Fibrinogen as a promising material for various biomedical applications Jae Yeon Joo Md. Lutful Amin Thanavel Rajangam Seong Soo A. An Email author Review Paper First Online: 02 April 2015 Received: 22 October 2014 Accepted: 29 December 2014 DOI :
10.1007/s13273-015-0001-y
Cite this article as: Joo, J.Y., Amin, M.L., Rajangam, T. et al. Mol. Cell. Toxicol. (2015) 11: 1. doi:10.1007/s13273-015-0001-y
1
Citations
252
Downloads
Abstract As demands for innovative drug carriers and transplantable organs increase, many researchers have developed diverse drug carriers and scaffolds using various materials. However, several candidate materials have shown systemic toxicity, making them unsuitable for clinical use. Fibrinogen (Fbg), a natural polymer, could be a promising material for applications in biomedical engineering owing to its biocompatibility and biodegradability, as reported in numerous studies. Moreover, autologous Fbg is abundant in blood and can be easily extracted, presenting Fbg as an excellent biomaterial for biomedical applications due to minimal immunological rejection. In addition, the biocompatibility of other materials could be improved by combining them with Fbg. Over the next few years, Fbg could be widely used in various biomedical and clinical fields. Here, we discuss the characteristics of Fbg and fabricating methods for Fbg scaffolds in various biomedical applications. The future prospects of Fbg as an applicable biomaterial, especially in organ fabrication by the cutting-edge 3D bioprinting technology, are also presented.
Keywords Fibrinogen Drug carrier Arginine-glycine-aspartate peptide Tissue engineering Biocompatible material Autologous 3D bio-printing Microspheres Microtubes
References 1.
Sharma, A. & Jain, C. P. Solid dispersion: A promising technique to enhance solubility of poorly water soluble drug.
Int J Drug Delivery
3 :149–170 (2011).
Google Scholar 2.
Bhunchu, S. & Rojsitthisak, P. Biopolymeric alginatechitosan nanoparticles as drug delivery carriers for cancer therapy.
Die Pharmazie
69 :563–570 (2014).
PubMed Google Scholar 3.
Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications.
Adv Drug Delivery Rev
65 :36–48 (2013).
CrossRef Google Scholar 4.
Grossman, J. H. & McNeil, S. E. Nanotechnology in Cancer Medicine.
Phys Today
65 :38 (2012).
CrossRef Google Scholar 5.
Beenken-Rothkopf, L. N.
et al. The incorporation of extracellular matrix proteins in protein polymer hydrogels to improve encapsulated beta-cell function.
Ann Clin Lab Sci
43 :111–121 (2013).
PubMed Google Scholar 6.
Choi, J. H.
et al. Fabrication of HepG2 cell laden collagen microspheres using inkjet printing.
J Korean Soc Precis Eng
31 :743–747 (2014).
CrossRef Google Scholar 7.
Chan, B. P.
et al. Mesenchymal stem cell-encapsulated collagen microspheres for bone tissue engineering.
Tissue Eng Part C
16 :225–235 (2010).
CrossRef Google Scholar 8.
Kopecek, J., Kopeckova, P., Minko, T. & Lu, Z. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action.
Eur J Pharm Biopharm
50 : 61–81 (2000).
CrossRef PubMed Google Scholar 9.
Drobnik, J., Saudek, V., Vlasak, J. & Kalal, J. Polyaspartamide-a potential drug carrier.
J Polym Sci: Polym Symp
66 :65–74 (1979).
Google Scholar 10.
Cai, W., Gao, T., Hong, H. & Sun, J. Applications of gold nanoparticles in cancer nanotechnology.
Nanotechnol Sci Appl
1 :17–32 (2008).
PubMedCentral PubMed Google Scholar 11.
de Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards.
Int J Nanomed
3 :133–149 (2008).
CrossRef Google Scholar 12.
Adhirajan, N., Shanmugasundaram, N. & Babu, M. Gelatin microspheres cross-linked with EDC as a drug delivery system for doxycyline: development and characterization. J Microencapsulation
24 :647–659(2007).
CrossRef PubMed Google Scholar 13.
Rathod, S. & Deshpande, S. G. Albumin microspheres as an ocular delivery system for pilocarpine nitrate.
Indian J Pharm Sci
70 :193–197 (2008).
CrossRef PubMedCentral PubMed Google Scholar 14.
Arangoa, M. A.
et al. nanoparticles as carriers for the oral administration of lipophilic drugs. Relationships between bioadhesion and pharmacokinetics.
Pharm Res
18 :1521–1527 (2001).
CrossRef PubMed Google Scholar 15.
Lazko, J., Popineau, Y. & Legrand, J. Soy glycinin microcapsules by simple coacervation method.
Colloids Surf B
37 :1–8 (2004).
CrossRef Google Scholar 16.
Livney, Y. D. Milk proteins as vehicles for bioactives.
Curr Opin Colloid Interface Sci
15 :73–83 (2010).
CrossRef Google Scholar 17.
Rajangam, T., Paik, H. J. & An, S. S. A. Development of fibrinogen microspheres as a biodegradable carrier for tissue engineering.
BioChip J
5 :175–183 (2011).
CrossRef Google Scholar 18.
Stec, J. J.
et al. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population.
Circulation
102 : 1634–1638 (2000).
CrossRef PubMed Google Scholar 19.
Mosesson, M. W., Siebenlist, K. R. & Meh, D. A. The structure and biological features of fibrinogen and fibrin.
Ann N Y Acad Sci
936 :11–30 (2001).
CrossRef PubMed Google Scholar 20.
Sporn, L. A., Bunce, L. A. & Francis, C. W. Cell proliferation on fibrin: modulation by fibrinopeptide cleavage.
Blood
86 :1802–1810 (1995).
PubMed Google Scholar 21.
Hamaguchi, M., Bunce, L. A., Sporn, L. A. & Francis, C. W. Spreading of platelets on fibrin is mediated by the amino terminus of the beta chain including peptide beta 15–42.
Blood
81 :2348–2356 (1993).
PubMed Google Scholar 22.
Skogen, W. F., Senior, R. M., Griffin, G. L. & Wilner, G. D. Fibrinogen-derived peptide B beta 1–42 is a multidomained neutrophil chemoattractant.
Blood
71 :1475–1479 (1988).
PubMed Google Scholar 23.
Sahni, A., Odrljin, T. & Francis, C. W. Binding of basic fibroblast growth factor to fibrinogen and fibrin.
J Biol Chem
273 :7554–7559 (1998).
CrossRef PubMed Google Scholar 24.
Campbell, P. G.
et al. Insulin-like growth factor-binding protein-3 binds fibrinogen and fibrin.
J Biol Chem
274 :30215–30221 (1999).
CrossRef PubMed Google Scholar 25.
Ruoslahti, E. RGD and other recognition sequences for integrins.
Annu Rev Cell Dev Biol
12 :697–715 (1996).
CrossRef PubMed Google Scholar 26.
Francavilla, C., Maddaluno, L. & Cavallaro, U. The functional role of cell adhesion molecules in tumor angiogenesis.
Semin Cancer Biol
19 :298–309 (2009).
CrossRef PubMed Google Scholar 27.
Hallahan, D.
et al. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels.
Cancer Cell
3 :63–74 (2003).
CrossRef PubMed Google Scholar 28.
Zhao, Y.
et al. Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases.
Cancer Res
67 :5821–5830 (2007).
CrossRef PubMed Google Scholar 29.
Desgrosellier, J. S.
et al. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression.
Nat Med
15 :1163–1169 (2009).
CrossRef PubMedCentral PubMed Google Scholar 30.
Cooper, C. R., Chay, C. H. & Pienta, K. J. The role of alpha(v)beta(3) in prostate cancer progression.
Neoplasia (N. Y., NY, U. S.)
4 :191–194 (2002).
CrossRef Google Scholar 31.
Xu, W.
et al. RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating alpha(v)beta(3) expression.
Int J Nanomed
7 :915–924 (2012).
Google Scholar 32.
Ji, S.
et al. RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy.
Cancer Biol Ther
13 :206–215 (2012).
CrossRef PubMed Google Scholar 33.
Nasongkla, N.
et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery.
Angew Chem Int Ed Engl
43 :6323–6327 (2004).
CrossRef PubMed Google Scholar 34.
Zhan, C.
et al. Cyclic RGD conjugated poly (ethylene glycol)-co-poly (lactic acid) micelle enhances paclitaxel anti-glioblastoma effect.
J Controlled Release
143 : 136–142 (2010).
CrossRef Google Scholar 35.
Borgman, M. P.
et al. . Biodistribution of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer drug delivery.
Mol Pharmaceutics
6 :1836–1847 (2009).
CrossRef Google Scholar 36.
Meng, S.
et al. Integrin-targeted paclitaxel nanoliposomes for tumor therapy.
Med Oncol
28 :1180–1187 (2011).
CrossRef PubMed Google Scholar 37.
Scheffel, U., Rhodes, B. A., Natarajan, T. K. & Wagner, H. N., Jr. Albumin microspheres for study of the reticuloendothelial system.
J Nucl Med
13 :498–503 (1972).
PubMed Google Scholar 38.
Miyazaki, S.
et al. Fibrinogen microspheres as novel drug delivery systems for antitumor drugs.
Chem Pharm Bull
34 :1370–1375 (1986).
CrossRef PubMed Google Scholar 39.
Miyazaki, S.
et al. Preparation and evaluation in vitro and in vivo of fibrinogen microspheres containing adriamycin.
Chem Pharm Bull
34 :3384–3393 (1986).
CrossRef PubMed Google Scholar 40.
Miyazaki, S.
et al. Antitumour effect of fibrinogen microspheres containing doxorubicin on Ehrlich ascites carcinoma.
J Pharm Pharmacol
38 :618–620 (1986).
CrossRef PubMed Google Scholar 41.
Rejinold, N. S.
et al. Development of novel fibrinogen nanoparticles by two-step co-acervation method.
Int J Biol Macromol
47 :37–43 (2010).
CrossRef PubMed Google Scholar 42.
Rejinold, N. S.
et al. 5-fluorouracil loaded fibrinogen nanoparticles for cancer drug delivery applications.
Int J Biol Macromol
48 :98–105 (2011).
CrossRef PubMed Google Scholar 43.
Zhang, S.
et al. Size-dependent endocytosis of nanoparticles.
Adv Mater
21 :419–424 (2009).
CrossRef PubMedCentral PubMed Google Scholar 44.
Nisisako, T., Torii, T. & Higuchi, T. Droplet formation in a microchannel network.
Lab Chip
2 :24–26 (2002).
CrossRef PubMed Google Scholar 45.
Li, X.B.
et al. Study on the mechanism of droplet formation in T-junction microchannel.
Chem Eng Sci
69 : 340–351 (2012).
CrossRef Google Scholar 46.
Hawiger, J. Formation and regulation of platelet and fibrin hemostatic plug.
Hum Pathol
18 :111–122 (1987).
CrossRef PubMed Google Scholar 47.
Spotnitz, W. D. Fibrin sealant: The only approved hemostat, sealant, and adhesive-a Laboratory and clinical perspective.
ISRN surgery
2014 :1–28 (2014).
CrossRef Google Scholar 48.
Erdogan, D. & van Gulik, T. M. Evolution of fibrinogen-coated collagen patch for use as a topical hemostatic agent.
J Biomed Mater Res Part B
85 :272–278 (2008).
CrossRef Google Scholar 49.
Zhang, G.
et al. PEGylated fibrin patch for mesenchymal stem cell delivery.
Tissue Eng
12 :9–19 (2006).
CrossRef PubMed Google Scholar 50.
Wnek, G. E., Carr, M. E., Simpson, D. G. & Bowlin, G. L. Electrospinning of nanofiber fibrinogen structures.
Nano Lett
3 :213–216 (2003).
CrossRef Google Scholar 51.
Moretz, W. H., Jr., Shea, J. J., Jr., Emmett, J. R. & Shea, J. J., 3rd. A simple autologous fibrinogen glue for otologic surgery.
Otolaryngol—Head Neck Surg
95 :122–124 (1986).
PubMed Google Scholar 52.
Dhandayuthapani, B., Yoshida, Y., Maekawa, T. & Kumar, D. S. Polymeric scaffolds in tissue engineering application: A review.
Int J Polym Sci
2011 :1–19 (2011).
CrossRef Google Scholar 53.
Peled, E.
et al. A novel poly (ethylene glycol)-fibrinogen hydrogel for tibial segmental defect repair in a rat model.
J Biomed Mater Res, Part A
80 :874–884 (2007).
CrossRef Google Scholar 54.
Dejana, E.
et al. Interaction between fibrinogen and cultured endothelial cells. Induction of migration and specific binding.
J Clin Invest
75 :11–18 (1985).
CrossRef PubMedCentral PubMed Google Scholar 55.
Almany, L. & Seliktar, D. Biosynthetic hydrogel scaf-folds made from fibrinogen and polyethylene glycol for 3D cell cultures.
Biomaterials
26 :2467–2477 (2005).
CrossRef PubMed Google Scholar 56.
He, C.
et al. Fabrication of fibrinogen/P (LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications.
J Biomed Mater Res Part A
97 : 339–347 (2011).
CrossRef Google Scholar 57.
Fang, Z.
et al. Preparation and biocompatibility of electrospun poly(l-lactide-co-ε-caprolactone)/fibrinogen blended nanofibrous scaffolds.
Appl Surf Sci
257 : 4133–4138 (2011).
CrossRef Google Scholar 58.
Percçin, G. K. & Khuri-Yakub, B. T. Piezoelectric droplet ejector for ink-jet printing of fluids and solid particles.
Rev Sci Instrum
74 :1120 (2003).
CrossRef Google Scholar 59.
Böhmer, M. R., Steenbakkers, J. A. M. & Chlon, C. Monodisperse polymeric particles prepared by ink-jet printing: Double emulsions, hydrogels and polymer mixtures.
Colloids Surf B
79 :47–52 (2010).
CrossRef Google Scholar 60.
Böhmer, M. R.
et al. Preparation of monodisperse polymer particles and capsules by ink-jet printing.
Colloids Surf A
289 :96–104 (2006).
CrossRef Google Scholar 61.
Fletcher, R. A.
et al. Fabrication of polymer microsphere particle standards containing trace explosives using an oil/water emulsion solvent extraction piezoelectric printing process.
Talanta
76 :949–955 (2008).
CrossRef PubMed Google Scholar 62.
Radulescu, D., Schwade, N. & Wawro, D. Uniform paclitaxel-loaded biodegradable microspheres manufactured by ink-jet technology.
Proc Recent Adv in Drug Delivery Sys 1–5 (2003).
Google Scholar 63.
Khatiwala, C.
et al. 3d cell bioprinting for regenerative medicine research and therapies.
Gene Ther Regul
7 : 1230004 (2012).
CrossRef Google Scholar 64.
Gregor, A., Hošek, J. 3D printing methods of biological materials used in tissue engineering. International Conference MECAHITECH’10, Bucharest, Romania, 23–24 September 2010.
Google Scholar 65.
Skardal, A.
et al. . Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds.
Stem Cells Transl Med
1 :792–802 (2012).
CrossRef PubMedCentral PubMed Google Scholar 66.
Reiffel, A. J.
et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities.
PloS One
8 : e56506 (2013).
CrossRef PubMedCentral PubMed Google Scholar 67.
Atala, A.
et al. Tissue-engineered autologous bladders for patients needing cystoplasty.
Lancet
367 :1241–1246 (2006).
CrossRef PubMed Google Scholar 68.
Fielding, G. & Bose, S. SiO
2 and ZnO dopants in threedimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo.
Acta Biomater
9 :9137–9148 (2013).
CrossRef PubMed Google Scholar 69.
Zopf, D. A.
et al. Bioresorbable airway splint created with a three-dimensional printer.
N Engl J Med
368 :2043–2045 (2013).
CrossRef PubMed Google Scholar 70.
Nakamura, M.
et al. Computer-assisted biofabrication. Symposium on VLSI Technology Digest of Technical Papers, Kyoto, Japan, June 2011.
Google Scholar 71.
Mironov, V.
et al. Organ printing: computer-aided jetbased 3D tissue engineering.
Trends Biotechnol
21 :157–161 (2003).
CrossRef PubMed Google Scholar 72.
Mironov, V.
et al. Organ printing: tissue spheroids as building blocks.
Biomaterials
30 :2164–2174 (2009).
CrossRef PubMedCentral PubMed Google Scholar 73.
Cui, X. & Boland, T. Human microvasculature fabrication using thermal inkjet printing technology.
Biomaterials
30 :6221–6227 (2009).
CrossRef PubMed Google Scholar © The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media Dordrecht 2015
Authors and Affiliations Jae Yeon Joo Md. Lutful Amin Thanavel Rajangam Seong Soo A. An Email author 1. Department of Bionano Technology Gachon University Gyeonggido Korea