� � 0, deduce that Qt�� �q1; . . . ; qnÿ2�� is a unit vector and hence

there exists an index i such that qi 6� 0. Similarly the unitarity of U and the fact that

�u1;1; u1;2� � 0, implies that the vector X�� �x1; . . . ; xnÿ2�� is a unit vector and hence

there exists an index i0 such that xi0 6� 0.

Then, we find from eqs (3.23)±(3.26) that

qi�aCi � b�iSi� � aq0i;
qi�a�iSi ÿ b�i�iCi� � b!q0i;

qi�cCi � d�iSi� � c!0q0i;
qi�c�iSi ÿ d�i�iCi� � d!!0q0i: �3:46�

Also we find from (3.27)±(3.30) that the following equations hold:

axi0 � �aC0i0 � c�0i0S
0
i0 �x0i0 ;

b�!xi0 � �bC0i0 � d�0i0S
0
i0 �x0i0 ;

cxi0 � �a�0i0S0i0 ÿ c�0i0�
0
i0C
0
i0 �x0i0 ;

d �!xi0 � �b�0i0S0i0 ÿ d�0i0�
0
i0C
0
i0 �x0i0 :

Now using the unitarity of the matrix
Ci �iSi

�iSi ÿ�i�iCi

� � �
resp. the matrix

C0i0 �0i0S
0
i0

�0i0S
0
i0 ÿ�0i0�0i0C0i0

� ��
deduce that jq0ij � jqij 6� 0 (resp. jxij � jx0ij�. Also, as Si 6� 0, we

may infer from the set of equations (3.46) that a; b; c; d 6� 0.

Let !0 � q0iq
ÿ1
i and !00 � x0i0x

ÿ1
i0 . Now, by applying Lemma 3.1 twice to the two sets of

equations above (exactly as before), conclude that

�Re�!0�;Re�!�� � �ÿ�S2
i � Re��!�i�i�C2

i �;ÿ�S02i0 � Re��0i0�0i0 �C02i0 ��:
Hence the relation (2) is satisfied in this case.

Case (2.2): u1;2 � 0. We break this into cases depending on whether u2;1 vanishes or

not.

Case (2.2.1): u2;1 6� 0. As before using the unitarity of A;A0 and (3.21) we may assume

that u2;1 � u02;1 and A � D0A0. Using the unitarity of U and the fact that �u1;1; u1;2� � 0,

deduce that Pt�� � p1; . . . ; pnÿ2�� is a unit vector and hence that there exists an index i

such that pi 6� 0. As ! 6� 1, the matrix D is linearly independent from the identity matrix.

Hence using (3.22) conclude that u2;2 � u2;2 � 0. Now the unitarity of U and the fact that

�u1;2; u2;2� � 0, implies that the vector Y�� �y1; . . . ; ynÿ2�� is a unit vector and hence that

there exists an index i0 such that yi0 6� 0.
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Then, we find from (3.17)±(3.20) that

pi�aCi � b�iSi� � ap0i;
pi�a�iSi� ÿ b�i�iCi� � bp0i;

pi�cCi � d�iSi� � c�!0p0i;
pi�c�iSi ÿ d�i�iCi� � d �!0p0i:

Also we find from the (3.31)±(3.34) that the following equations hold:

ayi0 � �aC0i0 � c�!0�0i0S
0
i0 �y0i0 ;

b!yi0 � �bC0i0 � d �!0�0i0S
0
i0 �y0i0 ;

cyi0 � �a�0i0S0i0 ÿ c�!0�0i0�
0
i0C
0
i0 �y0i0 ;

d!yi0 � �b�0i0S0i0 ÿ d �!0�0i0�
0
i0C
0
i0 �y0i0 :

Again the unitarity of the matrix
Ci �iSi

�iSi ÿ�i�iCi

� ��
resp. the matrix

C0i0 �0i0S
0
i0

�0i0S
0
i0 ÿ�0i0�0i0C0i0

� ��
implies that jp0ij�jpij 6� 0 (resp. jyij�jy0ij). Also, as Si 6� 0, we may infer from the above

set of equations that a; b; c; d 6� 0.

Let !0 � p0i pÿ1
i and !00 � y0i0y

ÿ1
i0 . Now, by applying Lemma 3.1 twice to the two sets of

equations above (exactly as before), conclude that

�Re�!0�; Re�!�� � �ÿ�S2
i � Re��i�i�C2

i �;ÿ�S02i0 � Re��!0�0i0�0i0 �C02i0 ��:
Hence the relation (2) is satisfied in this case.

Case (2.2.2): u2;1 � 0. First, suppose u2;2 6� 0. Then, using the unitarity of A and equation

(3.22), we may assume without loss of generality that u2;2 � u02;2 and AD � D0A0. As before

using the unitarity of U and the fact that �u1;1; u1;2� � 0, deduce that Pt�� �p1; . . . ; pnÿ2��
is a unit vector and hence there exists an index i such that pi 6� 0. Also the unitarity of U

and the fact that �u1;1; u2;1� � 0, implies that the vector X�� �x1; . . . ; xnÿ2�� is a unit vector

and hence that there exists an index i0 such that xi0 6� 0.

Then, we find from eqs (3.17)±(3.20) that

pi�aCi � b�iSi� � ap0i;
pi�a�iSi ÿ b�i�iCi� � b!p0i;

pi�cCi � d�iSi� � c�!0p0i;
pi�c�iSi ÿ d�i�iCi� � d!�!0p0i:

Also we find from (3.27)±(3.30) that the following equations hold:

axi0 � �aC0i0 � c�!0�0i0S
0
i0 �x0i0 ;

b�!xi0 � �bC0i0 � d �!0�0i0S
0
i0 �x0i0 ;

cxi0 � �a�0i0S0i0 ÿ c�!0�0i0�
0
i0C
0
i0 �x0i0 ;

d �!xi0 � �b�0i0S0i0 ÿ d!0�0i0�
0
i0C
0
i0 �x0i0 :

Again the unitarity of the matrix
Ci �iSi

�iSi ÿ�i�iCi

� ��
resp. the matrix

C0i0 �0i0S
0
i0

�0i0S
0
i0 ÿ�0i0�0i0C0i0

� ��
implies that jp0ij�jpij 6� 0 (resp. jxij�jx0ij). Also, as Si 6� 0, we may infer from the above

set of equations that a; b; c; d 6� 0.
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Let !0 � p0ip
ÿ1
i and !00 � x0i0x

ÿ1
i0 . Now, by applying Lemma 3.1 twice to the two sets of

equations above, conclude exactly as before that

�Re�!0�; Re�!����ÿ�S2
i � Re��!�i�i�C2

i �;ÿ�S02i0 � Re��!0�0i0�0i0 �C02i0 ��:
Hence the relation (2) is satisfied in this case also.

Next we consider the final case when u2;2 is also zero.

Case 2.2.3:
u1;1 u1;2

u2;1 u2;2

� �
� 0. First note that P;Q;X and Y are all unit vectors. So, there

exist indices i; j such that pi 6� 0 6� qj. We see from (3.17)±(3.20) and (3.23)±(3.26) that

pi�aCi � b�iSi� � a0p0i;
pi�a�iSi ÿ b�i�iCi� � b0p0i;

pi�cCi � d�iSi� � c0p0i;
pi�c�iSi ÿ d�i�iCi� � d0p0i; �3:47�

and

qj�aCj � b�jSj� � a0q0j;

qj�a�jSj ÿ b�j�jCj� � b0q0j;

qj�cCj � d�jSj� � c0!0q0j;

qj�c�jSj ÿ d�j�jCj� � d0!0q0j: �3:48�

Arguing exactly as in the proof of Case (1.2) (of this proposition), we find that jp0ij�jpij
and jq0jj�jqjj. Further, the fact that Si; Sj 6� 0 implies (as before) that a; b; c; d 6� 0.

Setting !0 � pip
0ÿ1
i qÿ1

j q0j, we see that equations (3.47) and (3.48) imply the following

identities:

a�!0Ci ÿ Cj� � b�!0�iSi ÿ �jSj� � 0;

a�!0�iSi ÿ �jSj� ÿ b�!0�i�iCi ÿ �j�jCj� � 0;

c�!0!
0Ci ÿ Cj� � d�!0!

0�iSi ÿ �jSj� � 0;

c�!0!
0�iSi ÿ �jSj� ÿ d�!0!

0�i�iCi ÿ �j�jCj� � 0:

The consistency of the above equations demands that

�!0Ci ÿ Cj��!0�i�iCi ÿ �j�jCj� � �!0�iSi ÿ �jSj��!0�iSi ÿ �jSj� � 0;

�!0!
0Ci ÿ Cj��!0!

0�i�iCi ÿ �j�jCj���!0!
0�iSi ÿ �jSj��!0!

0�iSi ÿ �jSj�� 0:

�3:49�
The fact that !0 6� �1 enables us to derive the following consequence of the two

equations above:

!0 � ��i�i � �j�j�CiCj � ��i�j � �j�i�SiSj

�i�i�1� !0� :

Substituting this value for !0 in eq. (3.49), we get

!02 � 2mi; j !
0 � 1 � 0;
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where, of course, mi; j is as in the statement of relation (3) in the proposition. It follows

that Re�!0� � ÿmi; j.

As X; Y 6� 0, in a similar way to the previous cases, it follows (from equations (3.27)±

(3.34)) that there exist indices i0; j0 such that jxi0 j�jx0ij 6� 0 6� jy0i0 j � jyi0 j and

axi0 � �a0C0i0 � c0�0i0S
0
i0 �x0i0 ;

bxi0 � �b0C0i0 � d0�0i0S
0
i0 �x0i0 ;

cxi0 � �a0�0i0S0i0 ÿ c0�0i0�
0
i0C
0
i0 �x0i0 ;

dxi0 � �b0i0�0i0S0i0 ÿ d0�0i0�
0
i0C
0
i0 �x0i0 ; �3:50�

and

ayj0 � �a0C0j0 � c0�0j0S
0
j0 �y0j0 ;

b!yj0 � �b0C0j0 � d0�0j0S
0
j0 �y0j0 ;

cyj0 � �a0�0j0S0j0 ÿ c0�0j0�
0
j0C
0
j0 �y0j0 ;

d!yj0 � �b0�0j0S0j0 ÿ d0�0j0�
0
j0C
0
j0 �y0j0 : �3:51�

Again, setting !00� xi0x
0ÿ1
i0 yÿ1

j0 y0i0 , we find the following consequence of the above sets

of equations:

a0�!00C0i0 ÿ C0j0 � � c0�!00�0i0S0i0 ÿ �0j0S0j0 � � 0;

a0�!00�0i0S0i0 ÿ �0j0S0j0 � ÿ c0�!00�0i0�0i0C0i0 ÿ �0j0�0j0C0j0 � � 0; �3:52�
and

b0�!00!C0i0 ÿ C0j0 � � d0�!00!�0i0S0i0 ÿ �0j0S0j0 � � 0;

b0�!00!�0i0S0i0 ÿ �0j0S0j0 � ÿ d0�!00!�0i0�0i0C0i0 ÿ �0j0�0j0C0j0 � � 0: �3:53�
The consistency of these two sets of equations implies that

�!00C0i0 ÿ C0j0 ��!00�0i0�0i0C0i0 ÿ �0j0�0j0C0j0 ���!00�0i0S0i0 ÿ �0j0S0j0 ��!00�0i0S0i0 ÿ �0j0S0j0 �� 0;

and

�!00!C0i0 ÿC0j0 ��!00!�0i0�0i0C0i0 ÿ�0j0�0j0C0j0 ���!00!�0i0S0i0 ÿ�0j0S0j0 ��!00!�0i0S0i0ÿ�0j0S0j0 ��0

and we may deduce as before that Re�!�� ÿm0i0; j0 ; i.e., the relation (3) is satisfied.

Finally the proof of (a) is complete.

(b) If condition (0) is satisfied, we may define

A � A0 � �01 0

0 ��ÿ1�1�

� �
and

U � U0 �
1 0 0

0 1 0

0 0 P�

0@ 1A
and verify that eqs (3.15) to (3.38) are satisfied; and thus, it is indeed true that �U 
 A�W
�!; �; �;C� � W�!; �0; �0;C0��U0 
 A0�.
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If condition (1) is satisfied, we may define

A � 0 1

ÿ!�� 0

� �
; A0 � 0 !

ÿ!�� 0

� �
and

U �
0 1 0

! 0 0

0 0 ÿ�0�0P�

0@ 1A; U0 �
0 1 0

1 0 0

0 0 P�

0@ 1A;
and verify that (3.15) to (3.38) are satisfied; and thus, it is indeed true that �U 
 A�W
�!; �; �;C�� W�!; �0; �0;C0��U0 
 A0�.

(c) (i) By Ocneanu's compactness result (see [O1] or [JS]), we know that

A1
0

0 \ A11 � �Mn 
 1� \W�Mn 
 1�W�:
It is easily seen that if X � E11
 1, then WXW� � X, and so we see that A1

0
0 \ A11

contains a non-trivial projection, thus establishing reducibility of the vertical subfactor.

(ii) In this case, Ocneanu's compactness result says that

A0
1 \ A1

1� �1
M2� \W�1
M2�W�:
The above algebra does not reduce to the scalars ± i.e., the horizontal sub-factor is

reducible ± precisely when it is possible to find non-scalar matrices

X � x1In x2In

x3In x4In

� �
; Y � y1In y2In

y3In y4In

� �
2 1
M2;

where xi; yi 2 C such that WX � YW .

Easy calculation shows that this matrix equation is satisfied if and only if the following

relations hold:

x1 � y1; x4 � y4;

x2 � y2 � !y2; x3 � y3 � !x3;

x3�S � x2�S;

x2�1� ���C � �x1 ÿ x4��S;
x3�1� ���C � �x1 ÿ x4��S: ����

First we will prove that the conditions (1) and (2) are sufficient for the horizontal

subfactor to be reducible.

(1) If S � 0, it is readily seen that a non-scalar solution to the above system of

equations is provided by

xi � yi � 1 if i � 1

0 otherwise:

�
(2) Suppose ! � 1 and there exists scalar �1 2 T and �2 2 C such that �S � �1�S and

�1� ���C � �2�S. Choose scalars x 6� 0 and x1; x4 such that x1 ÿ x4 � �2x. Now if we

define

X � Y � x1In xIn

�1xIn x4In

� �
;

then it is an easy verification to see that the set of equations (��) is satisfied.
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Now to prove the necessity of one of the conditions (1) and (2) to hold for the horizontal

subfactor to be reducible, we will prove that the horizontal subfactor is irreducible if both

the conditions (1) and (2) are not satisfied. So assume S 6� 0.

If ! 6� 1, it follows at once from the second and fourth lines of (��) that the equations

above are satisfied if and only if x2�y2�x3�y3�0, and x1�y1�x4�y4 i.e., if and only

if X � Y � �I2n for some � 2 C. Hence the horizontal subfactor is irreducible in this case.

Suppose �S and �S are not scalar multiples of one another. Then we may deduce from

the third line of (��) (as S 6� 0) that x3 � x2 � 0; since S 6� 0, either of the last two lines

then forces x1 � x4.

Suppose �S and �1� ���C are not scalar multiples of one another (in particular

�1� ���C 6� 0�: Then we may deduce from the last two lines of (��) (also as S 6� 0� that

x3 � x2 � 0 and x1 � x4. &

We end this section with the following Proposition, which asserts the existence of a

continuous �3nÿ 6�-parameter family of pairwise inequivalent connections in B�2; n�. It

also asserts that the number �3nÿ 6� is sharp. What we mean by the sharpness of the

number �3nÿ 6� is that there does not exist a subset B � B�2; n� with the following two

properties: (i) no two distinct elements of B are equivalent (as connections); and (ii) B is

homeomorphic to an open subset of Euclidean space of dimension �3nÿ 5�.

PROPOSITION 3.3

There exist non-empty open sets 
 � T, � � Tnÿ2, �0 � Tnÿ3, ÿ � �0; 1�nÿ2
such that

if �!; �; �;C�; �!0; �0; �0C0� 2 
��� �� ÿ, where � � f1g � �0 and �!; �; �;C� 6�
�!0; �0; �0C0� then W�!; �; �;C� is not equivalent to W�!0; �0; �0;C0�. Thus, there exist a

�3nÿ 6� parameter family of pairwise inequivalent connections and that is the best

possible number.

Further, we may assume that 1 =2
 [ ÿ; hence all these connections have the property

that the associated vertical subfactor is reducible and has index n2, and the horizontal

subfactor is irreducible and has index 4 .

Proof. Fix 0 < x1 < x2 < �=4, and define 
0 �feix 2 T : x1 � x � x2g. Fix �=2 < y1 <
y2 < 3�=4, such that 0 < y2 ÿ y1< x1, and let �0 � feix 2 T : y1 � x � y2g.

The definitions have the following (easily verified) consequences. Suppose !; !0 2 
0

and �; �0 2 �0 are arbitrary. Then,

� ��0 =2
0;

� Re�!� � Re��� 6� 0;

� Re�!� � Re��!0�� 6� 0;

� Re�!� ÿ Re�� ��0� 6� 0.

Define f : �0; 1� � T� T! R by f �C; �; !�� Re�!� � �1ÿ C2� � C2 Re���: Then

0 =2 f �f1g ��0 � 
0�. The compactness of �f1g ��0 � 
0� and continuity of f imply

the existence of an � > 0 such that for all C 2 �1ÿ �; 1�; ! 2 
0; � 2 �0, we have

Re�!���1ÿ C2�� C2Re��� 6� 0. In a similar way, by considering suitable continuous

functions, we can see that if � is chosen sufficiently small, then the following relations are

also valid.

Suppose ! 2 
0, and �; �; �0; �0 2 T are such that ��; �0�0 2 �0, and suppose C;C0 2
�1ÿ �; 1�. Then we simultaneously have
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Re�!� � �1ÿ C02� � C02 Re��!0��� 6� 0;

and

Re�!� � m 6� 0;

where m � 1ÿ �1� Re�����0 ��0��C2C02ÿ �1� Re���0 ��0 ����S2S02 ÿ 2�Re����0� � Re�� ��0��
CC0SS0.

Let 
 denote the interior of 
0, and ÿ0 � �1ÿ �; 1�. Let f�0i : 1 � i � nÿ 2g be a

collection of pairwise disjoint open subsets of �0. Define ÿ � fdiag�C1; . . . ;Cnÿ2� :
Ci 2 ÿ08ig, and �0 � fdiag��1; . . . ; �nÿ2� : �i 2�0i 8ig.

Define �1 � �01;�1 � f1g and for 1 < i � nÿ 2, choose non-empty open subsets

�i;�i � T such that �i�i � �0i. Let � �fdiag��1; . . . ; �nÿ2�2 Mnÿ2 : �i 2 �i8ig and

� �fdiag��1; . . . ; �nÿ2�2 Mnÿ2 : �i 2 �i8ig.
Suppose now that W�!; �; �;C� is equivalent to W�!0; �0; �0;C0�, where �!; �; �;C�,

�!0; �0; �0;C0� 2 
��� �� ÿ.

First notice that if �; �0 2 �0 and if � 2 Snÿ2 are such that �Ad�P������ � �0, then

necessarily � � � 0 and � is the identity permutation.

Our choice of (� and consequently of) ÿ ensures that neither of the relations (2) or (3)

of Proposition 3.2(a) can occur. Suppose the relation (1) were to hold; this would imply

that (in the notation of the proposition) �Ad�P������� � !��0�0��; in particular, looking at

any one diagonal entry of this matrix equation, we would be able to produce elements

�1; �2 2 �0 such that ! � �1�2, which we have already observed to be impossible. Thus

the relation (1) can also not hold.

Thus, by Proposition 3.2(a), the relation (0) must necessarily hold. Then the permuta-

tion � (whose existence is the content of (0)) must satisfy the condition �Ad�P��������
��0�0�, which can only happen when � is the identity permutation (by the discussion in the

paragraph preceding the last one). Hence � � ���0, where � is as in the statement of

Proposition 3.2(a) (0); since �1 � �01 � 1, we see that necessarily � � 1; but relation (0),

when � � id and � � 1, then just says that �!; �; �;C� � �!0; �0; �0;C0�.
Now we will prove that the number �3nÿ 6� is sharp.

For this, let F : T� Tnÿ2� Tnÿ2��0; 1�nÿ2! B�2; n� denote the (obviously continuous)

mapping given by F�!; �; �;C�� W�!; �; �;C�. Suppose now that there exists a subset B
with the following two properties: (i) no two distinct elements of B are equivalent (as

connections); and (ii) B is homeomorphic to an open subset of Euclidean space of

dimension �3nÿ 5�. Then Fÿ1�B� is a subset of T2nÿ3� �0; 1�nÿ2
which is homeomorphic

to an open subset of T2nÿ3� �0; 1�nÿ2
, and is consequently itself open (see, for instance

[Spa], Th. 4.8.16).

So it suffices to show that any open subset of T3nÿ5� �0; 1�nÿ2
contains two distinct

points whose images under F are equivalent, as connections. It clearly suffices to establish

this assertion when the open subset is a product 
��� �� ÿ with open factors.

So, suppose 
 � T;�; � � Tnÿ2;ÿ � �0; 1�nÿ2
are open subsets, Let � 2 �, � 2 �

be arbitrary. As � is assumed to be open, for all � > 0 there exists a �00 2 � such that

�1 6� �001 and Arg��1
��001� < �, where �1 and ��001 are the (1,1)th entry of � and �00 respec-

tively. Let � � �1�
00
1. Now define �0i � �i� for i � 1; 2; . . . ; nÿ 2 and �0i � �i

�� for

1 � 2; 3; . . . ; nÿ 2. Now choose �, as � and � are open, so that �0 2 � and �0 2 �. Now

it is easily seen that the pair �!; �; �;C� and �!; �0; �0;C� satisfies the relation (0) in

Proposition 3.2, and hence, using (b) of the same proposition, we conclude that

W�!; �; �;C� is equivalent to W�!; �0; �0;C�. Finally, the proof is complete. &
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4. The principal graph of the horizontal subfactor

In [P] it is shown that for finite-depth subfactors of index 4, the principal graph has to be

one of the extended Dynkin diagrams. We will show that all those diagrams can be

obtained from vertex models coming from B�2; n� for some n.

Theorem 4.1 (Popa). Let N � M be an inclusion of II1 factors, with finite depth and

�M : N� � 4. Then the principal graph for the inclusion N � M is one of the following

diagrams: A
�1�
n ;D

�1�
n ;E

�1�
6 ;E

�1�
7 ;E

�1�
8 .

For a group G � U�N�, let � denotes the standard (or identity) representation of G in

U�N�, and let C�Ĝ; �� denote the bipartite graph obtained as follows: let G denote the

bipartite graph with the set of even (respectively odd) vertices being given by G�0� �
Ĝ� f0g (respectively G�1� � Ĝ� f1g�, where Ĝ denotes the (unitary) dual of G, and the

number of bonds joining ��; 0� and ��; 1� is given by ��
 �; ��; finally, let C�Ĝ; ��
denote the connected component in G containing �tr; 0�, where tr denotes the trivial

representation of G.

The following theorem is proved in [USC] (also, see [BHJ] and [JS]).

Theorem 4.2. Let f
1; 
2; . . . ; 
ng be any collection of k � k unitary matrices, and define

W�a
�b � ��� �
��ab; then W is a biunitary and the principal graph of the horizontal subfactor

given by the vertex model corresponding to W is C�G; ��, where G is the group generated

by f
1; 
2; . . . ; 
ng.
Suppose H is a finite subgroup of SO�3�. Let � : SU�2� ! SO�3� be the 2-fold

covering map (i.e., surjective homomorphism such that ker� � f�I;ÿIg�; let �n be the

(unique, up to isomorphism) irreducible representation of SU�2� of dimension n� 1. Let

G � �ÿ1�H�, and let � � �1jG. The following lemma can be easily seen to be true.

Lemma 4.3. Let � 2 Ĝ. Then �i� ��; 0�2 C�Ĝ; ���0� if and only if ��ÿ1� � 1 if and only if

� � �0 � � for some �0 2 Ĥ. �ii� ��; 1� 2 C�Ĝ; ���1� if and only if ��ÿ1� 6� 1 if and only

if � does not factor through H.

PROPOSITION 4.4

For all G2fA�1�n ;D
�1�
n ;E

�1�
6 ;E

�1�
7 ;E

�1�
8 g there exists an n 2 N and W2 B�2; n� such that the

principal graph of the horizontal subfactor given by the vertex model corresponding to W

is G.

Proof. It is enough to show that there exists G � SU�2� with the property that

C�Ĝ; ��� G. Note that � is self-contragredient and faithful. Using the lemma and some

combinatorial arguments one can see, without too much difficulty, that if we let H be the

group Zn;Dn;A4; S4 or A5, then the corresponding Cayley graph C�Ĝ; �� turns out to be

the extended Coxeter graph A
�1�
2n ;D

�1�
n�2;E

�1�
6 ;E

�1�
7 , or E

�1�
8 respectively. &
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